
ASTR 4003/8003, Class 8: Emission from relativistic particles 21 March

Our goal in this lecture is to use the formalism of relativistic electromagnetism built up in the
previous class to derive some basic results about radiation emitted by relativistically-moving
systems. We will start with the simplest possible case, of a single non-accelerating charge, and
then consider accelerating charges and derive a relativistic generalisation of the Larmor formula
and related results describing motion by accelerating relativistic charges. We will conclude by
generalising our statistical treatment of radiation transfer to the relativistic case, by introducing
the Thomas transformations.

I. Uniformly moving charge

To get some practice using our newfound tools, we being by considering the simplest
possible case: a single point charge q moves at constant velocity v along the x axis,
passing the origin at time t = 0. What electric and magnetic fields will an observer
measure at any given time?

A. Transformation laws for electric and magnetic fields

To solve this problem, we will first use the formalism we developed in the last class to
write down the rules for how electric and magnetic fields transform between reference
frames. We want these rules because the electric and magnetic fields in the frame
co-moving with the charge are trivial: the electric field is just a 1/r2 radial vector,
while the magnetic field is zero. If we can transform these to the frame in which the
charge is moving, we are done.

Fortunately, this is easy. Recall last time that we showed that the electric and
magnetic fields are part of a rank 2 antisymmetric tensor

Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 . (1)

This transforms from frame to frame following the general rule for all tensors:

F ′µν = Λ̃ σ
µ Λ̃ τ

ν Fστ , (2)

where for a boost in the x direction the Lorentz transformation takes the form

Λµ
ν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 Λ̃ ν
µ = ηµτΛ

τ
ση

σν =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 , (3)

and ηµτ is the metric tensor. Thus calculation of F ′µν is literally nothing more than
a matter of doing some matrix multiplication. Sparing you the arithmetic (which is
best done with something like mathematica, at least if you’re as bad at arithmetic
as I am), the result is

F ′µν =


0 −Ex −γ(Ey − βBz) −γ(Ez + βBy)
Ex 0 γ(Bz − βEy) −γ(By + βEz)

γ(Ey − βBz) −γ(Bz − βEy) 0 Bx

γ(Ez + βBy) γ(By + βEz) −Bx 0

 . (4)
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Comparing to Equation 1, we can see that the x components of E and B have been
left unchanged, while the y and z components have been mixed together. One can
readily verify that this transformation can be written out in traditional three-vector
form, and for arbitrary direction of boost, as

E′‖ = E‖ B′‖ = B‖ (5)

E′⊥ = γ(E⊥ + β ×B) B′⊥ = γ(B⊥ − β × E) (6)

where β = v/c, E‖ and E⊥ represent the parts of the electric field vector E that are
parallel and perpendicular to the boost direction, respectively, and similarly for B‖
and B⊥.

The inverse transforms can be obtained just by exchanging the primed and unprimed
quantities and replacing β with −β.

B. Application to a single moving charge

Having written down the general transformation rules, it is now trivial to apply them
to our example of a single moving charge. In the charge’s rest frame the fields are

E =
q

r′3
r′ B′ = 0, (7)

where r′ = x′x̂′ + y′ŷ′ + z′ẑ′, and r′ = |r′|. Plugging into the transformation laws,
the fields in the observer’s frame are

Ex =
q

r′3
x′ Bx = 0 (8)

Ey = γ
q

r′3
y′ By = −γβ q

r′3
z′ (9)

Ez = γ
q

r′3
z′ Bz = γβ

q

r′3
y′ (10)

Changing from the primed to the unprimed position coordinates, and noting that
x′ = γ(x− vt) while y and z are the same in both frames, we have

Ex = γ
q

r3
(x− vt) Bx = 0 (11)

Ey = γ
q

r3
y By = −γβ q

r3
z (12)

Ez = γ
q

r3
z Bz = γβ

q

r3
y, (13)

where r = [γ2(x − vt)2 + y2 + z2]1/2. We have therefore found the electric and
magnetic fields at arbitrary positions and times, as desired.

