
ASTR3007/4007/6007, Class 7: Simple Stellar Models 16 March

We have now written down the basic equations of stellar structure, and we are therefore in a
position to start building actual models for stars. There is one more piece of physics that we
will require (convection), which we will discuss in the next class, but for today we will build
simple models that do not include this effect. Even with this omission, these models provide a
great deal of insight into how stars work, and set the stage for a full explanation of the main
sequence.

I. The structure equations

To begin this class, we review the basic equations of stellar structure that our model has
to solve. In Lagrangian form, these are
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These equations are supplemented by an equation of state that gives P (ρ, T ), and by func-
tions that specify the nuclear energy generation rate qnuc(ρ, T ) and the opacity κR(ρ, T ).
With these functions specified, the system has four unknowns: r, L, T , and P or ρ,which
are related by the equation of state.

This is a system of four ordinary differential equations, and requires four boundary con-
ditions. Two of them are immediately obvious: the centre of the star had better be at
zero radius, and there had better be zero luminosity entering the star from zero radius.
Thus two of the boundary conditions are r = 0 and L = 0 at m = 0.

The other two boundary conditions are specified at the surface of the star. In the simplest
form, we can take them to state that, at the stellar surface, the pressure must be go to zero,
and the luminosity must be that of a black body. This gives P = 0 and L = 4πR2σSBT
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as the final two boundary conditions. In reality we usually do something a bit more
sophisticated than this, since, as we have seen, stars have atmospheres that are not really
black bodies, and that are not at exactly zero pressure. However, we will skip that
complication for now.

Full solution to these equations, including the complicated functional forms for P , qnuc,
and κR, can only be done numerically. However, we can come up with approximate
solutions that yield a great deal of insight analytically.

II. Eddington models

The first real model of how stars work was produced by Arthur Eddington in the 1920s.
The timing here is significant: Eddington’s model dates from the 1920s, while the under-
standing of exactly how the Sun generates its energy via nuclear reactions was not really
understood until the 1940s. Indeed, Eddington’s model leaves the nature of the power
source of stars completely unspecified. By the 1920s Eddington suspected, correctly, that
the power source had to be something like nuclear energy, but the exact mechanism was
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not understood. Fortunately, it is possible to construct a reasonable equilibrium model
for a star without understanding in detail exactly how the energy is generated.

A. Radiation Pressure and the Eddington Limit

The Eddington model begins by considering the temperature structure of stars, and
its implication for the importance of radiation pressure. The central insight in the
Eddington model is that gas pressure follows Pgas ∝ T , but radiation pressure has
a much steeper dependence: Prad = aT 4/4. Thus at sufficiently high temperatures
radiation pressure always dominates. You computed this crossover in the tutorial.

The strong dependence of Prad on T has important consequences for stellar structure.
To see this, it is helpful to rewrite Equation 4 in terms of radiation pressure rather
than temperature:
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Now consider what this implies for hydrostatic balance. Since P = Pgas + Prad, the
equation of hydrostatic balance (Equation 2) can be written as
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Since density and temperature always fall as one moves outward within a star,
dPgas/dm is always negative, so the term −dPgas/dm > 0. Thus we have
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Here we have normalised κR to the electron scattering opacity because that is usually
the smallest possible opacity in a star, producing the maximum possible L. This
result is known as the Eddington limit, and the quantity on the right-hand side is
called the Eddington luminosity:

LEdd =
4πGcm

κR
. (13)

This result represents a fundamental limit on the luminosity of any object in hydro-
static equilibrium. It applies to stars, but it applies equally well to any other type
of astronomical system, and the Eddington limit is important for black holes, entire
galaxies, and in many other contexts.
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This also lets us derive a useful relation describing how the ratio of radiation pressure
to total pressure varies within a star. Taking the ratio of Equation 7 and Equation 2
gives

dPrad

dP
=

κRL

4πGcm
=

L

LEdd

. (14)

B. The Eddington standard model

The Eddington standard model stems from the following approximation: suppose
that we posit that L/LEdd is constant. This might seem like a crazy assumption,
but it turns out to be reasonably good. For low mass stars, recall that we showed
that burning on the p − p chain occurs at a rate that depends on temperature as
roughly qnuc ∝ ρT 4. Since dL/dm = qnuc, this means that we expect L/m ∼ T 4

as long as nuclear burning mostly takes place near the centre of the star where ρ
doesn’t vary much. On the other hand, free-free opacity varies with κR ∝ T−3.5.
Thus the product κRL/m depends relatively weakly on temperature. This is why
the Eddington approximation works reasonably well.

