ASTR 4003/8003, Class 6: Bremsstrahlung 14 March

We now come to our first major astrophysical application of the formalism we have developed:
brehmsstrahlung (“braking radiation” in German). This is the process whereby free charges in
an ionised plasma, which accelerate when the scatter off one another, emit radiation. Because
the emission is coming from charges that are free before the emission process, and remain free
after it, this process is also called free-free emission.

We will use the formalism we have developed in the last class for emission from accelerating
charges to calculate the rate at which plasmas radiate. This is a major emission process across
a wide range of wavelengths, from the radio to the X-ray, depending on the temperature of
the emitting plasma. In plasma that is sufficiently hot, for example the intracluster medium of
galaxy clusters, this process can produce copious high energy radiation.

[. Elementary considerations

Before starting on a calculation, we begin with some elementary considerations. We have
a plasma consisting of electrons and ions, all of which are moving and colliding with one
another, accelerating as they do so. However, we do not need to consider all possible
combinations of particles; in fact we need only consider emission by electrons scattering
off ions.

To see why, recall that we have shown that, to leading order, the emission of radiation
depends on the time variation of the dipole moment of the charge distribution. For
a collision between two identical particles, ions or electrons, the dipole moment in the
centre of mass frame is ¢(x; + x3), where ¢ is the charge and x; and x5 are the particle
positions. However, for two particles of equal mass the quantity (x; + x2)/2 is just the
centre of mass position, which is constant unless the particles are being acted upon by an
outside force. Thus in interactions between like particles, the time variation of the dipole
moment is exactly zero, and there is no radiation in the dipole approximation.

Next recall that the radiated power depends on the square of the acceleration of the
emitting particle. This immediately tells us that, in an electrically-neutral plasma where
there is at least one electron per positively charged particle, the electrons will completely
dominate the emission. This is because, in an encounter between an electron and an ion,
the electron acceleration will be larger by a factor of m;e,/me > 1000. Thus the electron
will radiate at least ~ 10° times more energy than the ion — more if the ion is heavier
than a single hydrogen nucleus. Thus we need only consider electron-ion encounters, and
we need only consider the emission from the electron.

Our final elementary consideration involves the likely speeds of encounters. Consider a
plasma of electron density n.. The mean distance between electrons and ions is ~ ne Y 3,
so the mean potential energy between an electron and its nearest ion is Ziezné/ 3, where
Z; is the ion charge in units of elementary charges. This can be compared to the average
kinetic energy of a free electron, which in a plasma where the electrons are at temperature
T is just kgT. The ratio of these two energies is
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For most astrophysical plasmas, which have n. of at most a few thousand, this is a
tiny number. (Exceptions are mainly places like planetary or stellar interiors.) Thus we
learn that the typical electron encountering the typical ion at the typical distance has



a huge amount of kinetic energy compared to the potential energy. It is therefore likely
to be deflected only a very small amount by an encounter. This motivates us to treat
the problem in the limit where the scattering angle of the electrons encountering ions is
small.

II. Encounter between a single electron and ion

A. Encounters at fixed velocity and impact parameter

Consider an electron that approaches an ion at velocity v with impact parameter
b; the impact parameter is defined as the distance of closest approach the electron
would make with the ion if it were to travel in a straight line, not being deflected
at all by the Coulomb force. However, since we are treating the Coulomb force
as a small perturbation on the electron’s path due to the large ratio of kinetic to
potential energy, b is also in fact the closest approach in our approximation. That
is, we assume that the electron’s trajectory is nearly a straight line, since typically
its kinetic energy is ~ 10° times is potential energy. We will also neglect the motion
of the ion, since it is more massive than the electron by at least a factor of 1000.

Let ¢ = 0 be the time when the electron is at its point of closest approach to the
ion, so vt is the distance of the electron from the point of closest approach. Without
loss of generality we will place the electron and ion in the xy plane, and let the
electron move parallel to the x axis. The position and acceleration of the electron
as a function of time are therefore
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We are interested in the spectrum of radiation emitted as a result of this encounter.
Per our previous discussion of the spectrum of Larmor radiation, this depends on the
Fourier transform of d, where d = ex is the dipole moment of the system (assuming
the ion remains at the origin at all times). This is
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where ~ indicates the Fourier transform of a quantity. Substituting the acceleration
X into the integral, we see that the x component vanishes by symmetry, and the y
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The integral is one of those ones that you look up in an integral table or get math-
ematica to do, and it turns out to evaluate to
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where K is a modified Bessel function. The Bessel function is a bit of a pain to deal
with, so we will just think about its limiting behaviour. For w < v/b, meaning that
the argument of K7 is small, we can replace the K;(wb/v) with its first order Taylor



expansion, which is just v/bw. In the opposite limit, w > v/b, the Bessel function
goes to zero very quickly. We therefore have approximately
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Having obtained the Fourier transform of the dipole moment, and shown that it
is always in the same direction, we can now simply substitute into the result we
derived previously for the frequency-dependence of the radiated power. The total
power radiated per unit angular frequency is

dW B 8wt

dw ~ 3c3

872¢°
3rcdm2uh?

|d(w)]” (8)
for w < v/b, and close to zero for w > v/b. Note that the spectrum is flat, i.e.,
dW/dw is close to independent of w until w ~ v/b. The quantity v/b is called the
cutoff frequency. Intuitively, this makes sense. The frequency is the inverse of the
timescale on which the electric dipole moment is changing. The change is occurring
fastest when the electron is closest to the ion, and at this point the timescale on
which it is changing is of order the electron-ion distance divided by the velocity, i.e.,
b/v. The highest frequency of radiation emitted is just the inverse of this.

