
ASTR3007/4007/6007, Class 9: The Main Sequence 23 March

We have now completed our survey of the physical processes that govern the behaviour of
stars, and we are ready to build a theory for stars’ structure and evolution. This class will
focus on the main sequence, and the next two will focus on evolution past the main sequence.
In modern day applications, quantitative models of stars are invariably obtained by solving the
stellar structure equations numerically, and we will look at numerical results at the end of the
class. However, to get physical insight into why the numerical results look like they do, we will
first attempt to proceed as far as we can analytically.

I. The conditions in stellar centres

We will begin our study by considering the properties of stars’ centres, which we can
characterise in terms of a density ρc, a temperature Tc, and a composition. Imagine
we consider a series of stars of different masses, we find their central temperatures and
densities, and we plot them in a plane of (log Tc, log ρc). Where will the stars lie in the
(log Tc, log ρc)-plane, and why?

Our central hypothesis is that main sequence stars represent systems that are in both
hydrostatic and energy equilibrium, meaning that their internal pressure hold them up,
and their internal rates of nuclear energy generation match their rates of radiation into
space. Let us therefore see what these two conditions imply about the properties of stars’
centres.

A. Hydrostatic balance

First let us consider where in this plane hydrostatic balance is possible. Since we
care about pressures for hydrostatic balance, it is helpful to remind ourselves of the
different sources of pressure, and where in terms of density and temperature each one
dominates. Using the expressions for various types of pressure that we have derived
previously, we can populate the (log Tc, log ρc) plane to demarcate where each type
of pressure dominates, as shown in Figure 1.

To figure this out where stars fall in this plane, we can take advantage of the powerful
and general relationship between mass, pressure, and central density for polytropes.
Recall that for a polytrope characterised by a pressure-density relationship P =
KPρ

(n+1)/n, we showed that the mass and central density are related by:

M = −4πα3ρcξ
2
1

(
dΘ

dξ

)
ξ1

(1)

α =

[
(n+ 1)KP

4πGρ
(n−1)/n
c

]1/2

(2)

where ξ1 and (dΘ/dξ)ξ1 are numerical values of order unity that depend only on the
index n.

To figure out the central temperature, we need to know the central pressure, so let
us combine the above two expressions and see if we can get an expression for the
pressure in terms of M and ρc by eliminating KP . This is fairly straightforward:

M = −4π

[
(n+ 1)KP
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Figure 1: Sources of pressure in
the temperature-density plane. The
shaded regions indicate roughly
where different types of pressure be-
come dominant.
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Re-arranging, we see that

Pc = (4π)1/3BnGM
3/2ρ4/3

c (6)

where Bn is a constant of order unity that just depends on n.

Real stars aren’t exactly polytropes except in certain special cases, but we have
shown that their structures are generally bounded between n = 1.5 and n = 3
polytropes, depending on the strength of convection and the amount of pressure
provided by radiation. For an n = 1.5 polytrope, Bn = 0.206, and for one with
n = 3, Bn = 0.157. That these values are so close suggests that this equation should
apply in general, with only a slight dependence of the coefficient on the internal
structure of the star. For this reason, we can simply adopt an approximate value
Bn ' 0.2, and expect that it won’t be too far off for most stars.

In order to translate this relationship between Pc and ρc into our (log T, log ρ), plane,
we need to compute the central temperature Tc from ρc and Pc. This in turn requires
that we use the equation of state. We’ve discussed the equation of state in a few
limiting cases, but, as we will see for a moment, for most main sequence stars we
really only need to worry about two cases: ideal gas and non-relativistic degenerate
gas. That is because stars that get too far into one of the other two regimes, either
relativistic degenerate gas or radiation pressure, become unstable, as we will see.

