ASTR 4003/8003, Class 5: The far field limit; radiation theory 13 March

In principle the Liénard-Wiechart potentials derived in the previous class contain all the in-
formation needed to calculate electromagnetic radiation from an arbitrary charge distribution.
After all, since Maxwell’s equations are linear, we can again use the Green’s function approach:
since the Liénard-Wiechart potentials tell us the exact scalar and vector potentials generated
by a point charge with an arbitrary history, we can write out the potentials for an arbitrary
time-dependent charge distribution as simply the sum of the potentials generated by an en-
semble of point charges. In practice, however, this is can be extremely cumbersome, and it is
often preferable to work with the potentials in various limits of interest. We will spend this
class developing the simplest and lowest-order approximation and its applications.

I. The far field limit

To begin our discussion, let us remind ourselves of the general retarded potentials:
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where

is the retarded time.

In astrophysical applications, we are usually interested in situations where the distance
to the emitting region is immense compared to both the wavelength of the emission and
the physical size of the emitting region. This is even more true if we remember that the
“emitting region” that matters here is not a macroscopic emitting object, since the fields
produce by (for example) two points on opposite sides of a star are incoherent and just
add; the “emitting region” that matters here is the size of a region over which the charges
are moving coherently. In most cases this is of atomic dimensions. To make this formal,
let us place the emitting region near the origin, and the observer at position x, and we
will assume

x| > X  and x| > |x/| for any x’ where p, # 0 or j. # 0. (3)

Regions that satisfy these assumptions are referred to in electromagnetism as the far field
(as distinguished from the near field, regions whose distance from the emitting source is
comparable to the source size), or by the equivalent terms the wave zone or the radiation
zone. We will see why these terms are appropriate momentarily.

We can use our assumption to Taylor expand the separation term:
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where 2 = |x| and n = x/x is a unit vector pointing from the emitting region to the point
of interest. The corresponding retarded time is
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Keeping only terms of leading order!, we have
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This is a considerable simplification, since we have been able to pull the separation-
dependent term out of the integral, and we are now left with just an integral over the

position distribution of the emitting charges themselves. Moreover, Equation 6 implies
that the potentials decrease as 1/x, i.e., as the inverse of the distance to the observer.

We can simplify even more when we attempt to calculate the electric and magnetic fields.
These fields depend on various derivatives of ¢ and A, which simplify even more than ¢
and A themselves. Let us start by computing the gradient of the scalar potential:
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Note that, in evaluating this integral, we have used the fact that Vo = n. To handle the
time term, we can similarly note that
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Using Equation 1 to replace the integrals, and noting that differentiation with respect to
t and t’' are the same to leading order, we therefore have
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The natural timescale on which ¢ oscillates is the inverse of the radiation frequency, so
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Thus under our assumption that x > A, we can drop the first term in Equation 9
compared to the second one, and we obtain in the end
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Using the exact same reasoning, it is straightforward to show that the derivatives of the
vector potential are
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Note that, since we are in the Lorentz gauge, we also have (1/c¢)(0¢/0t) = —V A, and
thus we also have 2 HA
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We are now in a position to directly write down the electric and magnetic fields in terms
of derivatives of the potentials. The magnetic field is

1 /0A .

'We have to be a little careful with this. While we can drop all non-leading terms in most places, we need
to retain the - x’'/x term in ¢/, for reasons that we will explore in detail below.



II.

Note that this implies that the magnetic field direction is perpendicular to n, the vector
pointing from the emitting region to the observer. It also implies that the magnetic field
decreases as 1/x.

The analogous calculation for the electric field is
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where in the last step we made use of the triple cross-product identity a x (b x ¢) =
(a-c)b— (a-b)c. Thus we have
E=B xh. (16)

This should look very familiar: we have a magnetic field that is orthogonal to the direction
in which the radiation is travelling and to the electric field. This is exactly what a plane
wave looks like. Thus we have shown in very general terms that, no matter what the
charges generating the field are doing (which will determine 0A /0t), the electromagnetic
fields in the far field just look like plane waves. This is why the far field is also called the
wave zone or the radiation zone: it is the region where solutions to Maxwell’s equations
approach the form of radiation in free space.