For simplicity we can choose to set up our coordinate system so that the observer
at x = 0, z = 0 and y = b, so b is the impact parameter between the particle and
the observer, in which case we have

Ex = −γ q
r3
vt Bx = 0 (14)

Ey = γ
q

r3
b By = 0 (15)

Ez = 0 Bz = γβ
q

r3
b. (16)

with r = (γ2v2t2 + b2)1/2. We therefore see that a particle passing by an observer
generates an electric field that has a component along the particle’s direction of
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motion and along the direction from the particle’s path to the observer. The fields
have significant magnitude only during the brief interval when |t| . b/γv, so that the
particle is relatively near the observer; at earlier or later times, the fields decrease
as |t|−3. During the period when the fields are strong |Ey/Ex| ∼ b/vt & γ, so if the
particle is highly relativistic, γ � 1, the field is mainly in the direction transverse
to the particle’s motion.

The magnetic field that circles around the direction of the particle’s motion, and,
for ultrarelativistic motion (γ � 1, β ≈ 1), the circling magnetic field is equal in
magnitude to the transverse electric field. In retrospect this geometry is exactly what
we might have expected, since the moving particle represents a current, and thus we
expect a magnetic field circling the current. Indeed, one can also solve this problem
(with considerably less insight and considerably more vector algebra) by staying in
the observer’s frame and using the Liénard-Wiechert potentials, and when one does
so, the magnetic field appears precisely as a result of the current associated with the
moving particle.

It is interesting to note that the configuration we have just described – an electric
field in the y direction and a magnetic field of equal magnitude in the z direction – is
exactly what a plane wave travelling in the x direction looks like. The configuration
we have found is not in fact a plane wave, because it falls off rapidly away from
the particle. However, to an observer who sees the particle go by, it looks as if the
particle is accompanied by a “cloak” of propagating radiation. In quantum field
theory, this cloak is interpreted as a sea of virtual photons.

II. Emission from relativistic accelerating charges

Having practiced our ability to use Lorentz transformations to calculate the fields of non-
accelerating moving charges, we are now ready to tackle the more general problem of
accelerating charges. We wish to compute the power radiated by a charge q moving with
a velocity v relative to the observer that undergoes an acceleration a.

A. Total power emitted

We begin by computing the total power emitted, leaving the question of angular
distribution for later. The basic approach we will use is to work in a frame in which
the particle in question instantaneously has zero velocity, and thus is non-relativistic.
In this frame we can use our ordinary, non-relativistic Larmor formula to calculate
the radiation. We can then boost back into the observer’s frame to figure out what
the radiation looks like to the observer.

Let the primed frame be the one in which the particle in question instantaneously
has zero velocity, and let dW ′ be the amount of energy the particle emits during a
time dt′ measured in this frame. Since the particle is not moving relativistically in
this frame, the total power emitted is given by the usual Larmor formula,

dW ′

dt′
=

2q2

3c3
|a′|2, (17)

where a′ is the particle acceleration measured in the primed frame. To figure out
the corresponding radiated power in the observer’s frame, in which the particle has
velocity v 6= 0, we must Lorentz transform the energy and the time.

The latter is straightforward: the time interval dt measured by the observer and the
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time interval dt′ measured in the particle’s rest frame obey the usual relationship

dt = γ dt′. (18)

The former is almost as easy. The radiated power is carried by photons, each of
which has a four-momentum P µ. The sum of the four-momenta of all the photons
emitted during time dt′ is also a four-vector, since it is just a sum of four-vectors.
Thus we can write the total four-momentum of the radiation field as P ′µ. Since this
total four-vector describes the total energy emitted dW ′, we must have P ′0 = dW ′.
Now recall that the non-relativistic Larmor formula has an angular distribution
dP/dΩ ∝ sin2 θ, where θ is the angle relative to the direction of acceleration. This
distribution is symmetric, so that if we integrate over 4π sr, we get zero, meaning that
the radiation field carries zero total momentum in the frame in which the particle is
at rest. Thus the four-vector describing the total radiation field must be

P ′µ =


dW ′

0
0
0

 , (19)

Boosting this to the unprimed frame, the time-like component is just P 0 = dW =
γ dW ′.