For an ideal gas, we have

Pc =
R
µ
ρcTc, (7)

so combining this with the central pressure-density relation, we have

R
µ
ρcTc = (4π)1/3BnGM

2/3ρ4/3
c (8)
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Figure 2: Thick lines show loci
where stars of the indicated mass
can be in hydrostatic equilibrium,
plotted on top of shaded regions in-
dicating sources of pressure, as in
Figure 1.

ρc =
1

4πB3
n

(
R
µ

)3
1

G3M2
T 3
c (9)

log ρc = 3 log Tc − 2 logM − 3 logG− log(4πB3
n) + 3 log

R
µ
. (10)

Thus in the case of an ideal gas, the relationship between central density and tem-
perature is simply a line of slope 3 in our (log ρc, log Tc) plane. The y intercept of
the line depends on the star’s mass M , so that stars of different masses simply lie
along a set of parallel lines.

If the gas is instead degenerate, we showed that the equation of state is

Pc = K ′1

(
ρc
µe

)5/3

. (11)

Repeating the same trick of combining this with the polytropic pressure-density
relation, we have

K ′1

(
ρc
µe

)5/3

= (4π)1/3BnGM
2/3ρ4/3

c (12)

ρc = 4πB3
nG

3M2K ′−3
1 µ5

e (13)

log ρc = log(4πB3
n)− 3 logK ′1 + 5 log µe + 3 logG+ 2 logM (14)

This is just a horizontal line in the (log ρc, log Tc) plane, at a value that depends
on the star’s mass M . The crossover between degenerate and non-degenerate oc-
curs where this horizontal line crosses the line of slope 3 we obtained for the non-
degenerate case.

Figure 2 shows the lines of hydrostatic equilibrium in the (log Tc, log ρc) plane. We
see that 0.1 and 1.0 M� stars can be either ideal gases or degenerate in their centres,
while 10 M� are essentially always ideal gasses. This plot shows that our calculation
for 100 M� stars isn’t quite right, since these are in the region that should be dom-
inated by radiation pressure, but we will ignore this for now, because the correction
is not that large, and does not become significant except for the most massive stars.

B. Energy equilibrium
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Now that we know what where stars can be in hydrostatic balance on this plot, the
next thing to add is where they can be in energy balance, meaning where their rate of
nuclear energy generation matches their rate of radiative loss into space. As with our
calculation of hydrostatic equilibrium, we will proceed by very rough approximation.

For an ideal gas the energy per unit mass is

ugas =
3

2

Pgas

ρ
=

3

2

R
µ
T. (15)

The time it takes the gas to lose energy via radiation is the Kelvin-Helmholtz
timescale, so the time rate of change of the energy per unit mass due to radiative
loss is (

dugas

dt

)
rad

∼ R
µ

T

tKH

. (16)

The KH timescale is a fairly strong function of stellar mass as it turns out, but so
is the central temperature, and so it turns out that the ratio T/tKH only varies by a
factor of ∼ 10 across the main sequence. That is good enough for this very schematic
calculation, so we’ll plug in Solar central values of T ∼ 107 K and tKH ∼ 10 Myr,
giving (dugas/dt)rad ∼ 10 erg g−1 s−1 as the rate of radiative loss.

In energy equilibrium this loss must be balanced by the rate of nuclear energy gen-
eration per unit mass. Recall that we previously computed these rates from the pp
chain and the CNO cycle:

qpp ' 2.4× 106X2

(
ρ

1 g cm−3

)(
T

106 K

)−2/3

exp

[
− 33.8

(T/106 K)1/3

]
(17)

qCNO ' 8.7× 1027XXCNO

(
ρ

1 g cm−3

)(
T

106 K

)−2/3

exp

[
− 152

(T/106 K)1/3

]
.(18)

If we equate these rates with (dugas/dt)rad and take the logarithm to figure out what
this looks like in the (log Tc, log ρc) plane, the result is

log ρpp = 14.7T
−1/3
6 +

2

3
log T6 − 6.4− 2 logX + log

(
dugas

dt

)
rad

(19)

log ρCNO = 66.0T
−1/3
6 +

2

3
log T6 − 27.9− logX − logXCNO + log

(
dugas

dt

)
rad

(20)

where we have used the abbreviation Tn = T/(10n K). These are clearly not straight
lines in the (log Tc, log ρc) plane. There is a linear part, which comes from the
(2/3) log T terms, but there is a far more important exponential part, coming from
the T−1/3 terms, which look like exponentials in the (log Tc, log ρc) plane. If we adopt
X = 0.71 and XCNO = 0.01 as for the Sun, we can add these curves to our plot, as
shown in Figure 3.

