ASTR3007/4007 /6007, Class 6: Nuclear Reactions 10 March

In this class we continue the process of filling in the missing microphysical details that we need
to make a stellar model. To recap, in the last two classes we computed the pressure of stellar
material and the rate of energy transport through the star. These were two of the missing
pieces we needed. The third, which we’ll sketch today, is the rate for nuclear reactions, and the
energy that they generate.

I. Energetics

A. Energy Release

All nuclear reactions fundamentally work by converting mass into energy. (In some
ways the same could be said of chemical reactions, but for those the masses involved
are so tiny as to not be worth worrying about.) The masses of the reactants involved
therefore determine the energy released by the reaction.

Consider a reaction between two species that produced some other species
(A, Z;) + T (A, Z5) > K( Ak, 21) + LA, 2), (1)

where as usual Z is the atomic number and A is the atomic mass. At this point we
must distinguish between atomic mass and actual mass, so let M be the mass of a
given species. The atomic mass times my and the true mass are nearly identical,
M =~ Amy, but not quite, and that small difference is the source of energy for the
reaction. For the reaction we have written down, the energy released is

Qijk = (M + M; — My — M), (2)

i.e., the initial mass minus the final mass, multiplied by c?.

To remind you, we showed a few classes ago that the rate per unit volume at which
the reaction we have written down occurs is
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where R;j; is the rate coefficient. If each such reaction released an energy Q.
then the rate of nuclear energy release per unit volume is simply given by this rate,
multiplied by Q;jx, and summed over all possible reactions:
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The rate of nuclear energy release per unit mass is just this divided by the mass per
volume p:
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If the reaction produces neutrinos, they will carry away some of the energy and
escape the star, and thus the amount by which the star is heated will be reduced.
However this loss is small in most stars under most circumstances.
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B. Binding energy per nucleon

A very useful way to think about the amount of energy available in nuclear reactions
is to compute the binding energy per nucleon. Suppose that we start with hydrogen,
which consists of one proton of mass my (ignoring electrons), and we define that to
have zero binding energy. Since binding energy is potential energy, we can do this,
since we can choose the zero of potential energy to be anywhere.

Now consider some other element, with atomic number A and mass M, and consider
how much energy is released in the process of making that element from hydrogen.
The exact reaction processes used don’t matter, just the initial and final masses.
Since atomic number is conserved, we must use .4 hydrogen atoms to make the new
nucleus, so the difference between the final and initial mass is M — Amy. We define
the mass excess as this quantity multiplied by c?:

AM = (M — Amy)c?. (6)

This is just the difference in energy between the bound nucleus and the equal number
of free protons. The name is somewhat confusing, since this is really an energy not
a mass. The reason for the name is that in relativity one doesn’t really need to
distinguish between mass and energy. They’re the same thing, just measured in
different units.

A more useful quantity than this is the binding energy per nucleon, i.e., minus the
mass excess divided by the number of nucleons (protons or neutrons) in the nucleus.
The minus here is added so that the binding energy is positive if the nucleus is more
strongly bound than the corresponding number of free nucleons. Thus we define the
binding energy per nucleon as

Since M and A can be determined experimentally, this quantity is fairly straight-
forward to measure. The results are very illuminating, as shown in Figure 1.

This plot contains an enormous amount of information, and looking at it immediately
explains a number of facts about stars and nuclear physics. To interpret this plot,
recall that number of nucleons is conserved by nuclear reactions. Thus any nuclear
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reaction just involves taking a fixed number of nucleons and moving them to the
left or right on this plot. The energy released or absorbed in the process is just the
number of nucleons involved multiplied by the change in binding energy per nucleon.

The first thing to notice about this plot is that there is a maximum at *Fe — iron-56.
This is the most bound nucleus. At smaller atomic masses the binding energy per
nucleon generally increases with atomic number, while at larger atomic masses it
decreases. This marks the divide between fusion and fission reactions. At atomic
masses below 56, energy is released by increasing the atomic number, so fusion is
exothermic and fission is endothermic. At atomic number above 56, energy is released
by decreasing the atomic number, so fission is exothermic and fission is endothermic.

