Statistics: Part 1
1. Why bother with statistics?

Why is statistics so necessary for observational astronomers? Here are some examples of
typical tasks that require some stats knowledge:

*  Writing a telescope proposal. You need to know what signal-to-noise ratio you
require, and how long you have to expose for to reach it. It’s also crucial for many
projects to be able to justify why you need to observe a given number of targets.
All of these require stats.

* Fitting a model to some data. Let’s say you’re trying to measure the cosmological
constant. You have a variety of models, and you want to see which ones best fit
the data.

* Survey modelling. You might be part of a team proposing to build a giant new
telescope that will find planets about other stars. What would be the best
observing strategy? Should you look at lots of stars, or concentrate on a few and
observe them really hard? The choice will affect the whole design of your
telescope.

* Proving somebody wrong: let’s say a rival group are claiming an exciting result.
But your data just don’t seem to back up their claim. Statistics allows you to
determine how confidently you can stand up and say “you are idiots”!

In these notes, I'll give a very brief and (hopefully) practical introduction to those bits of
statistics most vital to observational astronomy.

2. What is a Statistic?

The fundamental purpose of statistics is to baffle students. Whoops — I mean it is to
simplify the world around us. There are vastly more numbers out there than anyone’s
brain can handle: stats is our tool to boil it all down into a few numbers that tell us what
we really want to know. A “statistic” is technically just such a number, derived from
some vast pile of data, which hopefully tells us something interesting. For example:

* The 2dF Galaxy Redshift Survey obtained over 200,000 spectra, each containing
several thousand numbers. But for many purposes, all you need to know is the
redshift of each galaxy. And all some of us want to know is what constraint this
survey puts on cosmological parameters. So a handful of values and their error
bars are the statistics extracted from more than 10® raw measurements.

A very common error is to lose sight of this very basic truth: statistics is the extraction of
what you want to know from masses of data. The best way to address most statistical
problems is as follows:

1. Think really hard about what it is you are trying to learn.

2. Invent a “statistic” that will tell you this.

3. Measure this “statistic” from your data.



Here’s an example. Say you have measured the HI (neutral hydrogen) spectra for lots of
galaxies, using the Parkes radio telescope. For each galaxy, you have a plot of intensity
vs. velocity.

A bad way to approach this data would be to measure “statistics” from each plot, such as
the line width, and then try to do something with them. Here’s why:

Which of these lines is the widest? If you measure the width at zero intensity, it is the
first one. But a common measure of line width is “full width at half maximum height”: by
this measure, the last is the widest. Many line profile analysis programs fit Gaussian
curves to the lines, and quote the line width and flux as that of the best-fit Gaussian. But
clearly none of these lines is a Gaussian. Almost any statistic you apply to line profiles as
varied as these will get you into some trouble of this sort.

The best thing to do is to think: “what do I really want out of these data”? It might be, for
example, that you want to measure the mass of the galaxy, using its rotation velocity. In
this case, you should use galaxy models to generate some HI line profiles, and see which
measure of their width or profile most closely agrees with the mass.

Here are a couple more examples, from outside astronomy, which may make it clearer
why it is really important to think carefully about what statistic you want to measure and
why.

* A marketing director from company selling luxury sports cars wants to know
where in Australia she should build her first showroom. Her cars sell for several
hundred thousand dollars each, so she wants to make sure she puts it in an area
with lots of rich people. She checks out the Australian Bureau of Statistics web
site, and finds that the ACT has the highest median income of any state or
territory. She builds the dealership here, sells no cars, and gets the sack. What
went wrong? Well — the median income is the income which splits the population
in half — so that half the people have a higher income and half lower. The ACT is
a very middle-class place, where most people earn a reasonable income. There are
few very poor people, but also few very rich people. Somewhere like NSW,




however, has many more poor people. It also has more millionaires. But the
number of poor people vastly outnumbers the number of millionaires. So the
median income is pulled down, not up. She should have used a different statistic,
such as “fraction of the population earning more than a million dollars per year”

* The Government says that “spending on universities has never been higher, please
vote for us again”. The opposition says “spending on universities has never been
lower, throw the bastards out”. How can they both be true? They are using
slightly different statistics, of course. The government correctly states that the
number of dollars spent on universities has increased. But the opposition correctly
points out that the fraction of GDP spent on universities has dropped. Which is
different, because the GDP of Australia has grown. Which is correct? Well, it
depends on why you want to know. If, for example, you want to know whether
universities will have to lay off staff, what matters is whether their income has
gone up faster than typical salaries. If you want to know whether Australian
universities are being funded at an internationally competitive rate, what matters
is funding relative to international competitors. And so on...