We can obtain one further important result for the far field by calculating the Poynting
vector, which describes the energy carried by the field. This is
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Recalling that we have shown that B o 1/z, this implies that the energy flux carried by
the field decreases as 1/x%. Thus we have just demonstrated the inverse square law for
electromagnetic radiation: in the far field, the energy carried falls off as 1/z%.

We can compute the power dP carried by the field that passes through an infinitesimal

solid angle df) centred on direction n just by noting that the area of such a solid angle is

22 dQ). Thus
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Since B o 1/z, the power carried by the field per unit solid angle, as opposed to per unit

area, is constant.
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Applications of the far field limit

Having derived the far field limit, we now proceed to derive a number of important results
from it. We will make use of these results through our astrophysical applications.

A. Radiation non-relativistic accelerating charges

We begin with the simplest possible case, one that we have already encountered: a
single point charge in non-relativistic motion. Consider a charge ¢ with position r(t)
and velocity v(t) = r(t) as a function of time. Using the far field limit, the vector

potential is
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where the current density is je(x,t) = ¢v(t)d [x —r(t)]. The retarded time t' at
which this is to be evaluated is
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1. The dipole approximation

The second term in ¢', n-x’/c, has a specific physical meaning: it is the difference
in retarded time across the emitting source. In other words, this term accounts
for the fact that radiation coming from the parts of the emitting region that are
slightly farther from the observer takes longer to get to the observer, and thus
the emission properties have to be evaluated at a slightly more retarded time
than for the parts of the emitting region that are slightly closer to the observer.

The correction is slight because, by assumption, |x'| < |x|. However, we cannot
necessarily neglect this small correction, because it may have significant effects
on the phase of the emitted radiation. For example, suppose that the light travel
time across the emitting region is 1071° s, as compared to 1000 years to get from
the emitting region to Earth. One might think that this would be completely
negligible. However, if we are talking about visible light, then 1071 s is enough
for the electric field from emission on the far side to have gone through half an
oscillation cycle. This can change whether it is in phase or out of phase with
the emission coming from the near side, making the difference between the light
from the two sides adding coherently or cancelling out. The need to capture
these effects is the reason we kept this term when we wrote down Equation 5.

This argument, however, suggests circumstances under which we can drop the
second term. If the emitting region is of size L, then the light travel time across
it is L/c. In comparison, the time required for the electric field of the radiation
to change significantly is ~ 1/v, where v is the radiation frequency. Thus we
are justified in dropping this second term if

L
— << - = A>L, (21)

where )\ is the wavelength of the radiation. If this condition is satisfied, i.e., the
emitting region is small compared to the wavelength of light under consideration,
then we can drop the second term in the retarded time and just set

T
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This is called the dipole approximation.

An important reminder here (without which it would seem that the dipole con-
dition is never satisfied in real life) is that L is not the size of the macroscopic
emitting object, it is the size of the region within which the electric field is be-
having coherently, all in phase. This may be a macroscopic size if we're talking
about a radio antenna, for example, but if we're talking about visible light or
higher energy radiation, it is more likely to be a region of atomic dimensions.

One situation in which the dipole approximation turns out to apply is for
emission by a non-relativistic accelerating particle. To see why, note that the
timescale on which the electric field created by the particle oscillates must be
of order the timescale over which the particle’s position changes significantly,
which we will denote 7, and the corresponding radiation frequency must be of
order v ~ 1/7. However, in this case the condition that A < L amounts to a
requirement that

L
L> ner = —~u Lo, (23)
v T
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where v ~ L/7 is the particle’s velocity. Thus a non-relativistic particle, v < ¢,
automatically satisfies the dipole condition.

. The Larmor formula

Armed with the dipole approximation, we are now ready to derive the properties
of radiation emitted by an accelerating charge. The vector potential now reduces
to
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The resulting magnetic and electric fields are
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where we have omitted the argument of v for brevity, but recall that it is to be
evaluated at the retarded time t — z/c.

The Poynting vector for this field is
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where 6 is the angle between n and v and v = |v|. The corresponding power
radiated per solid angle is
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Integrating over all angles gives the total power radiated by the charge,
dpP 2q%0?
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a famous result known as Larmor’s formula.