Second, notice that the rise is very sharp at small atomic number. This means
that fusing hydrogen into heavier things is generally the most exothermic reaction
available, and that it releases far more energy per nucleon than later stages of fusion,
say helium into carbon. This has important implications for the fate of stars that
exhaust their supply of hydrogen.

Third, notice that there are several local maxima and minima at small atomic num-
ber. *He is a maximum, as are 2C and '9O. There is a good reason that helium,
carbon, and oxygen are the most common elements in the universe after hydrogen:
they are local maxima of the binding energy, which means that they are the most
strongly bound, stable elements in their neighbourhood of atomic number. Con-
versely, lithium is a minimum. For this reason nuclear reactions in stars destroy
lithium, and they do not produce it.

Finally, notice that these are big numbers as far as the energy yield. The scale on
this plot is MeV per nucleon. In terms of more familiar units, 1 MeV per H mass
corresponds to 10*® erg g1, or roughly 22 tons of TNT per gram of hydrogen fuel.

II. Reaction Rates

A. The Coulomb Barrier

The binding energy curve tells us the amount of energy available from nuclear re-
actions, but not the rates at which they occur. Given that the reaction for fusing
hydrogen to helium is highly exothermic, why doesn’t the reaction happen spon-
taneously at room temperature? The answer is the same as the reason that coal
doesn’t spontaneously combust at room temperature: the reaction has an activation
energy, and that energy is quite high.

To understand why, consider the potential energy associated with two nuclei of charge
Z,; and Z; separated by a distance r. The Coulomb (electric) potential energy is
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where 1 fm = 107" cm = 107'® m. Since this is positive, the force between the
protons is repulsive, as it should be.

In addition to that positive energy, there is a negative energy associated with nuclear
forces. The full form of the proton-proton force is complicated, but we can get an
idea of its behavior by noting that, at larger ranges, it is mediated by the exchange
of virtual mesons such as pions. Because these particles have mass, their range is



limited by the Heisenberg uncertainty principle: they can only exist for a short time,
and they only exert significant force at distances they can reach within that time.
Specifically, the uncertainty principle tells us that
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If the particle travels at the maximum possible speed of ¢, its range is roughly
ch
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rent~ (10)

where F is the rest energy of the particle being exchanged. For pions, which mediate
the proton-proton force, AE = 135 MeV or 140 MeV, depending on whether they
are neutral or charged. Plugging this in for AE gives r ~ 1 fm. Thus the nuclear
force is negligible at distances greater than ~ 1 fm. Within that range, however,
the nuclear force is dominant. Potentials arising from exchanges of massive particles
like this are called Yukawa potentials, and they have the form

e—r/)\
Uy = —g25—, (11)
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where ¢ is a constant and A\ = ch/E is the range of the force. This is only an
approximation to the true potential energy, but it is reasonably good one at large
ranges. The total potential is the sum of the Yukawa and Coulomb potentials. The
functional form of this potential is something like a 1/r rise that is cut off by a sharp
decrease at small radii.

For the reaction to proceed, the two particles must get close enough to one another
to reach the region where the potential drops, and the force becomes attractive. If
they do not, they will simply bounce off one another without reacting. This is called
the Coulomb barrier, and it applies to chemical as well as nuclear reactions. The
existence of the Coulomb barrier means that there is a minimum relative velocity
the particles must have in order for the reaction to go, which we can calculate from
the height of the Coulomb barrier. This is much like rolling a ball up a steep hill
with a peak — there is a minimum velocity with which you must roll the ball if you
want it to reach the top of the hill.

Suppose that the potential follows the Coulomb form until some minimum radius
ro ~ 1 fm, then suddenly drops at smaller radii. The maximum potential energy is

U,
© ro 7 ro/fm

(12)
The minimum relative velocity of the particles is given by the condition that the
kinetic energy in the centre of mass frame exceed this value:
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where pieqmy is the reduced mass.