Thus we learn that
dW

dt
=
dW ′

dt′
=

2q2

3c3
|a′|2. (20)

An interesting corollary of this argument is that the total power radiated over all
angles is the same in any frame; Lorentz transformation redistributes power with
respect to angle, but does not change the total amount of power. The power radiated
is thus a Lorentz invariant.

The final step in our argument is to replace the acceleration a′ measured in the
particle’s rest frame with something measured in the observer’s frame. To do so, we
note that, since the total power is a Lorentz invariant, there must be a way to write
it in covariant form. Recognising the correct covariant form is made a bit easier by
noting that the 0 component of the four-acceleration, a0, must be identically zero in
the particle’s rest frame. The way we can see this is to note that the magnitude of
the particle’s four-velocity is a constant, since the magnitude of any four-vector is a
constant. However, this means that

d

dτ
(ηµνU

µUµ) = ηµν (aµUν + Uµaν) = 0 (21)

in any frame. Since U ′µ = (c, 0, 0, 0), the only way that this requirement can be
satisfied is if a′0 = 0. This allows us to recognise that the quantity |a′|2 that appears
in the formula for total power must simply be |~a|2 = aµaµ, which is a Lorentz
invariant. Thus we have succeeded in finding a covariant formula for total power
radiated by an accelerating charge:

dW

dt
=

2q2

3c3
aµaµ, (22)

where aµ is the four-acceleration. This can be computed in any frame, since aµaµ is
the same in all frames.
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With a bit of algebra on aµ, which we will not do at this point but which is fairly
straightforward, one can show that the ordinary three-accelerations in the observer
frame and the particle rest frame are related by

a′‖ = γ3a‖ a′⊥ = γ2a⊥, (23)

where ‖ and ⊥ denote the components of acceleration parallel and perpendicular to
the boost direction. Thus

dW

dt
=

2q2

3c3
|a′|2 =

2q2

3c3
(
a2‖ + a2⊥

)
=

2q2

3c3
γ4
(
a2⊥ + γ2a2‖

)
. (24)

B. Transformations of angular power

We next attempt to compute the angular distribution of the radiated energy, using
much the same approach of working in the frame co-moving with the particle at the
moment it is accelerated and then transforming to the observed frame. We will first
approach the problem generically, without worrying what the angular distribution
looks like in the rest frame, and we will then specialise to the case of Larmor-like
radiation due to particle acceleration.

For this problem we set up our coordinate system so that, in the observer’s frame,
the particle’s velocity is in the ẑ direction, and we define the angles θ and φ as
usual in polar coordinates, so that θ is the angle between any particular direction
of interest and the z axis. As a shorthand, we will denote the cosine of this angle
as µ = cos θ. The corresponding values measured in the particle’s rest frame are θ′

and µ′ = cos θ′.

Let dW ′ be the energy emitted by the particle into some solid angle dΩ′ = sin θ′ dθ′ dφ′ =
dµ′dφ′ during a time interval dt′, all measured in the particle’s rest frame. The four-
vector describing the energy and momentum of this radiation is

P ′µ =
dW ′

c


1

sin θ′ cosφ′

sin θ′ sinφ′

µ′

 . (25)

Here component P ′0 is the energy carried by the radiation field, and the three space-
like components are the momenta (total momentum = energy over c) in each of the
three cardinal directions. The transformation matrix required to boost back into the
observer’s frame is

Λ̃µ
ν =


γ 0 0 βγ
0 1 0 0
0 0 1 0
βγ 0 0 γ

 , (26)

so the four-vector that the observer sees is

P µ = Λ̃µ
νP
′ν =

dW ′

c


γ + βγµ′

sin θ′ cosφ′

sin θ′ sinφ′

βγ + γµ′

 . (27)

The time-like component of this is the energy over c, so the energy dW ′ in the
emitter’s rest frame corresponds to an energy

dW = γ(1 + βµ′)dW ′ (28)

5



in the observer’s frame.