The bottom line of all this is: don’t just blindly apply some well know statistic, such as a
mean, standard deviation or correlation coefficient to the data, unless you’re quite sure it
will tell you what you want to know.

3. Some Common Statistics

Over the years, people have come up with an amazing range of statistics. Most are pretty
specialised, but a handful have become widely used.

The most common of all is, of course, the mean, or “average”. If you have a lot of
numbers, all somewhat different, the mean is one of several ways of summarising a
“typical” or central value. If you have n numbers x;, the mean u is, of course, defined as:

1 n
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The mean is so widely used that it somehow acquires a magical status. But in fact, it’s not
a particularly good measure for most purposes. Firstly, it is easily biased by even one
outlying point. For example, let’s say you have taken ten measurements of the brightness
of a particular star. The values you measured are 4, 6, 4, 5, -17435, 4,6, 4, 3, 5. Clearly
most points are pretty close to 4 or 5. But there is one measurement that looks pretty
wrong. Something obviously went wrong with that measurement. If you work out the
mean, it is -1739.4, which is not close to any of the measurements!

If you are sure that all your data are good, the mean is a sensible statistic to use. But if
there is a risk of some iffy numbers, you are better off using a robust statistic. Robust
statistics are those that are fairly resistant to a few flaky data points. In this case, you’d
probably use the median. To compute a median, sort all the numbers into ascending or
descending order, and take the middle one (or the average of the middle two if you have
an even number). It’s harder to compute than the mean, because you have to sort your
numbers, but it’s resistant to occasional way-off points (in this case the median is 4.5).



Most traditional statistics are like the mean — easy to compute but not robust. There is
almost always, however, one or more robust counterparts, which you may be better off
using in most practical situations. In radio astronomy, for example, the AIPS package
uses traditional statistics, but the MIRIAD package uses robust statistics.

The second most common statistic is probably the standard deviation o. Given a bunch of
numbers of mean W, it measures how closely the remaining numbers are clustered around
the mean. If all the numbers are the same, the standard deviation is zero. It is defined by:
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In other words, you take each point, work out how far it is from the mean, square this
distance, average all the squared distances and take the root. It’s even less robust than the
mean — because you are adding the squares of deviations together, it is hideously
vulnerable to outlying points. But it is fast to compute — using the second version of the
equation above, you can compute it with a single pass through the data.

Some other common statistics:

* The correlation coefficient. Given two sets of numbers, it tells you whether when
one goes up, the other does too. Its robust counterpart is Spearman’s Rank
Correlation Coefficient. For example, does the size of a planetary nebula correlate
with the luminosity of the white dwarf in its centre?

* Student’s t-test. Given two collections of numbers, asks whether they could be
drawn from the same population. For example, you might have the metallicities of
stars which do, and which do not have planets. Are they consistent with being the
same or not? The robust counterpart is the Kolmogorov-Smirnov (KS) test, which
is widely used in astronomy.

4. Uncertainties

So let’s say you have your data, and you’ve dreamed up a perfect statistic, which will tell
you exactly what you want to know. Your next problem is uncertainties in the data,
which will prevent you from measuring the value of this statistic with perfect precision.

There are two broad classes of uncertainty: systematic and random.

41 Systematic Uncertainties

What is a systematic uncertainty? This is something that is wrong with your observation,
or with the theory that underpins it. Something that you failed to take into account. Here
are some examples:

e Edwin Hubble first tried to measure the expansion rate of the universe by looking
for the brightest stars in each galaxy. He then assumed that all these stars were the
same intrinsic brightness, and hence measured a crude distance. In near-by
galaxies he was indeed picking out individual bright stars. But in more distance
galaxies, what he thought were individual stars were actually bright compact star



clusters. As a result he thought that the distance galaxies were much closer than
they really are, and he got the age of the universe badly wrong.