In principle we could also go on to determine the angular distribution of the emission,
since we have the machinery to do so. However, since the astrophysical approxima-
tion in which we are finally interested is one where there are many particles moving
in random directions, the average emission is going to wind up being isotropic. For
this reason, a calculation of the total power radiated in all directions will suffice.

. Integration over impact parameter

Now let us consider a somewhat more general situation. Instead of firing a single
electron at the ion target, we fire a beam of electrons with density n. at velocity v.
How much bremmstrahlung per unit time does this electron beam produce?

The electron flux in this case is n.v, and we can envision a bullseye painted around
the target ion; each concentric ring around the ion at a distance b from it has an
area 2mwbdb. If the electrons in the beam are arranged randomly, then the rate at
which electrons pass through each concentric ring around the target ion is the flux
times the area, 2mbn.v db. Each encounter produces emission at a rate given by
Equation 8. To figure out the total rate of emission, we just have to integrate this
over impact parameter:
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To make further progress we will need to make some approximations. Clearly the
integral over b, as written, will diverge if we attempt to integrate from b = 0 to oc.
We must truncate the integral at both low and high b. The truncation at high b is
obvious, since we have already seen that the emission goes to zero for w > v/b. This
suggests that we take by = v/w.

How about on the other end? A reasonable approach is to note that radiation is only
expected if the system has at least one quantum of angular momentum, or at least
that quantum mechanical effects will clearly become important once the angular



momentum of the electron approaches this value. The condition for the system to
have only a single quantum of angular momentum is m.vb = h, which suggests the
choice by, = h/mev.

With these approximations, we have
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The combination In(byay/bmin) must be derived from a quantum mechanical calcu-
lation. Fortunately, the results are not hugely sensitive to it, since they just appear
in the logarithm. We usually parameterise the results of the quantum mechanical
combination in terms of a quantity known as the Gaunt factor (named after the
physicist John Arthur Gaunt who first calculated it), defined relative to what we
have written down as
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so that the total emission rate is
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Tabulated Gaunt factors are easy to look up in the literature, e.g., van Hoof et
al. (2014, MNRAS, 444, 420).

ITI. Radiation by a thermal distribution of particles

We have now computed the spectrum of emission from a single electron encountering a
single ion at a particular impact parameter and velocity, and from a beam of electrons of
fixed velocity striking an ion. We now proceed to the next level of generality, which is the
case where we have not a single ion but a population of them, and not a single electron
velocity, but a thermal distribution of electron velocities. This situation is called thermal
bremmstrahlung, and it is one of the most ubiquitous astrophysical emission processes.

A. Free-free emissivity

Consider a plasma with electron density n, and ion density n;. The electrons are
at temperature 7.' Due to the ions’ much greater mass, we will treat them as
stationary in comparison to the electrons.

In a thermal plasma, the distribution of electron velocities just follows the usual
Boltzmann distribution
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Note that the vector of 47v? is a phase space factor: the probability of an electron

being at a particular vector velocity v is proportional to exp(—m.|v|?/2kgT), so the
probability of being at a scalar velocity from v to v + dv is the probability density

'In an astrophysical plasma the electrons and ions are frequently at different temperatures, since energy
exchange between the two populations is slow due to their difference in mass. However, the two populations
internally relax to a Maxwellian velocity distribution much faster than they exchange energy with each other.
Thus it is a common situation to have two distinct temperatures, one for the electrons and one for the ions. In
our application only the electron temperature matters.
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multiplied by the volume of points in velocity space for which the scalar velocity is
in the desired range; this is 47v? dv.

To get the emission rate per unit volume, we just have to multiply by the density of
ion targets per unit volume, and integrate over the Maxwellian velocity distribution.
Thus
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where in the last step we have set x = v/+/2kgT /m..

We must now consider limits once again. One might be tempted to integrate this
from x = 0 to oco. The upper limit is fine. However, the lower limit ignores an
important quantum mechanical effect, which we can again approximately incorpo-
rate. This effect is that, if v is small enough, then the electron will not have enough
energy to produce a photon of some particular angular frequency of interest. Thus
we expect no emission for impact velocities v that are too small.