The solid angle dΩ into which this energy is carried in the observer’s frame is also
not the same as the solid angle dΩ′ viewed in the particle’s rest frame. The angles
that describe rotation about the direction of motion are the same, φ = φ′, but the
angles measured along the direction of motion are related by the angle transformation
formula we derived in the previous class:

µ =
µ′ + β

1 + βµ′
. (29)

Taking the derivative of both sides,

dµ =
dµ′

1 + βµ′
− β(β + µ′) dµ′

(1 + βµ′)2
=

dµ′

γ2(1 + βµ′)2
(30)

Thus the solid angles are related by

dΩ =
dΩ′

γ2(1 + βµ′)2
. (31)

Putting this together with the energy, we have

dW

dΩ
= γ3(1 + βµ′)3

dW ′

dΩ′
. (32)

We have therefore figured out how to transform the angular distribution of emitted
radiation energy between the frames.

To turn this into a power radiated, we need to divide by the time interval over which
this energy was produced. In the rest frame of the emitting particle, the time interval
is of course dt′, so the angular distribution of power radiated is

dP ′

dΩ′
=

dW ′

dΩ′ dt′
. (33)

In the observer’s frame the choice might seem equally obvious: we just divide by
the time interval over which the radiation was emitted as measured in the observer’s
frame, which is dt = γ dt′. This gives us one definition of the angular distribution of
radiated power:

dPe
dΩ

=
dW

dΩ dt
= γ2(1 + βµ′)3

dP ′

dΩ′
=

1

γ4(1− βµ)3
dP ′

dΩ′
, (34)

where the last step follows by using the angle transformation formula Equation 29
to replace the µ′ with a µ, so everything is given in the observer’s frame.

However, this is not the power that the observer will actually measure with a tele-
scope! Why not? Because we have not yet accounted for the fact that the source
moved some distance during the time it emitted the radiation, and we have to ac-
count for the light travel time effects.

The issue is easiest to visualise if we consider an observer at z = +∞, and thus off
in the same direction as that in which the emitting particle is moving. Suppose the
emitting particle is moving at β = 0.99 and emits a very sharp pulse of radiation
over a time interval dt = 1 s as measured in the observer’s frame. If the emitting
particle were at rest, then the leading edge of the pulse would be a distance c dt = 1
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light-second ahead of the trailing edge, and so it would take 1 second for the entire
pulse to reach the observer’s detector, and the observer would see a pulse lasting a
time dt = 1 second.

However, because the emitter is moving, by the time the pulse ends it has moved
a distance βc dt = 0.99 light seconds toward the observer, and so it is only 0.01
light-seconds behind the leading edge of the pulse. Thus the pulse that reaches the
observer is only 0.01 light-seconds long, and lasts only 0.01 seconds, even though it
was emitted over 1 second. The total energy received is the same, but because it
arrives in a time interval that is 100 times shorter, the instantaneous power is 100
times larger.

With a little geometry you should be able to convince yourself that the time interval
over which the radiation is received, dtr, is in general related to the time interval
over which it was emitted, dt, by

dtr = (1− βµ) dt. (35)

The 1−βµ factor just comes from projecting the component of the emitter’s velocity
along the line of sight to the observer; the example we just walked through verbally
is µ = 0. This gives us an alternative definition of the angular distribution of power,

dPr
dΩ

=
1

γ4(1− βµ)4
dP ′

dΩ′
, (36)

which is the same as Equation 34, but with an extra factor of 1− βµ in the denom-
inator to account for the light travel time effect.

C. Angular distribution of power from an accelerated particle

Now that we have figure out how to transform angular power distributions between
frames, we are ready to plug in the Larmor formula for dP ′/dΩ′:

dP ′

dΩ′
=
q2a′2

4πc3
sin2 ψ′, (37)

where a′ is the magnitude of the (three-vector, not four-vector) acceleration and ψ′

is the angle between the acceleration and the direction of radiation emitted; both of
these quantities are measured in the particle’s rest frame, as indicated by the primes.