* [ was once measuring the spectra of hundreds of quasars. I found that quasars in
one part of the sky were systematically much redder in their colours than quasars
elsewhere. Luckily, I found out why before publishing. The trouble is that the
atmosphere is denser at the bottom than at the top. This means that it acts a bit
like a prism, bending light downwards. Because the refractive index of air is
greater at blue wavelengths, blue light is bent more than red light. When looking
straight up, there is no effect, but the bunch of anomalously red quasars had been
observed when they lay quite low in the sky. The blue light from them had been
bent so much that it missed the spectrograph!

* About 15 years ago, it was only possible to measure the radial velocity of a star
with a precision of ~ 15 m/s. It is now possible to get precisions approaching
Im/s. All this improvement has been due to some very pernickety people tracking
down and removing such systematic errors as:

o Changes in air pressure (and hence air refractive index) shifting spectra.
o Allowing for the motion of the observatory as the Earth rotates.
o Allowing for the exact position of the star image in the spectrograph slit.

Systematic errors are both really nasty and really nice. They are nasty because they don’t
obey the laws of statistics — they don’t go away no matter how big your sample. They are
nice because, if you are clever enough, you may be able to make them go away, and
hence achieve truly fantastic precision.

4.2 Random noise

If you’ve got rid of all systematic errors, what’s left to stop you? Truly random noise.
This is any process that gives a different number each time you measure it, in a truly
random fashion.

You can characterise the systematic error on a data point by a single number: the
difference between the measurement and the true value. But for random noise, you need
more than a single number. You need to specify the probability distribution function.

The probability distribution tells you what the probability is of getting a particular value.
Experimentally, you can measure it (approximately) by measuring something over and
over again, and plotting a histogram of the results. Formally, the probability distribution
function is the limit of this histogram as the number of measurements goes to infinity

Let’s look at a real probability distribution. Here is an image taken with the MIPS
instrument on the Spitzer Space Telescope.



If we pick a small region of this image that doesn’t contain any objects, we will be
looking purely at the noise. Here is a histogram of the pixel values in such a region:
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So you can see that in a blank bit of sky, the mean value recorded will be pretty close to
zero, but that you actually measure quite a range of values. Most lie between -0.05 and
0.05, but there are a few higher pixels. Perhaps because this nominally blank bit of sky
isn’t really blank but contains a few galaxies, too faint to clearly see in the image, but still
contributing to the pixel values.

What causes such random noise? How can something be different every time you
measure it? Such as in every different pixel? Usually quantum mechanics is the problem.
For example, let’s say you are recording the number of photons detected per second from
some star. Photons (like any other particle) are described by the wavefunction in



Schrodinger’s equation, and the probability of detecting a photon in a given time and
place is proportional to the square of this wavefunction. So you can never tell whether
you actually will or will not detect a photon — all you can calculate is the probability. This
is the aspect of quantum mechanics that drove Einstein crazy (“God does not play
dice...”). Thermal noise is another culprit. In any electronic circuit, the voltages fluctuate
around, partially due to quantum mechanics (you can never tell where an electron really
is — only the probability of detecting it at a given location), and partially due to the
random thermal jostling motions of atoms, electrons and holes.

Quantum mechanics can also be important on much larger scales. For example, the
distribution of galaxy clusters in the universe looks pretty random, and is presumably
because of quantum mechanical fluctations at the era of recombination, which eventually
became the dark matter seeds about which clusters formed.

4.3 Poisson Distribution

There are many theoretical probability distributions in the stats literature, but two stand
out as by far the most widely used, the Poisson Distribution, and the Gaussian
Distribution. We’ll discuss them in turn.

The Poisson distribution applies when you have a random process that always gives an
integer answer. Examples might include:

*  The number of cosmic ray protons detected per unit time.

* The number of galaxies in a given volume of the universe.

* The number of photons detected in each pixel of an image.