Crudely accounting for this, we set

Tmin = kB_Ta (17)
which amounts to setting z,;, to the value such that hv = m.v2, /2. Integrating
from z.,;, to co, and making a change of variables from w to v = 27w, we arrive at
our final result
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where gg (T, v) is the average of gg(v, ) weighted over the Boltzmann velocity distri-
bution at temperature T'; this number is usually of order unity in most astrophysical
situations. Evaluating numerically,

W

T e eltq
T = 68X 107552 (—) (M) e~ /ksT org em™3 s Hz ", (19)

K cm~—6

where from this point on we omit the dependence of gg and T" and v for compactness.

Since this emission is isotropic, the corresponding emission coefficient is just this
divided by 47 sr:

, 872¢® ( 27
Jvg =

1/2
= 7hl//kBT' 20
e kBT) nen;gge (20)

3m.c3

. Free-free absorption and optical depth effects

Our calculation of the free-free absorption coefficient allows us to immediately cal-
culate the rate for the inverse process, free-free absorption, using Kirchoff’s Law of



thermal emission. For a medium in thermal equilibrium, as we have assumed, the
emission and absorption coefficients are related by
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Evaluating numerically,
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Physically, we can envision the absorption process as a situation where an elec-
tromagnetic wave passing over an electron-ion pair produces an electric field that
accelerates the electron as it approaches the ion, and then oscillates to reverse di-
rection so that it also accelerates the electron once it has moved past the ion. As
a result the electron gains energy from the wave. The as the electron accelerates
under this influence, it generates an electric field that is opposite in direction to the
incoming field, so that the intensity of the wave is diminished after it goes by.

Let us consider how absorption might affect the spectrum we see from a source pro-
ducing free-free emission. Since there will only be substantial emission as frequencies
such that hv/kgT < 1, let us specialise to to the case hv < kgT, so we can Taylor
expand the exponential term as e™ ~ 1 — x. This gives
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The absorption coefficient has a =2 dependence, and so it is higher at lower fre-
quencies. This means that, at sufficiently low frequency, any astrophysical plasma
that is emitting bremsstrahlung will become optically thick to its own radiation. At
these frequencies, the spectrum must cease being flat, and must instead approach
the Planck spectrum, as all emitting and absorbing media in thermal equilibrium
do when they become sufficiently opaque. At frequencies hv/kgT < 1, the Planck
function has B, oc 12, and thus the free-free spectrum should go from being flat,
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How low in frequency do we have to go before this effect becomes significant? The
condition for a medium to be opaque is «, L &~ 1, where L is the length of the line
of sight passing through the medium. The frequency at which the medium becomes
opaque is therefore
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This suggests that, for plasma at interstellar or intergalactic densities, n, <1 cm™3,

free-free emission will start to become optically thick, and thus the spectrum will
approach a blackbody spectrum, at radio wavelengths. However, notice that free-free
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Figure 1: X-ray image (inset) and spectra (red and black points with error bars, averages over
two different radii) of the galaxy cluster XMMU J2235.3-2557, observed with Chandra (Rosati
et al., 2009, A&A, 508, 583). The lines are model fits to the observed spectra. The slight bump
near 3 keV is a emission line of highly-ionised iron.

absorption is also the main opacity source for the Sun, which has a mean electron
density closer to n, ~ 10** cm ™3, and higher in the core. This places the frequency
at which the optical depth approaches unity far, far into the high energy part of
the electromagnetic spectrum. This is why, despite the fact that the Sun is mostly
emitting and absorbing radiation via bremmstrahlung, it has a spectrum that is close
to black body.

IV. Sample application: galaxy clusters

Due to the presence of the cutoff frequency, detection of bremmstrahlung emission pro-
vides an extremely useful tool to characterise the temperatures of astrophysical plasmas
— a cutoff in the spectrum can be directly translated into a temperature. One important
application of this is to measuring the temperatures, and as we shall see therefore the
masses, of galaxy clusters.

As motivation, we can examine an observed X-ray spectrum (Figure 1). We see the char-
acteristics we expect for a spectrum dominated by thermal bremsstrahlung: a relatively
flat spectrum out to some energy, followed by a steep decline at higher energies. Such
a spectrum allows us to almost just read off the value of kgT, since the exponential de-
cline is just due to the e "/#8T term. In this case, one a simple by-eye it would suggest
kpT ~ 2 — 3 eV. The galaxy cluster is at redshift z = 1.39, so we have to multiply this
energy by 1+ z = 2.39, giving an energy of ~ 5—7 keV. A detailed fit, shown in the plot,
gives 8.6 keV. The associated temperature is 7' = 1.0 x 10® K. Thus the X-ray spectrum
allows direct determination of the gas temperature.

One can translate this temperature directly into the mass of the galaxy cluster, because
the gas is close to hydrostatic equilibrium. In hydrostatic equilibrium, we have
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where M (< r) is the mass interior to radius r, p is the mean mass in AMU per particle
(~ 0.61 for fully ionised gas that is 75% H, 25% He by mass), and p is the gas density.
The observations suggest that the gas is close to isothermal, since a single-temperature
spectrum fits the data quite well, so dT'/dr ~ 0. Thus by measuring the temperature
T, and the way the density drops off with radius, dp/dr, we get a direct measurement
of the enclosed mass. Measuring cluster masses in turn has important applications for
cosmology.