A more useful calculation than this is to ask what temperature the gas must have
such that the typical collision is at sufficient velocity for the reaction to occur. The
typical collision energy is
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so setting this equal to Ugs and solving gives
272, Ze? Z.Z;
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Thus the typical particle does not have enough energy to penetrate the Coulomb
barrier until the temperature is ~ 10! K for proton-proton reactions, and even higher
temperatures for higher atomic numbers. This is much higher than the temperatures
for stars’ centres than we estimated earlier in the class. You might think that it’s not
a problem because some particles move faster than the average, and thus are going
fast enough to penetrate the Coulomb barrier. You will show on your homework
that this solution doesn’t work. At the temperature of ~ 107 K in the centre of the
Sun, if this calculation is correct then fusion should not be possible.

. Quantum Tunneling

The resolution to this problem lies in the phenomenon of quantum tunneling. The
calculation we just did is based on classical physics, and predicts that no nuclei will
get within rg of one another unless they reach a high enough velocity to overcome the
Coulomb barrier. However, in quantum mechanics there is a non-zero probability
of finding the particle inside ry even if it does not have enough energy to break the
Coulomb barrier. This phenomenon is known as tunneling, because it is like the
particle takes a tunnel through the peak rather than going over it.

We can make a crude estimate of when tunneling will occur using wave-particle
duality. Recall that each proton can be thought of as a wave whose wavelength is
dictated by the uncertainty principle. The wavelength associated with a particle of
momentum p is

h
A= (16)

This is known as the particle’s de Broglie wavelength.

As a rough estimate of when quantum tunneling might allow barrier penetration,
we can estimate that the two particles must be able to get within one de Broglie
wavelength of one another. This in turn requires that the kinetic energy of the
particles be equal to their Coulomb potential energy at a separation of one de Broglie

wavelength:
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Solving this for A, we find that barrier penetration should occur is the particles are

able to get within a distance
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of one another.

To figure out the corresponding temperature, we can just evaluate our result from
the classical problem using A in place of ry:
T 22, Z;e? _ 4ZfZ;e4urede
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Thus proton-proton reactions, which have Z; = Z; = 1 and fi,eq = 1/2, should begin

to occur via quantum tunneling at a temperature of ~ 107 K, much closer to the
temperatures we infer in the centre of the Sun.

_ 6 2 52 [ Hred
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C. The Gamow Peak

Having seen that quantum effects are important, we will now try to perform a more
rigorous calculation of the reaction rate. Consider reactions between two nuclei with
number densities n; and n; in a gas at temperature 7. In order to compute the
reaction rate, we need to know the rate at which these nuclei collide with enough
energy to tunnel through the Coulomb barrier. That’s what we’ll calculate now.

The first step is to compute the rate at which particles strike one another closely
enough to interact. This is very much like calculating the pressure. We consider a
particle, and we want to know how often other particles run into it. If we had a beam
of particles of density n and velocity v, and the target particle had a cross-sectional
area o, the impact rate would be nov. Note that this formula is almost exactly like
the one describing the rate at which particles strike the wall of a vessel, which we
used to compute pressures. Figure 2 illustrates the situation.

In reality the particle in question isn’t a solid target with a fixed area. We're inter-
ested in interactions that lead to reactions, which require that the collision be close
enough to allow the nuclei to tunnel through the Coulumb barrier, but also require
that the interaction have enough energy to make such tunneling possible. A direct
bullseye at a very low energy won’t lead to a reaction, so the cross-section at very
low energies is basically zero. However, we can still extend the analogy of shoot-
ing a beam of particles at a target by defining the cross-section at energy E. Let
dNyeac(E)/dt be the number of reactions per time interval dt produced by shooting
a beam of particles of density n at velocity v at a target nucleus. We define the
cross-section o(F) via the relation

dNreac (E)

2 = no(B)(E). (20)

Next we want to generalise from a the case of a beam to the case of a thermal gas
where not all particles have the same energy. We proved a few classes ago that the
momentum distribution of particles of mass m at temperature 7T is

dn 4n 2,—p?/(2mkpT) (21)

dp 7 P@mkgT)Rt ¢ :