C. Implications for the main sequence

Figure 3 provides great insight into how stars must evolve, and into the origin of
the main sequence. First note that, as long as a star’s mass remains fixed, it is
constrained to spend its entire life somewhere on the line associated with its mass –
it simply moves from one point on the line to another.

Now consider how a star must evolve when it first forms. Stars form out of gas
clouds that are much less dense and much colder than than the centre of a star.
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Figure 3: Red and blue lines show
the loci where nuclear burning
through the pp chain (red) and CNO
cycle (blue) are sufficient to pro-
duce energy equilibrium in a star ra-
diating away energy at a rate per
unit mass dugas/dt ∼ 10 erg g s−1,
roughly the value for the Sun. Thick
gray lines show loci where stars of
the indicated mass can be in hydro-
static equilibrium, while shaded re-
gions indicate sources of pressure, as
in Figure 2.

Thus all stars begin their lives at the bottom left corner of the diagram. Since they
are at a temperature too low to balance their radiative losses (since they are to the
left of the pp chain and CNO cycle lines where balance occurs), their radiation must
be powered by gravitational contraction instead, and their densities rise. Thus they
move up and to the right along the ideal gas track.

They continue to move in this way until one of three things happens. Stars much
below 0.1 M� will hit the degenerate region before hitting any of the nuclear burning
lines. At this point its central density will cease contracting; it cannot rise any more.
Since it is still losing energy to space, it will continue to evolve, but now it will move
back toward lower temperature, proceeding left on its track. Objects in this category
are called brown dwarfs; they never get hot enough to burn hydrogen.

Slightly more massive stars will hit the pp chain line before this happens, while stars
larger than a few M� will hit the CNO cycle line first. Once either of these two things
happens, the star will stop evolving, because it will not be in energy balance, with
nuclear burning balancing the loss of energy to space. Eventually the equilibrium will
fail because hydrogen will be exhausted and the rates of nuclear energy generation
will decline, but this requires a nuclear burning timescale to happen, which for low
mass stars like the Sun is very long, ∼ 10 Gyr.

Thus stars stall along a locus in the (log Tc, log ρc) plane defined by the intersection
of their mass tracks with the nuclear burning lines. This is the locus that will define
the main sequence.

We can already see just from the plot a few interesting things. First, more massive
stars will tend to have higher central temperatures but lower central densities than
less massive stars. Second, they will be closer to the region where radiation pressure
dominates, and thus radiation pressure will become increasingly important for more
massive stars.

II. Scaling relations on the main sequence

Having understood the origin of the main sequence in terms of the properties of stellar
cores, we next seek to develop a more quantitative understanding of main sequence stars’
properties. We are particularly interested in understanding how luminosity and effective
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temperature scale with mass, since that is what gives us the relationship between the
observational main sequence (defined in terms of an observed luminosity and effective
temperature) and the physical properties of a star, particularly its mass.

A. Non-dimensional structure equations

To proceed analytically, we again need to make approximations. To this end, we
will neglect convection, radiation pressure, and degeneracy pressure, use a constant
opacity, and use a powerlaw approximation for the rate of nuclear burning. The
goal is to show that we can roughly reproduce what is observed, not get every detail
right. With these assumptions, the complete set of stellar structure equations is

dP

dm
= − Gm

4πr4
(21)

dr

dm
=

1

4πr2ρ
(22)

dT

dm
= − 3

4ac

κ

T 3

L

(4πr2)2
(23)

dL

dm
= q0ρT

ν (24)

P =
R
µ
ρT (25)

The unknowns are r(m), P (m), T (m), L(m), and ρ(m), and there are 5 equations,
so the system is fully specified.