The corresponding angular distribution in the observed frame (using the power re-
ceived definition) is

dPr
dΩ

=
q2a′2

4πc3γ4(1− βµ)4
sin2 ψ′. (38)

We now want to transform all the primed quantities in this expression into unprimed
ones, so we have everything in terms of quantities measured in the observed frame.
Using the relationship for transforming three-vector accelerations between frames
given above (Equation 23), we can get rid of the a′, obtaining

dPr
dΩ

=
q2(γ2a2‖ + a2⊥)

4πc3(1− βµ)4
sin2 ψ′. (39)

Transforming the ψ′ between frames in general, when the velocity vector, acceler-
ation vector, and direction of radiation can all be oriented arbitrarily relative to
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one another, leads to an expression that is too unwieldy to be worth writing down.
However, to get a feel for the physical nature of the result it suffices to just consider
two limiting cases. First, suppose that the acceleration is parallel to the particle’s
velocity, so the particle is just speeding up or slowing down. In this case a⊥ = 0
and ψ′ = θ′,1 and we can use our angle transformation formula (Equation 29). Re-
arranging this to solve for µ′ gives

µ′ =
µ− β
1− βµ

(40)

√
1− sin2 θ′ =

√
1− sin2 θ − β

1− βµ
(41)

sin2 θ′ =
sin2 θ

γ2(1− βµ2)2
. (42)

Plugging this in, the angular distribution of the radiation in the case of parallel
acceleration is

dPr
dΩ

=
q2

4πc3
a2‖

sin2 θ

(1− βµ)6
. (43)

Now consider the case where the acceleration is perpendicular to the velocity. Recall
that we set up our coordinate system so that the velocity vector points in the ẑ′

direction. Without loss of generality we can rotate our coordinate system around
the ẑ′ axis so that the acceleration vector points in the x̂′ direction. In this coordinate
system, the direction of radiation propagation is

n̂′ = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′), (44)

where θ′ and φ′ are the usual spherical polar coordinates. Then we can get the angle
ψ′ between the acceleration vector and the radiation direction by noting that

cosψ′ = n̂′ · x̂′ = sin θ′ cosφ′. (45)

Thus

sin2 ψ′ = 1− cos2 ψ′ = 1− sin2 θ′ cos2 φ′ = 1− sin2 θ cos2 φ

γ2(1− βµ)2
, (46)

where in the last step we used Equation 42. We therefore have

dPr
dΩ

=
q2

4πc3
a2⊥

1

(1− βµ)4

[
1− sin2 θ cos2 φ

γ2(1− βµ)2

]
. (47)

The main thing to notice about Equation 43 and Equation 47 is that they both
involve high powers of 1 − βµ in the denominator. For highly-relativistic emitters,
β ≈ 1, this term gets very close to zero near µ = 0, i.e., along the direction of the
particle’s motion. Thus the radiation is very highly beamed along the direction the
particle is moving. To be precise, we can expand µ and β in a Taylor series about
θ = 0 and γ−1 = 0:

µ = cos θ = 1− θ2

2
+O(θ4) (48)

β =
(
1− γ−2

)1/2
= 1− 1

2
γ−2 +O(γ−4) (49)

1Or ψ′ = −θ′. However, since the results depend only on sin2 ψ′ this difference has no effect. Physically, the
radiation pattern is symmetric about the direction of acceleration.
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Thus the combination 1− βµ expands to

1− βµ =
1 + γ2θ2

2γ2
+ · · · . (50)

We clearly see that, as long as θ . 1/γ, this combination will be of order 1/γ2, while
for θ � 1/γ it is of order θ2 (which is of order unity in most directions).

Examining the angular power distribution formulae, Equation 43 and Equation 47,
we see that for a parallel acceleration the power varies with angle as (1 − βµ)−6,
while for a perpendicular acceleration it varies as (1− βµ)−4. Our series expansion
shows that, for γ � 1, this translates to a factor of γ12 and γ8, respectively, when
θ . 1/γ. This is a big effect: the power beamed into angles θ . 1/γ winds up many,
many orders of magnitude brighter than the power at other angles, even for γ of
a few. Relativistic emitters effectively beam all their radiation into a narrow cone
with opening angle θ ∼ 1/γ.

III. Thomas transformations

We have now seen how relativistic beaming affects the total power and its angular dis-
tribution for a single particle. Our final goal for today is to extend that treatment to
our statistical theory of radiation transfer, which involves the intensity, emissivity, and
absorption coefficient that describe the interaction of radiation with a population of par-
ticles. How do these quantities Lorentz transform? The answer to this question is a
set of transformation rules known as the Thomas transforms, after L. H. Thomas, the
mathematician / physicist who first derived them in 1930.