Since we're interested in particle energies, we’ll change this to a distribution over
energy instead of momentum. Since FE = p*/(2m), or p = v2mE, we have

dn _dndp _ in 2p-p*/mipT) | [TV 20 papy mjkpT
dE ~ dpdE _ ' 22mkgTy2" 0F 1\ /2(kpT)32 '
(22)
Note that this only applies to non-relativistic particles, since we used E = p?/(2m)
instead of £ = pc. However, nuclei are generally always non-relativistic, except in

neutron stars.



In this case, the number of reactions dN per time interval dt that a given target
nucleus undergoes is given by integrating over the possible energies of the impacting
particles. In particular, the number of reactions per unit time for a particle of species
1 due collisions with particles of species j is

dN;

= /0 ” U(E)U(E)Zg dE. (23)

Since the velocity that matters here is the relative velocity, we have to compute it
in terms of the reduced mass: v(E) = \/2E/jiyeq, Where piea = mym;/(m; + m;).
Finally, if we want to know the number of reactions per unit time in a given volume
of gas, we just have to multiply this by the number of target nuclei per unit volume,
n;. This gives

dnreac o & dnj
e _ n/o o(E)o(E)2 dE. (24)

If the reaction is of a species with itself, we have to multiply by an additional factor
of 1/2 to avoid double-counting.

Recall that we defined the rate coefficient R;;;, so that the reaction rate is R;jxnin;
for different species, or R;j;n?/2 for two of the same species. Thus the rate coefficient
is

1 dnreac
ik n;n; dt ( )
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The final remaining step is to figure out the cross-section o(E) at energy FE. Comput-
ing this in general is quite difficult, and often laboratory measurements are required
to be sure of exact values. However, we can get a rough idea of how o(FE) varies with
energy based on general quantum-mechanical principles. The first such principle is
that particles should interact when they come within distances that are comparable
to their de Broglie wavelengths — a higher energy particles has a smaller wavelength,
and thus represents a smaller target. Thus we expect that
h? 1
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The second principle is that nuclear reactions like the ones we are interested in
require tunneling through the Coulomb barrier. A quantum mechanical calculation
of the probability that tunneling will occur shows that it is proportional to

6*2772UC/E’ (29)

where Ug is the height of the Coulomb barrier at a distance of one de Broglie
wavelength. In terms of the energy, the Coulomb barrier Ug is
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so the exponential factor is

/2 1/2 2
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Thus we also expect to have o x e . Note that the factor b depends only on
the charges and masses of the nuclei involved in the reaction. It is therefore constant
for any given reaction.

—bE~1/2

Combining the two factors our analysis reveals, we define

S E —1/2
o(E) = S(E) v : (33)
E
where S(F) is, ideally, either a constant or a function that varies only very, very

weakly with E. Plugging all this in, the reaction rate coefficient is

1 2 3/2 roo ~1/2
= E —bE —E/kgT dE. 4
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It is instructive to look at the behaviour of the two exponential factors, e P and
e E/ksT  Clearly the first function increases as F increases, while the second one
decreases as E increases. We therefore expect their product to reach a maximum at
some intermediate energy. In fact, we can compute the maximum analytically, by
taking the derivative and setting in equal to zero:

d -
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where Fj is the energy at the maximum. This maximum is known as the Gamow
peak, after George Gamow, who discovered it in 1928.