The Poisson distribution assumes that there is a particular probability of finding a given
object (such as a photon being detected during a particular time interval or a galaxy being
found in a given volume). This probability must be constant, and must not depend on
how many photons or galaxies have already been found. So it’s fairly accurate for
photons, but less so for galaxies, as they cluster, so where you find one, you are more
likely to find more.

The probability P of finding x objects is given by:

P(x:w= M—’e"”
x!

where  is the average number of such objects that you would find, and x! is the factorial
of x (i.e. x.(x-1).(x-2).....1).

Here is what a Poisson distribution looks like, for a range of values of u:
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4.4 Gaussian Distribution

The Gaussian distribution (also known as the Normal distribution and as the “Bell
Curve”) is by far the most commonly used distribution in all of statistics. Indeed it is
widely used in places where it shouldn’t be.

The Gaussian distribution is a continuous one — so it’s used for variables which can take
any value, not just integers (unlike the Poisson distribution). So it might be used for
things like voltages in a circuit. The probability distribution function P of a variable x is
given by:

2
p= 1 exp[_l(x_u)
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where u is the mean of the distribution, and o is its standard deviation. Exp indicates
exponent — i.e. raising e to this power.

Note: because this is a continuous distribution function, the probability of x having
exactly a given value is infinitesimally small. Instead, we have to ask what the probability
of x lying in the range x; to x,. This is given by integrating the above equation between
these limits. The integral of this curve from minus infinity to infinity is 1.
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Gaussian curves of standard deviation 0.5 (blue), 1(red) and 2 (yellow).

Unfortunately, this curve cannot be integrated analytically. But many numerical routines
and tables exist to integrate it over various ranges. Around 34% of values lie more than
one standard deviation from the mean, about 5% lie more than two standard deviations
from the mean, but less than 1% lie more than three standard deviations out.

What is special about this functional form, rather than any other curve that goes up and
then comes down again? The answer lies in a bit of maths called the ‘Central Limit
Theorem”. Basically, whenever you combine lots of different random things, you end up
with something like a Gaussian! As long, that is, as they are all independent of each
other, and have not-too-pathological probability density functions themselves.

Check out the following web pages for some examples of how this works:

http://en.wikipedia.org/wiki/Illustration_of the central limit theorem
http://en.wikipedia.org/wiki/Concrete_illustration_of the central limit theorem

The Gaussian distribution is also the limiting form of the Poisson distribution, for large
values of u.



This remarkable result is why the Gaussian distribution is so widely used. It is assumed to
apply to the 1Q of students, to the variability of share prices, to the scatter of galaxies
around the Fundamental Plane, to electronic noise in radio receivers, and almost
everywhere else.

Indeed, it is often applied to situations where the uncertainties are really systematic, and
not random. For example, you often hear that Type-1a supernovae are standard candles.
This is approximately true, but for any individual supernova, there is an uncertainty of
~7% in its distance. So some are further than you think while others are nearer. Why?
Probably a whole range of physical reasons. Hopefully enough different and independent
reasons that the Central Limit Theorem applies, and we can model this scatter as a
Gaussian. And if you plot this scatter, it does look somewhat Gaussian.

A word of caution, however. While a Gaussian does provide a reasonable fit in a wide
range of circumstances, it should not be trusted too far out in the wings of the curve.
Almost invariably you find more extreme points than a Gaussian curve predicts. The
Central limit theorem only strictly applies in the limit as the number of independent
variables becomes very large, which is never the case in reality..

4. End-to-End Monte-Carlo Simulations.

We now have everything we need to know in order to simulate an observation!

The most accurate way to estimate what exposure time you’ll need, and to optimise your
observing strategy, it to do an end-to-end Monte-Carlo simulation. It is also a lot of work,
so in practice shortcuts are often used. We’ll discuss some of these in part-2 of the stats
notes.

The basic idea is to try and simulate all the steps you will go through in obtaining your
real observations. But using fake data, and random number generators to produce fake
noise. Then analyse this fake data in the same way that you ultimately plan to analyse the
real data and see if you get the right answer.

Here is an example. You’ll do another example as the assignment this week.

Imagine that you are observing a red dwarf star, which regularly flares in brightness. The
flares only last 1 second, but double the brightness of the star while they last. The star has
a V-band magnitude of 11.3. You are observing it in the V-band, using a photon counting
device that reads out every ten seconds. You have been allocated three nights of

observing time. The star will be high enough to observe for 24 hours between these three
nights, so if the weather is good, you should be able to measure its brightness 8640 times.