We don’t have to solve the equations exactly to get out the basic behaviour. Instead,
we can figure out many scalings with some simple dimensional arguments. To do
this, we will deploy the same technique of non-dimensionalising the equations that
we used so effectively with polytropes. We begin by defining a dimensionless mass
variable

x =
m

M
, (26)

and then defining dimensionless versions of all the other variables:

r = f1(x)R∗ (27)

P = f2(x)P∗ (28)

ρ = f3(x)ρ∗ (29)

T = f4(x)T∗ (30)

L = f5(x)L∗, (31)

where M is the total mass of the star and R∗, P∗, ρ∗, T∗, and L∗ are values of the
radius, pressure, density, temperature and luminosity that we have not yet specified.

Thus far all we have done is define a new set of variables. We will now substitute
this new set of variables into the equation of hydrostatic balance:

dP

dm
= − Gm

4πr4
−→ P∗

M

df2

dx
= − GMx

4πR4
∗f

4
1

. (32)

We now exercise our freedom to define P∗. We define it by

P∗ =
GM2

R4
∗
, (33)
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and with this choice the equation of hydrostatic balance reduces to

df2

dx
= − x

4πf 4
1

. (34)

This is the non-dimensional version of the equation.

We can non-dimensionalise the other equations in a similar fashion, in each case ex-
ercising our freedom to choose one of the starred quantities. For the dr/dm equation,
we choose

ρ∗ =
M

R3
∗
, (35)

which gives us the non-dimensional equation

df1

dx
=

1

4πf 2
1 f3

. (36)

For the other equations, the definitions and non-dimensionalised versions are

T∗ =
µP∗
Rρ∗

f2 = f3f4 (37)

L∗ =
ac

κ

T 4
∗R

4
∗

M

df4

dx
= − 3f5

4f 3
4 (4πf 2

1 )2
(38)

L∗ = q0ρ∗T
ν
∗M

df5

dx
= f3f

ν
4 . (39)

You might be suspicious that we defined L∗ twice, which we can’t do. The trick is
that we have yet not chosen R∗. Thus we can use our last choice to define R∗ in such
a way as to make the second equation here true. Once we do so, have have defined
all the starred quantities, and non-dimensionalised all the equations.

What is the point of this? The trick is that the non-dimensional equations for
f1−f5 now depend only on dimensionless numbers, and not on the stellar mass. Any
dependence of the solution on mass must enter only through the starred quantities.
Another way of putting it is that these equations have the property that they are
homologous – one can solve for f1 − f5, and then scale that solution to an arbitrary
mass by picking a different value of M . In a sense, these equations say that all stars
have the same structure.

Of course in reality that’s not quite true. The only reason we were able to obtain
non-dimensionalised equations of this form and demonstrate homology is due to the
simplifying assumptions we made – neglect of radiation pressure, neglect of con-
vection, adopting a constant κ, and using a powerlaw form for the nuclear energy
generation rate. These complications are the basic reasons that stars do not actually
all have the same structure independent of mass. Nonetheless, the first and last of
these assumptions are reasonably good for low mass stars (though not for massive
stars). The assumption of constant κ isn’t strictly necessary, as a powerlaw approx-
imation for it still allow non-dimensionalisation in this way. The most questionable
assumption is our neglect of convection.

B. Mass scalings

With that aside out of the way, we can proceed to use the homologous equations to
deduce the dependence of all quantities on mass. Combining the equations for ρ∗
and T∗ gives

T∗ =
µ

R
GM

R∗
. (40)

7



Notice that we have already proven essentially this result using the virial theorem.

