
ASTR3007/4007/6007, Tutorial 2: Polytropes 2 March

This tutorial introduces polytropes, which are a simple model for stars that we can make
without any of the detailed physics for the equation of state, energy transport, and nuclear
reactions that we are going to introduce later on. The idea behind polytropes is that, if we just
posit a simple relationship between pressure and density, we can dispense with the rest of the
model for a star.

To treat polytropes, we begin from hydrostatic balance:
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We bring the r2/ρ to the other side, then differentiate both sides:
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We now make our approximation for the pressure. We posit that the pressure is related to the
density by a simple power-law relationship,

P = KPρ
(n+1)/n, (5)

where KP and n are both constants. The motivation for this scaling is that there are a number
of physical situations where a relationship like this would be expected to hold, which we will
cover later in the course. Substituting this relationship into Equation 4 and doing a bit of
re-arranging gives
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The next step you will do. To render this equation more useful, we make some substitutions.
Let ρc be the density at the centre of the star, and define the dimensionless density Θ by

Θn =
ρ

ρc
. (7)

Exercise 1. In Equation 6, make a change of variable from ρ to Θ, and define a new
position coordinate ξ = r/α, where α is a constant you will determine. Show that, with this
change of variables, Equation 6 can be rewritten
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Determine the value of α required to put the equation into this form.

Equation 8 is known as the Lane-Emden Equation. It is a second order ordinary differential
equation, and therefore requires two boundary conditions. Since we defined ρc as the central
density, one of these conditions must be that Θ = 1 at ξ = 0. For our second boundary
condition, we will also require that Θ approaches this value smoothly as ξ → 0, which requires
that dΘ/dξ = 0 at ξ = 0. This is the second boundary condition. Equation 8 is to be integrated
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from the inner boundary to some outer radius ξ1 where Θ reaches 0. This will define the outer
radius of the star.

We are going to solve the Lane-Emden equation numerically, but before doing so we must
handle some preliminaries. First, to test that the code we write to solve it is correct, we would
like to have an exact solution against which we can test. Fortunately, it is possible to obtain
such a solution for the case n = 1.

Exercise 2. For the case n = 1, show that Θ = sin ξ/ξ is an exact solution of Equation 8,
and that in this case the outer radius of the star is ξ1 = π.

The second preliminary we must handle before solving Equation 8 numerically is that most
ordinary differential equation (ODE) solvers want to work on systems of first order ODEs rather
than on second order ones. We must recast the Lane-Emden equation in this form.

Exercise 3. Rewrite Equation 8 as a pair of coupled first order ODEs in standard form,
i.e.,
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The final step is that would like to integrate starting at ξ = 0, since this is where our
boundary conditions are specified, but Equation 8 has a singular point at ξ = 0. That is, the
leading order derivative term in Equation 8 (or equivalently the first order ODEs you derived
in Exercise 3) vanishes at ξ = 0. Fortunately, there is a standard way to handle this: by series
expansion in the vicinity of the singular point. That is, we consider a trial solution that is
written out as a Taylor series, substitute into the original equation, and find the solution in the
limit ξ → 0. This tell us how the solution behaves in the vicinity of the singular point.

Exercise 4. Consider a trial solution Θ = a0 + a1ξ + a2ξ
2 + · · ·, where we are interested

in the behaviour for ξ � 1, and the coefficients an are to be determined. Substitute this trial
solution into Equation 8, and, making use of the the boundary conditions, derive the values of
a0, a1, and a2.

We are now ready to solve the problem numerically. Our goal will be to integrate Equation 8
numerically from a small value of ξ (say ξ = ξ0 = 10−6), out to the point where Θ = 0, which
we will denote ξ1. For the boundary condition, use the series expansion to obtain values of Θ
and dΘ/dξ at ξ = ξ0. You can do this numerical integration in whatever program / language
you prefer. Some reasonable choices are python, matlab, and mathematica.

Exercise 5. Numerically integrate Equation 8 for the case n = 1, and verify that your
numerical result matches the analytic value you derived in step 2.

Exercise 6. Once you have verified that your code is working correctly, obtain numerical
solutions for n = 1, 1.5, 2, 2.5, 3, and make a table of ξ1 versus n.
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