The first thing you’ll need to work out is how many photons per second you would detect
from this star, when it is not flaring. You are using a telescope with a 1m diameter mirror.
On the telescope web page, you read that a 10™ V magnitude star gives 400 counts per



second (detected photons per second). You also learn that the read-out electronics
introduces Gaussian noise into the output, with a standard deviation of 20 counts.

Your target star is 1.3 mag fainter than 10" mag, so should give 2.5112' fewer counts
per second: i.e. 120.8 counts per second, or 1208 counts per ten second exposure.

You write a computer program to simulate this. A copy can be found on the web page.
You generate an array, and fill it up with random numbers. As we are talking about a
discrete variable (the number of photons) these should be drawn from a Poisson
distribution (using numarray’s wonderful random number generation facilities). This
gives a realistic simulation of how many photons you’d get in every ten-second read-out.

Now let’s add an artificial flare. The brightness increases by 100% but only for one
second. So over a whole 10 sec integration, the increase is only 10%. So lets increase the
100™ array element by 1%. Set this to be a random number drawn from a Poisson
distribution with mean 1208x1.01=1220.08.

Now we need to add the Gaussian electronic noise. Create another array, and fill it with
Gaussian random numbers with mean 0 and standard deviation 20. Add it to the first
array, and we have our simulated data. Here is what they look like (the first 1000
observations):
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Note the spike at the 100™ measurement. That’s our flare: what we want to measure. It is
the highest point in the first 1000 measurements, but only just, which is a bit worrying.



Now we need to decide what statistic we will use to find flares. We could look for any
element in this array which has 1208x1.1 = 1328 counts or more. Let’s try this.
Observation 100 passes the test. But so does observation 336. So we’ve found the
(simulated) real flare, but the noise is so bad we’ve mistakenly identified some noise as a
second flare. And that’s just in the first 1000 observations — we got 13 more spurious
flares in the remaining unplotted observations.

And there is worse: we can run the program over and over again. It will generate a
different set of random numbers each time. And we find that we always get around 14
spurious detections. But worse, we miss detecting the “real” flare half the time. That is
because while its mean value is 1328 counts, the random arrival of its photons (as
modelled by the Poisson distribution) means that half the time the actual detected value is
lower than this. We could rectify this by changing our statistic: for example claiming to
have detected a flare whenever an observation has more than (say) 1300 counts. This
means that we will detect a larger fraction of the real objects. But we will also detect
more bogus flares.

So right now, this doesn’t seem like a feasible observation. We are finding lots of flares
that aren’t there, and missing several that are.

This could still be useful if, for example, we triggered follow-up observations on a bigger
telescope whenever we thought we saw a flare. More than 90% of these follow-up
observations would be wasted, but ~10% would be useful, which is still a better use of
the big telescope time than using it all three nights.

But let us say we used a bigger telescope for all three nights. If it is a 4m telescope, all
other things being equal, we would get 4° times as many photons per ten second exposure
(as the collecting area of the telescope is this much bigger). So a mean of 4832 photons.
Here is what our simulated data would look like now:
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That’s much more like it. The flare at observation 100 is now very clearly above the
noise. We could set our detection threshold (the value measured in an observation at
which we claim a flare) at somewhere like 5250, which should allow us to detect pretty
much all the real flares, without getting any spurious ones. To check this, we run our
simulation program ten times. All ten times it found the real flare, and only the real flare.

A similar approach can be used to simulate almost any observation. If; for example, you
are trying to find faint galaxies, you could generate a fake image array. You could add
fake galaxies to it. And then apply your favourite photometry program and try and see
how many of these simulated galaxies you actually could recover. You could simulate
spectroscopy: taking a model spectrum, adding appropriate noise and seeing if you could
do your science with the resultant noisy spectrum.

That’s the end of Part 1 of the Stats notes. In the next part, we’ll look at some
shortcuts which allow you to estimate what you can observe crudely but much
faster. We’ll cover how you add errors together, and model fitting.