Inserting T∗ into the equation for L∗ gives

L∗ =
ac

κ

R4
∗

M

(
µ

R
GM

R∗

)4

=
ac

κ

(
µG

R

)4

M3 (41)

Since this relation applies at any value of x, it must apply at x = 1, i.e. at the surface
of the star. Since at the stellar surface L = L∗f5(1), it immediately follows that

L ∝ ac

κ

(
µG

R

)4

M3. (42)

Thus the luminosity varies as M3. Notice that this is independent of any of the
other starred quantities – we have derived the dependence of L on the mass alone.
Also notice that this result is basically the same as we get from Eddington’s model
with β = 1 (i.e., our assumption of no radiation pressure) – which makes sense, since
Eddington’s model is a polytrope, and therefore homologous, and also has constant
κ. Thus we couldn’t possibly find anything else.

We can now push further and deduce the mass scalings of other quantities as well.
We have

L∗ = q0ρ∗T
ν
∗M =

ac

κ

(
µG

R

)4

M3 =⇒ ρ∗ =
ac

q0κ

(
µG

R

)4 M2

T ν∗
. (43)

Substituting for ρ∗ and T∗ gives

M

R3
∗

=
ac

q0κ

(
µG

R

)4

M2

(
µP∗
Rρ∗

)−ν
(44)

Finally, substituting for P∗ and ρ∗ again gives

M

R3
∗

=
ac

q0κ

(
µG

R

)4

M2
(
µ

R

)−ν (GM2

R4
∗

R3
∗

M

)−ν
(45)

M

R3
∗

=
ac

q0κ

(
µG

R

)4−ν
M2−νRν

∗ (46)

R∗ =

q0κ

ac

(
R
µG

)4−ν
1/(ν+3)

M (ν−1)/(ν+3) (47)

Thus we expect the stellar radius to scale with mass in a way that depends on how
the nuclear reactions scale with temperature. If we have a star that burns hydrogen
mainly via the pp chain, then ν ≈ 4, and we obtain R ∝ M3/7. For a more massive
star that burns mainly via the CNO cycle, we have ν ≈ 20, and we instead obtain
R ∝M19/23, a nearly linear relationship. Thus we expect the radius to increase with
mass as M3/7 at small masses, increasing in steepness to a nearly linear relationship
at larger masses.

For the density, we have

ρ∗ =
M

R3
∗

=

q0κ

ac

(
R
µG

)4−ν
−3/(ν+3)

M2(3−ν)/(3+ν). (48)
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For pp chain stars, this gives ρ∗ ∝ M−2/7, and for CNO cycle stars it gives ρ∗ ∝
M−34/23, which is nearly −1.5. Thus the density always decreases with increasing
stellar mass, but does so fairly slowly for pp chain stars (−0.29 power) and quite
rapidly for CNO cycle stars (−1.5 power). This is an important and often under-
appreciated point in stellar structure: more massive stars are actually much less
dense than less massive ones. Very massive stars are quite puffy and diffuse.

C. The observed main sequence

Finally, we can get out the scaling that we really care about: luminosity versus
temperature. This is what will determine the shape of the observed main sequence,
and we had better make sure that what we get out of the theoretical model agrees
reasonably well with what we actually observe. If not, the hypothesis that the main
sequence is made up of stars whose cores are stalled on the hydrogen burning line
will not be valid.

The effective temperature is related to the radius and luminosity by

L

4πR2σ
= T 4

eff . (49)

However we have just shown that

L ∝M3 and R ∝M (ν−1)/(ν+3). (50)

Inverting the first relation and substituting it into the second, we have

M ∝ L1/3 =⇒ R ∝
(
L1/3

)(ν−1)/(ν+3)
∝ L(ν−1)/[3(ν+3)]. (51)

Now plugging this into the relationship between L and Teff , we give

L

[L(ν−1)/[3(ν+3)]]
2 ∝ T 4

eff (52)

L1−2(ν−1)/[3(ν+3)] ∝ T 4
eff (53)[

1− 2(ν − 1)

3(ν + 3)

]
logL = 4 log Teff + constant (54)

logL = 4

[
1− 2(ν − 1)

3(ν + 3)

]−1

log Teff + constant. (55)

We have therefore derived an equation for the slope that the main sequence should
have in the HR diagram, which shows logL vs. log Teff .

