
ASTR3007/4007/6007, Tutorial 1: What stars are made of 23 February

Twinkle, twinkle little star,
I don’t wonder what you are
for by spectroscopic ken
I know that you’re hydrogen...

Anonymous astronomer

In this tutorial we will replicate part of the work of Cecilia Payne-Gaposchkin in computing
the abundances of elements in the Sun. In particular, we will show that both calcium and
sodium are much less abundant than hydrogen. The full calculation involves the following
steps:

1. Measure the absorption of light in for the each line of interest.

2. Use the measurement of light absorption to infer the amount of the species producing the
absorption; this species is a particular excitation state of a particular ionisation state of
a particular element.

3. Use the Boltzmann distribution to infer the total abundance of each ion from our measured
abundance in a particular excitation state.

4. Use the Saha equation to turn this into a measurement of the total abundance of each
element.

Step 1.

As a first step, we must measure the amount of light absorbed by a particular transition.
Figure 1 shows the spectrum of the Sun in the vicinity to three prominent spectral lines: the
K line produced by calcium, the D2 line produced by sodium, and the Hα (Balmer α) line
produced by hydrogen. Note that all the absorption dips you see here are real, not noise; there
are a lot of absorption features in the spectrum of the Sun if one looks closely!

Line absorption is measured by the equivalent width, which measures the amount of light
missing due to line absorption. Formally, the equivalent width in wavelength is defined as

Wλ =
∫ [

1− Fλ
Fλ(0)

]
dλ, (1)

where Fλ is the observed flux as a function of wavelength and Fλ(0) is the flux that would
have been observed were the line absent. The quantity Wλ has the same units as whatever the
wavelength is measured in, which traditionally is Angstrom.

Exercise 1. Estimate the equivalent widths of the CaK, NaD2, and Hα lines. You may do
this from the plots provided, or, if you are feeling more ambitious, grab the raw data from the
course web page at http: // www. mso. anu. edu. au/ ~ krumholz/ teaching/ astr3007_ s1_
2017/ (under class-by-class topics) and use them to perform your estimate.
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Figure 1: The spectrum of the
Sun in the vicinity of three
prominent spectral lines. Blue
shows the observed spectrum
and green dashed lines indi-
cate the central wavelength for
each line. The spectra have
been normalised so that the
continuum level (i.e., the flux
for light without any line ab-
sorption) is at 1.0. Data taken
from http://bass2000.

obspm.fr/solar_spect.php.
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Figure 2: A curve of growth computed for
the Sun. The quantity on the x axis the
the column of absorbers N (measured in
cm−2) multiplied by the dimensionless oscilla-
tor strength f for the transition multiplied by
the wavelength λ normalised to 5000 Å. The
quantity plotted on the y axis is the equiva-
lent width Wλ divided by the wavelength.

Step 2.

The second step is to turn the observed equivalent width into a column density, i.e., a
number of atoms per unit area along the line of sight from us to the stellar photosphere. This
is somewhat tricky, because the equivalent width of the line does is not linearly proportional
to the column density except when it is very small. For larger columns, the relationship
between equivalent width and column density is known as the curve of growth. The curve of
growth depends on the pressure and temperature of the stellar surface (which affect the velocity
distribution of atoms and the frequency with which they collide) as well as intrinsic quantum
mechanical properties of the absorbing species.

Calculation of the curve of growth for a star is a non-trivial exercise that we will not attempt
in this tutorial. Figure 2 shows a curve of growth computed for the Sun. The curve of growth
expresses a relationship between the equivalent width normalised by the wavelength, Wλ/λ, and
the following combination of parameters: Nfλ. Here N is the column density of the absorbers,
i.e., how many of them there are per unit area. The quantity f is called the oscillator strength,
and it is a dimensionless quantum mechanical measurement of the transition strength.

Exercise 2. Use the curve of growth plus your measured equivalent width to infer the
column of sodium atoms in the ionisation and excitation states responsible for the three lines.
The required data are given below.