This assumption amounts to saying that

β =
Pgas

P
= 1− L

LEdd

(15)

is constant throughout the star. This in turn, lets us model the star as a polytrope,
a system for which P = KPρ

γ
P for some constants KP and γP . To see this, note that

P =
Prad
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=

aT 4
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(16)
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Using the first equation to solve for T gives

T =
[

3

a
(1− β)P

]1/4
, (18)

and inserting this into the second equation gives
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Thus if β is constant throughout the star, then the star is a polytrope with γP = 4/3
(corresponding to an index n = 1/(γP − 1) = 3) and

KP =

[
3R4(1− β)

aµ4β4

]1/3
. (21)

Polytropes with n = 3 have a special, useful property. To remind you from the
tutorial, if a star is a polytrope, then we can write rewrite the equation of hydrostatic
balance (Equation 2) for the star as the Lane-Emden equation,

1

ξ2
d

dξ

(
ξ2
dΘ

dξ

)
= −Θn. (22)
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Here Θ is the dimensionless density, related to the true density by

ρ = ρcΘ
n, (23)

where ρc is the central density. The quantity ξ is the dimensionless radius, which is
related to the true radius by

r = αξ, (24)

where you showed on the tutorial that

α =

[
(n+ 1)KP

4πGρ
(n−1)/n
c

]1/2
. (25)

For any given n, the Lane-Emden equation has a solution Θ(ξ) that runs from ξ = 0
to the outer edge of the star at ξ = ξ1, where Θ(ξ1) = 0. For any given n, one can
integrate the Lane-Emden equation to obtain this outer radius ξ1, and thus the true
physical radius of the star,

R = αξ1. (26)

We can now prove our useful result for n = 3 polytropes. We can obtain the physical
mass of the star just by integrating over the density:

M =
∫ R

0
4πr2ρ dr (27)

= 4πα3ρc

∫ ξ1

0
ξ2Θn dξ, (28)

where the second step just amounts to inserting Equation 23 and Equation 24 for ρ
and r. We next substitute for ξ2Θn using the Lane-Emden equation (Equation 22):
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∫ ξ1

0

d

ξ

(
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dΘ
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)
dξ (29)

= −4πα3ρcξ
2
1

(
dΘ
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)
ξ1

. (30)

Now we just have to do a little bit of algebraic manipulation. First, we re-arrange
Equation 25 to get ρc, giving

ρc =

[
(n+ 1)KP

4πGα2

]n/(n−1)

. (31)

Next we insert this into our formula for the mass, giving

M = −4πα3

[
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(
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. (32)

Finally, we eliminate α using α = R/ξ1. This gives[
GM

−ξ21(dΘ/dξ)ξ1

]n−1 (
R

ξ1

)3−n

=
[(n+ 1)KP ]n

4πG
. (33)

The equation we have just derived is the mass-radius relation for polytropes, meaning
that, if you know the polytropic index n and polytropic constant KP , this equation
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lets you solve for the radius R corresponding to any total mass M . However, we
note that something special happens for n = 3: the radius term vanishes. Thus for
n = 3, we do not gas a mass-radius relation. Instead, we simply get a relationship
between the mass M and the polytropic constant. Specifically, for n = 3, we have

M = − 4√
π
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(
dΘ

dξ

)
ξ1

(
KP

G

)3/2

= 4.56
(
KP

G

)3/2

, (34)

where in the final step we inserted the numerical solution for ξ21(dΘ/dξ)ξ1 for n = 3.

For the Eddington model, KP is simply set by the value of β. This in turn means
that the value of β uniquely determines the value of M . Inserting the value of KP

we just obtained (Equation 21) into the relationship between M and KP gives
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. (36)

This gives us M in terms of β and µ. Alternately, we can re-arrange to get an
equation for β in terms of M :
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)
π
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M
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)2 (
µ
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)4

β4 (39)

This is known as the Eddington quartic.

C. Mass-luminosity relations in the Eddington standard model

The Eddington standard model makes strong predictions for the way the properties of
stars depend on mass, which, when compared to detailed numerical calculations (and
to reality) turn out to be roughly correct. In particular, we can use the Eddington
standard model to compute how the luminosity of a star will vary with its mass.

In the Eddington standard model, we assume that β = 1 − L/LEdd is constant
throughout the star. If we apply this at the star’s surface, and use Equation 37 to
evaluate 1− β, we have

L = (1− β)LEdd (40)

=

(
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)
π
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M
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= 5.5 β4
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L�, (43)

where κs is the value of κR at the stellar surface. We have thus derived, for the first
time, a theoretical mass-luminosity relation.
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We can get some idea of how this mass-luminosity relation behaves by solving the
Eddington quartic in the limits of high and low masses. First consider stars with
masses ∼M� or less. For these stars, the term

0.004

(
M

M�

)2 (
µ

0.61

)4

β4 (44)

in Equation 39 is very small. Thus the solution is near β = 1. If κs doesn’t vary
much between stars, then at these masses we therefore have L ∝M3.