Plugging in ν = 4 for pp chain stars and ν = 20 for CNO cycle stars, we obtain

logL = 5.6 log Teff + constant (pp chain) (56)

logL = 8.9 log Teff + constant (CNO cycle) (57)

The values compare reasonably well with the observed slopes of the lower and upper
main sequence on the HR diagram.

III. Numerical results

We have now pushed as far as we are going to analytically, and the time has come to bring
out the computers. We have written down all the necessary equations, and they can be
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Figure 4: Luminosity versus mass for zero age
stars of Solar composition, as predicted by the
Geneva group. The tracks used to generate
these plots were taken from the work of Ek-
strom et al. (2012, http://adsabs.harvard.

edu/abs/2012A%26A...537A.146E).
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solved by modern computers quite easily. We will not discuss the necessary algorithms
– a 6 week course is too short for that. Instead, we will simply review the important
results. For today we will focus on stars that have not yet processed a significant amount
of hydrogen into helium. Stars of this sort are said to be on the zero age main sequence,
or ZAMS for short. We will talk about evolution of stars after the ZAMS in the remaining
classes.

A. Mass-luminosity-effective temperature relations

The most basic output of the numerical codes is a prediction for the luminosity
and effective temperature of a star of a given mass and composition. Numerical
tabulations of predictions for this quantity are available from a number of research
groups, all using slightly different treatments of convection and similar effects that
cannot quite be modelled exactly in a 1D code. The figures shown here are models
from the Geneva Observatory group. Figure 4 shows the mass-luminosity relation,
Figure 5 shows mass versus effective temperature, and Figure 6 shows luminosity
versus effective temperature.

The basic behaviour is essentially as we predicted from our simple models. The
luminosity scales as mass to roughly the third power at low masses – slightly steeper
due both to the effects of convection and the varying opacity. At higher masses
the dependence flattens out, approaching L ? M at the very highest masses, The
most massive stars have luminosities of a bit more than 106 L�. Similarly, the plot
of logL vs. log Teff has a slope of ∼ 5 − 6 for intermediate mass stars, with values
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of the effective temperature ranging from a few thousand Kelvin to several tens of
thousands.

B. Interior structure and convection

Another basic output of the numerical models is a prediction the internal structure
of stars, meaning the run of density, mass, temperature, pressure, etc. versus radius,
plots of where stars are convective and where they are not, and where in their
interiors they produce nuclear energy, and via which channels.

One interesting a non-obvious point that emerges from the numerical models involves
convection: the behaviour of where stars are convective is somewhat complicated.
Very low mass stars, those below ∼ 0.3 M�, are convective essentially everywhere in
their interiors. The basic reason for this is that their low temperatures make their
opacities quite high, so convection is required to carry the stellar luminosity.

As one increases the mass, the convective region moves away from the centre of the
star, which becomes hot enough for the opacity to go down and radiation to carry
the flux. For a star like the Sun, convection only occurs in the outer layers of the
star, which are cooler. Consequently, only the outer ∼ 10% of the mass is convective,
though this mass, because it is at low density, occupies a significant fraction of the
star’s radius.

As one increases mass still further, the convection zone in the outer parts of the
star gets smaller and smaller due to increasing temperature, but the centre of the
star becomes convective. This convection is a result of the CNO cycle turning on.
The CNO cycle is very sensitive to temperature (recall that qnuc ∼ T 20), and this
produces a very steep gradient in temperature. Steep temperature gradients favour
convection. Thus stars with masses of ≈ 10 M� wind up having convection in the
inner ≈ 50% of their mass, with no convection in their outer layers.
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