If we let © = E/Ep, then we can rewrite the reaction rate coefficient as

EO 2 3/2 oo bg 1/3 9
R B 2 \
o (7 ixearn) /2 (kBT) /0 S(w)exp AkpT (x " ];1/2> d40)

Z4z4.8 /6 o p2 \ /3 9
— |9l1gh i <5 / B ( ) 41
[ " Mrede(kBT)51 0 S(x) exp 4]€BT Z+ ;L'l/Q C( )

To get a sense of how narrowly peaked this function is, it is helpful to evaluate
the factor [b?/(4kpT)]"/? for some typical examples. If we consider proton-proton

8



interactions (so Z; = Z; = 1 and fi,eqa = mu/2) at the Sun’s central temperature of
1.57 x 107 K, then we have

A 12 b2 1/3

b=88x 10" d =4.5. 42
) and (1) (12)
Evaluating the function e=*@+2/"*) ghows that for # = 3 (i.e. at energies three
times the peak), it is a factor of 180 lower than it is at peak. For x = 1/3 (i.e. at
energies three times below the peak), it is 35 times smaller than it is at peak. Thus
the reaction rate is strongly dominated by energies near the peak, with energies

different from the peak by even as little as a factor of 3 contributing negligibly.

When we are near the peak, i.e. x ~ 1, the reaction rate varies exponential with
the quantity [b?/(kgT)]'/3. This means that the reaction rate is extremely sensitive
to temperature. For this reason, we often think of nuclear reactions as having a
threshold temperature at which they turn on. This threshold temperature clearly
increases with nuclear charge: since b o< Z;Z;, and the reaction rate depends on
b?/T, we expect the temperature needed to ignite a particular reaction to vary as
2?22, Thus higher Z nuclei require progressively higher temperatures to fuse.

Of course we still have not assigned a value of S(FE) near the Gamow peak. We have
only said that we expect it to be nearly constant. Its actual value depends on the
reaction in question and the type of physics it involves, and must be obtained either
by laboratory measurement, theoretical quantum calculation, or a combination of
both. Unfortunately these values sometimes have significant uncertainties. In a star,
reactions can occur at an appreciable rate at relatively low temperatures because the
density is high — recall that the reaction rate per unit volume varies as n;n;. In a
laboratory, we have to work with much lower densities, and as a result the reaction
rates at the temperatures found in stars are often unobservably small. Instead, we
are forced to make measurements at higher temperatures and extrapolate.

. Temperature Dependence of Reaction Rates

It is often helpful to know roughly how the reaction rate varies with temperature
when one is near the ignition temperature. To find that out, we can approximately
evaluate the integral in the formula for the rate coefficient. As a first step in this
approximation, we neglect any variation in the S(F) factor across the Gamow peak,
and simply set it equal to a constant value S(Ep). Thus the reaction rate coefficient
is approximately

Riji = ! ( 2 >3/2S(E)/Ooe o Vg )
Z]k_(7T,M1red7”'”LH)1/2 kT Oy P kgT — E1/2 ‘

The maximum value of the integrand occurs when E = Ej, and is given by

3Ey _
Lhax = €x (—) =e 7, 44
P~ 7 (44)
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The second step in the approximation is to approximate the exponential factor in
the integral by a Gaussian of width A:
E - E)\’
A/2

E b\ _
exXp ]{}BiT - E1/2 ~ Lmax €XP
The width A is generally chosen by picking the value such that the second derivatives
of the exact and approximate forms for the integrand are equal at E = Ejy. A little
algebra shows that this gives

(46)

_ 4 1/2
A= \/g(EOkBT) . (47)

The approximation is reasonably good.

The final step in the approximation is to change the limits of integration from 0 to
00 to —oo to co. This is not a bad approximation because the vast majority of the
power in the Gaussian occurs at positive energies, and if the limits are —oo to oo,
the integral can be done exactly:

[ow|-(552)

With this approximation complete, we can write the reaction rate coefficient as

dE = \fa. (48)

1 2 \%? N
Riji = (a2 (kBT) S(Eo)fmx7A (49)
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We can rewrite this in terms of 7 by substituting in for A and kgT in terms of 7.
Doing so and simplifying a great deal produces

4 h

Ri‘ -
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S(Ey)m%eT. (51)

All the temperature-dependence is encapsulated in the 72¢~7 term. The factor 7
itself varies as

E
T X ?0 o« T3, (52)