Note that, if we have a collection of non-relativistic accelerating charges that all
obey ' < x, then we can sum the currents they provide; as long as they satisfy
the dipole condition, we need not worry about the fact that the different charges
may have different retarded times due to their different positions, because we
are approximating all the charges’ retarded times as ¢ — x/c. In this case all
that happens is that the vector potential becomes

A(x, 1) = é > avilt — /) = %, (30)

where the subscript ¢ runs over all the particles contributing to the current, and

we have defined



as the dipole moment of the charge distribution. Carrying out the same steps
then gives
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This gives the generalisation of the Larmor formula to an arbitrary dipolar
charge distribution; however, recall that is valid only for wavelengths A\ > L.

. Spectrum of emitted radiation

We have calculated the total power emitted by the accelerating charge(s), and we
have calculated its angular distribution, but at times we may also be interested
in knowing the spectrum of the emitted radiation. Indeed, this will be a very
important concern when we come to astrophysical applications, since we will
want to be able to predict and interpret the spectra of astrophysical sources.
We will limit ourselves for now to the simplified problem where d does not
change direction over time, just amplitude.

In this case the electric field amplitude as a function of time is given by

sin 8

E(t) = d(t)

(36)
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To figure out the corresponding frequency, let us take the Fourier transform of
the dipole moment and the electric field:

d(t) = / i) do  B(t) = / e () dw (37)

Then we have
() = — / d(w)e ™ du, (38)
and the Fourier transform of the electric field is therefore
1 -
E(w) = ———w?d(w) sin . 39
(@) = —5-wPd(w)sin (3)
Using our earlier result that the energy per unit area per unit time in frequency

space is just ¢|F(w)?|, the differential power radiated per solid angle per angular
frequency is therefore

W 1
= —w
dQdw 3
and the total power per unit angular frequency is

dW  8mw? -
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Thus the frequency spectrum of the emitted radiation is the same as the fre-
quency of the dipole oscillation, but weighted so that higher frequency oscilla-
tions emit more power by a factor of w?.

Hd(w)|*sin? 0 (40)

(41)
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B. Thomson scattering

A second very important application of radiation the far-field limit is Thomson
scattering: the scattering of radiation by a free charge, usually a free electron.

1. Scattering of a linearly polarised wave

Consider a free point mass m of charge ¢ upon which a linearly-polarised plane
wave of angular frequency w is incident. Without loss of generality we will
choose our coordinate system so that the plane wave is propagating in the z
direction, and the electric field is in the x plane. As long as the free charge
moves non-relativistically in response, the magnetic force is small compared to
the electric one (as you will show on your homework), so the force that the wave
exerts on the electron is

F = ¢E(t) = gEsinwtx (42)

where E is the electric field, F is its magnitude, we have chosen to define ¢t = 0
as a time when the electric field is zero, and by assumption the force and electric
field both lie in the x direction.

The equation of motion for the point charge is then
E
i = sinwt, (43)
m

where x is the charge’s position. Integrating, the charge’s position as a function
of time is just

E
= — inwt. 44
x — sin w (44)
The dipole moment is therefore
2
E
d=qr= —fan sin wt, (45)
and its second derivative is
2
3y E
d=21" ginwt. (46)
m

Again, as a reminder these are all  components.

Since the point charge is an oscillating dipole, it will radiate, and we can use
our previous results for radiation from an accelerating charge to calculate the
nature of the radiation. In particular, the time-averaged angular distribution of
the radiated power (Equation 34) and the total power (Equation 35) are
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Here (-) indicates averaging over an oscillation period, and we have used the
fact that the average of sin? over an oscillation period is 1/2. The angle © is the
angle between the x direction (the direction in which the incoming electric field
and the charge are oscillating) and the direction of the direction of propagation
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of the outgoing radiation. Note that this is not the same as the angle between
the incident wave and the outgoing radiation, which is 0 = 7/2 — ©.

Also note that, since the charge is oscillating in the x direction and the resulting
electric field is as well. Thus for radiation emitted at an angle n, the electric
field must lie in the plane defined by n and x. (If n and X are parallel then they
do not define a plane, but in this case ® = 0 and no radiation is emitted in this
direction.) Since the electric field lies in a plane the outgoing wave is linearly
polarised as well.