A. Transformation rules

Thomas’s argument begins with the following observation: we can disagree about
energies, times, distances, etc. between reference frames, but we had better agree on
numbers of discrete objects in all frames. Thus the proper way to figure out how to
transform radiation intensities is just to count photons. This observation suggests
the following argument. Suppose in one frame we have a unit area dA that lies in
the xy plane, so its normal vector is ẑ. Suppose the radiation intensity at the slab
in some particular direction n̂ is Iν . How many photons in some frequency interval
dν will cross the slab per unit time dt traveling in a direction within a solid angle
dΩ about n̂?

We can write down the answer immediately:

N =
Iν
hν

dν dΩ dt (n̂ · ẑ)dA =
Iν
hν

dν dΩ dt µ dA (51)

The term Iν is the energy carried in the beam, and each photon has energy hν, so
Iν/hν is the number of photons carried in the beam per unit area per unit solid angle
per unit frequency per unit time. To get a total number, we just multiply by the
frequency interval dν, the solid angle dΩ, the time interval dt, and the component
of the area that is normal to the beam, which is (n̂ · ẑ)dA, which in the final line
we have written as µ dA, where θ is the usual polar angle, and µ = cos θ is the z
component of n̂.

Now let us repeat the counting exercise for an observer who is moving with velocity
v in the ẑ direction. The number this observer will measure is

N ′ =
I ′ν′

hν ′
dν ′ dΩ′ dt′ µ′ dA′ +

I ′ν′

hν ′c
dν ′ dΩ′(v dt′ dA′) (52)
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The first term on the right hand side is the same as for the observer who sees the
slab at rest, just will all quantities transformed into the new frame. The second
term is an additional on that accounts for the fact that the observer in the primed
frame sees the slab as moving at velocity −vẑ, and thus sees the slab sweep up a
bunch of additional photons. The number of additional photons swept up must be
the volume that the slab sweeps up, v dt′ dA′, multiplied by the number density of
photons in the right range of frequency and angle, (I ′ν′/hν

′c)dν ′ dΩ′.

The fact that both observers have to agree on how many photons the slab swept up
tells us that N ′ = N , and thus

Iν = I ′ν′
ν

ν ′
dν ′

dν

dA′

dA

dΩ′

dΩ

dt′

dt

(
µ′ + β

µ

)
. (53)

Now to figure out the transformation we just need to use our various transformation
rules for the various quantities, all of which we know. Taking them in order:

• The frequencies ν and ν ′ are related by the relativistic Doppler effect formula
that we derived in the previous class:

ν

ν ′
=
dν

dν ′
=

1

γ(1− βµ)
(54)

• dA and dA′ are the same, because the slab is perpendicular to the boost di-
rection, and lengths perpendicular to the boost direction are unaffected by the
boost. Thus dA′/dA = 1.

• We previously showed that solid angles in the two frames are related by (Equa-
tion 31):

dΩ′

dΩ
= γ2(1− βµ′)2 =

1

γ2(1− βµ)2
(55)

• The times are related by the usual dt′ = γ dt.

• Using our angle transformation formula (Equation 29) to write µ′ in terms of µ
and β, with a little bit of algebra we have

µ′ + β

µ
=

1

γ2(1− βµ)
. (56)

At this point it is just a matter of collecting the various factors of γ and (1 − βµ).
The final result is

Iν = I ′ν′
1

γ3(1− βµ)3
=
( ν
ν ′

)3
I ′ν′ (57)

The implication here is that the quantity

Iν =
Iν
ν3

(58)

is a Lorentz invariant, known as the invariant intensity.

Now that we know how to transform intensities, the remaining terms that appear
in the transfer equation are easy to back out. The source function is easiest: since
the intensity becomes equal to the source function Sν in a uniform medium, and all
observers will agree that a medium is uniform regardless of their frame, the source
function must transform exactly like the intensity:

Sν =
( ν
ν ′

)3
S ′ν′ , (59)
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and Sν/ν
3 is a Lorentz invariant.