On the other hand, consider very massive stars, those with M ∼ 100 M� or more.
In this case the coefficient of β4 in Equation 39 is large. We can very roughly
approximate the solution in that case by dropping the β term, which gives

0.004

(
M

M�

)2 (
µ

0.61

)4

β4 ≈ 1 =⇒ β4 ∝M−2. (45)

The approximation is rough because, even for M = 100 M�, the coefficient of the
β4 term is only 4.

Nonetheless, plugging this into the mass-luminosity relation gives L ∝ β4M3 ∝ M .
Thus we expect that for very massive stars the mass-luminosity relation should
flatten and approach L ∝ M . Again, this expectation is assuming constant surface
opacity κs, which is an ok approximation, but not a great one, since the surface
temperature varies significantly between low and high mass stars, and the opacity
therefore varies as well.

This rough trend that at low masses L ∝ M3 (it’s actually a bit closer to 3.5 in
reality), flattening to L ∝ M at high masses, is actually seen in the observations.
Thus this model at least roughly reproduces reality.

D. Implications of the Eddington standard model for stellar evolution

The Eddington standard model, although it does not in itself know anything about
nuclear physics and thus about stellar evolution, nonetheless makes useful predictions
for stellar evolution. From the standpoint of the model, the main effect of stellar
evolution is that, as stars burn hydrogen into helium, the mean molecular mass µ
must increase.

Recall that we showed that the mean molecular mass obeys

1

µ
=

1

µI
+

1

µe
, (46)

where µI is the mean mass per ion and µe is the mean mass per electron. These in
turn can be written in terms of the hydrogen mass fraction X, helium mass fraction
Y , and metal mass fraction Z as

1

µI
= X +

Y

4
+

Z

〈A〉metals

(47)

1

µe
≈ X +

Y

2
+
Z

2
, (48)

where 〈A〉metals ≈ 20 for the Sun, and the approximation for µe follows from assuming
that metals have equal numbers of protons and neutrons.
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The present-day Sun has X = 0.707, Y = 0.274, and Z = 0.019, so and plugging
this in gives µI = 1.29, µe = 1.17, and µ = 0.61. This is for a composition where the
hydrogen mass is roughly three times the helium mass. Now consider a star that has
burned much of its hydrogen into helium, so the ratio is reversed, say X = 0.281,
Y = 0.7, Z = 0.019. This star has µI = 2.19, µe = 1.56, and µ = 0.91. What does
this do to its luminosity?

First consider a low-mass star, one for which M ∼ 1 M�, and thus β ≈ 1. In this
case, Equation 43 tells us that L ∝ µ4, so the luminosity will rise by a factor of
(0.91/0.61)4 = 5.0. Thus the star’s luminosity increases by a factor of 5.

For a high-mass star, one where we approximate that

0.004

(
M

M�

)2 (
µ

0.61

)4

β4 ≈ 1, (49)

we have β ∝ 1/µ. Since Equation 43 tells us that L ∝ β4µ4, it follows that for this
star the luminosity will remain roughly unchanged.

Thus the prediction of the Eddington standard model is that low mass stars will
brighten a significant amount over the course of their lives as they burn hydrogen to
helium, but that the effect will be less for more massive stars. Detailed numerical
calculations again bear out this prediction, and the increase in luminosity over time
is a large part of the reason that the main sequence for stars near the Sun, which
have a wide range of ages, is significantly wider than the main sequence for stars in
a star cluster, which are all nearly the same age.

This prediction also works the other way in time. The Sun is currently richer in
helium than it was when it formed, due to the fact that it has been fusing hydrogen
to helium for some time. Its birth composition was probably closer to X = 0.741,
Y = 0.240, Z = 0.019, corresponding to µ = 0.598. With the scaling L ∝ µ4, this
predicts that at birth the Sun was only about 90% as luminous as it is now. In fact,
this somewhat underestimates the effect; detailed models give about 70% instead of
about 90%. This gives rise to a problem in geology known as the faint young Sun
paradox: if the Sun was really this much less luminous 4.5 billion years ago, then
naively one would expect that the Earth’s surface would have been too cool to allow
water to exist as a liquid. It should all have frozen. This contradicts the geologic
record, which suggests that surface water has been present in liquid form over almost
all of the Earth’s history.

The resolution to the paradox is not entirely clear, but leading hypotheses include
that the Earth was kept warmer due to the greenhouse effect and that the Earth was
warmed by the release of energy due to the radioactive decay of long-lived isotopes
present in interstellar space that were incorporated into the Earth when it formed,
and/or the operation of natural nuclear reactors such as the Oklo natural reactor.
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