## Motion in an Circle and

 OscillationTwo Special Cases

## Course Reps

## Nominated

- Samantha Cheah
- Raj Srilakshmi
- Ellen Rykers
- Lachlan McGinness
- Sarah Biddle


## Course news

- Labs start tomorrow
- Clickers will now be used for assessment. You need to have a " $U$ " in front of your student number in the clicker. If you can't join the class, come see me now!
- Class reps - introduce yourselves.

Momentum and Force

- We will talk about two special cases circular motion and oscillation.
- Then we will start dealing with the general case.


## Circular motion

- Remember - if a force is applied that is always sideways, an object will move in a circle.


## Example - Orbits

- If one object (say the Space Station) is in a circular orbit around another, much larger object (say the Earth), the larger object's gravity must be supplying the necessary (centripetal) force to keep the space station moving in a circle.


To stay in a circular orbit, this gravitational force
must supply the necessary centripetal force $F=\frac{m v^{2}}{r}$
so... $\quad \frac{G M m}{r^{2}}=\frac{m v^{2}}{r}$
Cancel masses and one of the $r$ ' $s$

$$
\frac{G M}{r}=v^{2}
$$

Rearrange to find $v$

$$
v=\sqrt{\frac{G M}{r}}
$$

## Centrifugal Force

- A particularly confusing topic


## The Answer

- The door exerts a force on you.
- You are trying to continue moving in a straight line, and the door pushes into you sideways, forcing you to turn.


## Centrifugal Force

- Centrifugal force is even more imaginary than centripetal force.
- There is no outward force when you go around a circle.
- You are just trying to continue in a straight line and being prevented from doing so by some force (which might be due to gravity or friction or the door, acts towards the centre and has magnitude $\frac{m v^{2}}{r}$


## SImilarly for " $g$ "-forces

- When you speed up or slow down there is no " $g$ "-force. You are being pushed by your chair or the dashboard.
- This push is what is changing your speed.


## Crucial Facts

- Special case - a force that is constant in magnitude but perpendicular to the motion.
- Result - motion in a circle.
- The force points at the centre of the circle.

$$
F=\frac{m v^{2}}{r}
$$

## Spring force

- This is another special case - a situation you almost never meet in the real world, but which can be solved without the need for a computer.


## Spring Forces <br> SImple Harmonic Motion



## Vertical weight calculation

- Example - a 50 g weight is hung from a spring of constant $\mathrm{k}=3.0 \mathrm{~N} / \mathrm{m}$.
- By how much does it stretch?



## Draw a free-body diagram for the weight

- This is a diagram just showing the weight, as a dot, and the forces ACTING ON IT



## Why are we worried about this?

- Because while ideal springs are rare, forces which always pull towards a point are common.
- Such as chemical bonds
- Any elastic behaviour
- So it's worth getting used to this sort of force.


## As it's hanging still...

- Forces must balance. So the weight and the spring force must be the same

$$
m g=k D
$$

Rearrange to get D

$$
D=\frac{m g}{k}
$$



So this gives how much the spring stretched.

## Motion attached to a spring

- We've seen how to calculate a static situation with a spring.
- But what if something is moving while attached to a spring?


## Vertical spring-mass system

- VPython simulation, spring_vertical.py


## Oscillation

- The net force is towards the equilibrium position.
- It accelerates towards it.
- But thanks to momentum, it overshoots. The force is now backwards and slows it to a halt.


## Energy

- A constant interplay between kinetic and spring energy (with a little gravitational potential energy thrown in for good measure)


## Very general behaviour

- Whenever you get any sort of force which tends to push things back into place.
- Usually need a computer to solve exact motion, but if you assume the spring is ideal (seldom the case in reality) you can solve it.


## Analytic Solution

- I'll show you the mathematical solution in this idealised case.
- But first - what would you expect to determine how rapidly it oscillates?
- What makes it oscillate faster?


## Clicker Question

- What makes it oscillate faster?
- The spring constant?
- The mass?


## Answer

- A stiffer spring - pushes back harder
- A lighter mass - accelerates faster.


## Horizontal

## munwuw

- To make the maths simpler, let's take a horizontal spring-mass system, with the mass sliding along a frictionless surface.
- (the result is the same as for a vertical system but the argument is a bit simpler)

- Let's call the position of the weight $x$, and measure it from the spring's rest position.
- (Once again you can use any axes you like and will get the same result, but it makes the calculation messier).


## Calculus

- So we know the acceleration. But what about the velocity v or position x ?
- Luckily, we know that acceleration is defined as the rate of change of velocity.
- So

$$
a=\frac{d v}{d t}=-\frac{k}{m} x
$$

## Position

- And velocity is defined as the rate of change of position, so $\quad v=\frac{d x}{d t}$
This means that acceleration a is

$$
a=\frac{d v}{d t}=\frac{d\left(\frac{d x}{d t}\right)}{d t}=\frac{d^{2} x}{d t^{2}}
$$

So acceleration is what you get when you differentiate position twice with respect to time.

## So we now know that...

$$
\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x
$$

- $k$ and $m$ are just constants. So this is telling us that if you differentiate $x$ twice, you get $x$ back again, albeit multiplied by a constant.
- Can you think of any functions that when you differentiate themselves twice are unchanged (apart from a constant?)


## What appears in its own second differential?

- How about Cosine?
- Let's try $x=A \cos (\omega t)$, where $A$ and $\omega$ (omega) are constants, currently unknown.
- Let's try differentiating this twice
$x=A \cos (\omega t)$

$$
\begin{aligned}
\frac{d x}{d t}= & -A \omega \sin (\omega t) \\
& \frac{d^{2} x}{d t^{2}}=-A \omega^{2} \cos (\omega t)=-\omega^{2} x
\end{aligned}
$$

## It works!

- Compare $\frac{d^{2} x}{d t^{2}}=-\omega^{2} x$
with the spring acceleration equation we got earlier

$$
\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x
$$

Identical, as long as
we make

$$
\omega=\sqrt{\frac{k}{m}}
$$

## What are $\omega$ and A ?



A is the amplitude of the oscillation - how far it goes ON ONE SIDE of the equilibrium position

## So the answer is...

$$
x=A \cos (\omega t) \quad \text { where } \quad \omega=\sqrt{\frac{k}{m}}
$$

- This whole derivation should remind you of the projectile motion one.
- Write down $\mathrm{F}=\mathrm{ma}$, and integrate twice to get position versus time.
- This is called "simple harmonic motion"

$\omega$ is the angular frequency, and is measured in radians per second. As $2 \pi$ radians is a complete circle, this corresponds to the period T above.


## Period and Frequency

So the angular frequency $\quad \omega=\sqrt{\frac{k}{m}}$

- The period T (time to repeat) is $T=\frac{2 \pi}{\omega}$
- The frequency (in cycles per second, also known as Hertz, Hz) is

$$
f=\frac{1}{T}=\frac{\omega}{2 \pi}
$$

## Very Useful

- You will come back to these quantities time and time again, as they are fundamental in waves, interference and all sorts of vibrations.


## Resonance

- One final feature.
- An oscillating system like this is peculiarly responsive to outside wiggles at its natural frequency.
- This is called resonance.



## Carbon Dioxide

- VPython simulation


## Vpython simulation



SkyMapper

- Currently being commissioned
- Has a resonance problem. The cryocoolers are resonating with the secondary mirror (we think)


## Key Points

- Whenever you get a force that pushes back towards some equilibrium position, you probably get vibrations.
- You can work out the frequency of oscillations if you know how strong the restoring force and how big the inertia of whatever is being vibrated.