Line λ [Å] f
CaK 3934.77 0.682
NaD2 5891.58 0.641
Hα 6562.79 0.641
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Step 3.

We have now determined the columns of ions in the states responsible for producing the CaK,
NaD2, and Hα transitions. Our next step will be to correct from atoms in a particular state to
atoms in all quantum states using the Boltzmann distribution. As a reminder, the Boltzmann
distribution is that the fraction of atoms in some state i with energy Ei and degeneracy gi is
given by

fi =
gie

−Ei/kBT

Z(T )
, (2)

where T is the temperature and Z(T ) is the partition function, given by

Z(T ) =
∑
i

gie
−Ei/kBT . (3)

We need to determine fi for each of our states in order to correct from the column in a particular
state to the total column in all states. For all cases we will use the estimated Solar surface
temperature T = 5780 K.

The Hα lines comes from neutral hydrogen, and for hydrogen we can calculate fi exactly.
Hydrogen has states denoted by quantum number n, and if we take the ground state to have
zero energy, then the degeneracy and binding energy of state n is

gn = 2n2 En = 13.6 eV
(

1− 1

n2

)
(4)

for n = 1 . . .∞. The Hα line comes from the n = 2 state.

For NaD2, the state that produces the line is the ground state (Ei = 0), which has a
degeneracy of gi = 2. The partition function must be determined by a brute force sum over
all the possible levels and states, of which there are a significant number. At T = 5780 K,
partition function is approximately ZNa ≈ 2.1. Similarly, the CaK line is produced by atoms
of Ca+ in the ground state, which has degeneracy gi = 2 and partition function ZCa+ ≈ 2.3.

Exercise 3. Compute fi for the states responsible for producing the Hα, CaK, and NaD2

lines. Do this even if you didn’t find the columns for all three in the previous part. Use this
value to correct the columns you have obtained from the columns of the state producing the
transition to the columns of all ions.

Step 4.

The final step is to us the Saha equation to correct from total numbers of ions to total
numbers of atoms in all ionisation states. That is, we have determined the columns of H0, Na0,
and Ca+, and we want to know the columns of all H atoms, all Na atoms, and all Ca atoms,
regardless of ionisation state.

The ratios of atoms in two different ionisation states is given by the Saha equation, first
derived by Meghnad Saha in 1920. The equation states that, in equilibrium, the number
densities ni+1 and ni of an atomic species that has been ionised i+ 1 and i times, respectively,
have a ratio

ni+1

ni
=

2

ne

Zi+1

Zi

(
2πmekBT

h2

)3/2

e−χ/kBT , (5)

where Zi+1 and Zi are the partition functions of the two ionisation states, ne is the number
density of electrons, and χ is the ionisation potential. Since the pressure is usually easier to
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measure than the electron abundances, this equation is often also rewritten using the ideal has
law, which gives Pe = nekBT , where Pe is the partial pressure of electrons. This gives

ni+1

ni
=

2kBT

Pe

Zi+1

Zi

(
2πmekBT

h2

)3/2

e−χ/kBT . (6)

To apply this equation to figure out the corrections from H0 to H, from Na0 to Na, and from
Ca+ to Ca, we need to know the partition functions of both the neutral and once-ionised states.
(The population is even more ionised states is negligibly small, as one can readily confirm by
using the Saha equation for them.) The partition function for H0 we computed in the previous
part, and the partition function for H+ is trivial: ZH+ = 1, since H+ is just a proton, which
has only a single state. For the other species one must again resort to brute force. The data
on ionisation potential and partition function that you will need are:

Ion χ (eV) Z(T ) at T = 5780 K
H0 - For you to compute
H+ 13.6 1
Na0 - 1.0
Na+ 5.1 2.4
Ca0 - 1.3
Ca+ 6.1 2.4

Exercise 4. Use the Saha equation to correct your columns from one ionisation state
to the total abundance of each atom. Use an electron pressure Pe = 15 dyne cm−2, and use
the partition functions and ionisation potentials given above. What do you conclude about the
relative abundances of Na and Ca compared to H?
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