For the emissivity, we can use the same strategy we used for the intensity: all
observers must agree on the number of photons emitted from some particular volume
dx dy dz of matter in a given time dt and in a given frequency range dν and into a
given range of solid angle, so we must have

jν
hν
dν dΩ dt dx dy dz =

j′ν′

hν ′
dν ′ dΩ′ dt′ dx′ dy′ dz′ (60)

Inserting the various ratios already derived, and using the fact that dx = dx′, dy =
dy′, and dz′ = dz/γ, we immediately get

jν =
( ν
ν ′

)2
j′ν′ , (61)

so jν/ν
2 is a Lorentz invariant.

Finally, all observers must agree on the number of photons absorbed by a partic-
ular volume over a given time, frequency range, and solid angle, from a particular
radiation field, so

ανIν
hν

dν dΩ dt dx dy dz =
α′ν′I

′
ν′

hν ′
dν ′ dΩ′ dt′ dx′ dy′ dz′, (62)

and again it is just a matter of substitution and cancelling to obtain

αν =

(
ν ′

ν

)
α′ν′ , (63)

so ναν is the Lorentz invariant quantity.

This completes the set of Thomas transformations. The Thomas transformations are
invaluable any time we wish to solve a radiative transfer problem for a relativistic
system, because they allow us to write the emission and absorption terms in the rest
frame of the matter, where they are usually simple, to the frame in which we want
to solve the problem or observe the radiation.

B. Implications for thermal equilibrium radiation fields

We conclude today with one very important implication of the Thomas transfor-
mations – important for both practical astrophysics applications, and for saying
something profound about physics. Suppose that we have a thermal equilibrium
radiation field, for which the intensity is just given by the Planck function

Iν = Bν(T ) =
2hν3

c2
1

ehν/kBT − 1
. (64)

What does this look like to an observer in a different reference frame?

We can answer this question immediately using the Thomas transformations:

I ′ν′ =

(
ν ′

ν

)3

Iν =
2hν3

c2
ehν/kBT − 1. (65)

Using the Doppler formula to transform ν to ν ′, we have

ν = ν ′γ(1− βµ′), (66)
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where µ′ is the cosine of the angle between the direction of motion and the direction
from which the radiation is coming, as viewed in the frame of the moving observer;
radiation coming from the direction that the observer is moving corresponds to
µ′ = 0. Thus

I ′ν′ =
2hν3

c2
ehν

′γ(1−βµ′)/kBT − 1 =
2hν3

c2
ehν

′/kBT
′ − 1 = Bν′(T

′) (67)

where

T ′ ≡ T

γ(1− βµ′)
. (68)

Thus the spectrum that the observer sees is just another blackbody, but shifted to a
different temperature T ′. Radiation that is coming from the direction the observer
is moving, µ′ = 1, appears to be shifted to a higher temperature, and radiation from
the direction opposite the motion, µ′ = −1, appears to have lower temperature.

One astrophysical implication of this is that, for small sources that are moving at
a single speed with respect to the observer, and that have spectra that are close to
thermal equilibrium, there is a degeneracy between temperature and velocity: you
can’t tell the difference between a source at a lower temperature that is standing
still, and a source at a higher temperature moving toward you. This statement
only applies to emitters in thermal equilibrium; any disequilibrium will remove the
degeneracy, which is why in practice we can measure the temperatures of most
astrophysical objects. However, this is only possible because they are at least slightly
out of equilibrium.

On the other hand, for an astrophysical source that covers the entire sky, i.e, the
cosmic microwave background (CMB) radiation, this effect can be used to deduce
the motion of the Earth relative to the rest frame of the CMB. The CMB in the
direction in which we’re moving appears to have a higher temperature, and the CMB
in the opposite direction appears to have a lower temperature. By measuring the
temperature variation, we can immediately back out the velocity of the Earth.

The physics point to make is that we should have been able to guess this result just
from Kirchhoff’s original argument about thermal radiation. After all, if we ask “Is
this system in thermal equilibrium or not?”, all observers should give the same answer
regardless of their reference frame. Thus the argument that the radiation field inside
a box in thermal equilibrium must depend only on its temperature must still apply
in any reference frame: two observers in different reference frames don’t necessarily
have to agree on what the temperature is, but they have to agree that there is
a temperature, and that the radiation spectrum is a function of that temperature
alone.
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