This radiated power can be compared to the flux of the incoming plane wave,
characterised by the Poynting vector, which has a time-averaged magnitude

€ 2

(S) = 8_7TE . (49)
The process of taking an incoming plane wave and redirecting its power in
different directions is called scattering. Its defining characteristic is that the
matter interacting with the incoming radiation does not absorb any energy (as
much be the case here, since on average the charge has constant energy), so all
that happens is that some of the arriving electromagnetic energy is sent off in a
different direction. We can define the differential scattering cross section as the
ratio of output power to input power as a function of direction, i.e.,

do dP/dQ ¢
aQ  (S)  m2c

sin® ©. (50)

The total scattering cross section is just the integral of this over angle,

do 8t ¢t
o /de (51)

3 m2ct’

Since the cross section scales as m ™2, electrons are much more effective scatters
than protons or ions (by a factor of &~ 10°, since m./m, ~ 107?), and thus we
generally only bother thinking about scattering by electrons, for which ¢ = e
and m = m,, and we define the quantity

62

ro= —— =2.82x 107" cm (52)
MeC

as the classical electron radius. The corresponding total cross section is the
Thomson cross section
8T,

0 = o7 = -5 = 6.65 1072% cm?. (53)

Three more remarks on Thomson scattering are important to make at this point.
First, notice that w dropped out of the transmitted power and scattering cross
section. Thomson scattering is therefore a frequency-independent, or “grey”,
process.

Second, notice that, since the scattering charge produces a dipole that oscillates
at exactly angular frequency w, the Fourier transform of the dipole is a delta
function at w. Consequently, following our discussion above, the scattered wave



is also monochromatic at frequency w. The scattering process therefore does not
change the frequency of the light.

Third, this calculation is only valid for photons whose energies are much less than
the electron rest mass, 511 keV. At higher energies there are quantum mechanical
and relativistic corrections to this cross section that are non-negligible. We will
return to these when we discuss Compton scattering, which is the generalisation
of Thomson scattering to arbitrary photon energy.

. Scattering of unpolarised light

Our calculation of Thomson scattering thus far is for linearly polarised waves.
We now generalise this to the more common case of unpolarised light. To figure
out how scattering works in this case, let us again consider light propagating
in the z direction, and without loss of generality let us set up our coordinate
system so that the observer who sees the scattered light is somewhere in the zz
plane. Thus the unit vector n that points from the scattering electron to the
observer has zero y component.

We showed earlier that we can describe unpolarised light as simply the sum
of two linearly polarised waves of equal electric field strength, with polarisation
vectors 90° apart, and where the phases of the two waves are uncorrelated. Since
we can orient these two uncorrelated, linearly-polarised waves however we want,
we will take one of them to have its electric field in the x direction, and other
so it is in the y direction.

Since Maxwell’s equations are linear, we can consider scattering of the two in-
coming plane waves independently. The incoming plane wave that has its electric
field in the x direction will make an angle © between the electric field vector
and the direction of scattering, exactly as in our calculation of scattering of a
linearly-polarised wave. The incoming plane wave that has its electric field in
the y direction always makes an angle of 7/2 between its electric field and the
scattering direction, since the angle between y and any vector n that lies in the
xz plane is 7/2.

Since each of the incoming waves carries equal power, the total cross section is
simply the average of the cross sections for each of the two waves as computed
by Equation 50, i.e.,

do n do

s/, at/,
where (-),,, refer to the incoming plane waves whose electric fields are in the «
and y directions, respectively, and where § = 7/2 — © is the direction between

the direction of the original incoming plane wave and the outgoing scattered
radiation. Note that the total cross section is still o7 = (87/3)r3.

do

/ % _ %r% (sin2 O + 1) = %7’8 ((3032 0+ 1) . (54)

An important implication of this calculation is that, even if the incoming ra-
diation is unpolarised, the scattered radiation will be at least partly polarised.
This is because the two linearly-polarised components of the incoming radia-
tion do not get scattered equally: the component whose electric field is in the
x direction has a smaller scattering cross section than the component whose
electric field is in the ¥ direction by a factor of cos?#. Recall our definition of
the polarisation fraction II as the ratio of the energy in the polarised component



to the total energy of the wave. In this case, if we have 1 unit of energy in the
scattered ¥ component, and cos? § units in the scattered X component, then the
total intensity is 1 + cos? @, and the intensity of the purely-polarised component
is 1 — cos? . Thus

~ 1—cos?*0

~ 1+cos2f’
Thus radiation scattered at a 90° angle is purely polarised, II = 1, while radiation
that is scattered at a shallower or steeper angle is less and less polarised as we
move away from 90°.

(55)
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