It is often useful to approximate the reaction rate as a powerlaw in T, i.e. to set
R;ji, o< TV for some power v. Obviously the relationship is not a powerlaw in general,
since there is an exponential in 7. However, we can approximate the behavior as
a powerlaw if we are in the vicinity of a particular temperature 7Ty, near which
7 = 70(T/T,)~ /3. To understand what this entails, recall that a powerlaw is just
a straight line in a log-log plot. In effect, fitting to a powerlaw is just the same as
computing the slope at some point in the log-log plot. Thus we have

. d1n Rijk;

Y T (53)

Since Ry, o< T2,

9 ~1/3
In Rijr = 2In7 — 7 + const = —3 InT — 7 <T> + const (54)
0
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Taking the derivative:

dln Ry 2 d .._
=t = 30 gl (55)
2 d
= -3~ OTol/STd—TT*”?’ (56)
- 2, 0% 67)
3 3T/3
T 2
= - —= 58
This lets us approximate the behavior of R;;; as a powerlaw:
Riji = Ry T3, (59)

We will use this in the next class to evaluated several of the important reactions
inside stars. Given such a powerlaw fit, we can come up with an equivalent one for
the rate of nuclear energy generation per unit mass when the gas temperature is
near the ignition temperature for a given reaction:

, 1 X X
) L g0,k TP, (60)

_ 1 XiXjp o _
e = 2 2 (1 +5l-j> AiA; RignQun =2 1+0;; ) AA;

H ik ijk

where o ;1 and p;;, are constants for a given reaction, i.e. they do not depend on
gas density, element abundances, or gas temperature, as long as the temperature is
near the ignition temperature.

. Resonances and Screening

The simple model we have just worked out is reasonably good for many reactions of
importance in stars, but it omits a number of complications, two of which we will
discuss briefly.

First, the assumption that S(FE) varies weakly with F over the Gamow peak is
not always valid. The most common way for the assumption to fail is if there is a
resonance, which means that the energy of the collision corresponds closely to the
energy of an excited state of the final product nucleus. If this happens, the cross
section increases dramatically in a narrow range of energies, and S(E) becomes
sharply peaked. While none of the reactions involved in hydrogen burning in main
sequence stars are resonant, some of the important reactions that occur in more
evolved stars are. Resonances can enhance the reaction rate by orders of magnitude
compared to what our our simple model would suggest.

A second complication is screening. Our calculation of the Coulomb barrier was
based on the potential of two nuclei of charge Z; and Z; interacting with one another.
However, this ignores the presence of electrons. For neutral atoms, the electric
potential drops to zero for distances greater than a few angstroms, because the
nucleus is surrounded by a cloud of electrons of equal and opposite charge. From
a point outside the cloud, the net charge seen is zero, because the electronic and
nuclear charges cancel — the electrons screen the nucleus. This is why neutral atoms
do not violently repel one another.

In the fully ionized plasma inside a star electrons are not bound to atoms, and
they float about freely. However, they are still attracted to the positively charged
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nuclei, and thus they tend to cluster around them, partly screening them. This
effect reduces the Coulomb barrier. Screening is strongest at lower temperatures,
since when kgT' is smaller compared to the electric potential energy, electrons tend
to to cluster more tightly around nuclei. This effect can enhance reaction rates for
turning H into He by ~ 10 — 50% compared to the results of our naive calculation.

III. Nuclear chemistry in hydrogen-burning stars

Now that we have a general theory of nuclear reactions, we are in a position to characterise
the nuclear reactions that are of importance in most stars.

A. The p — p chain

The most important mechanism for generating power in the Sun is known as the
p — p chain, for proton proton chain. It is not surprising that the reaction involves
protons, i.e., hydrogen nuclei. These are by far the most abundant nuclei in main
sequence stars, and, since the strength of the Coulomb barrier scales as Z;Z;, it
is also the reaction with the lowest Coulomb barrier. Thus it begins at the lowest
temperature.

Before going into the details of the reaction, it is useful to re-examine the chart of
binding energy per nucleon (Figure 1). Clearly the first big peak is at helium-4, so
that is where we expect the reaction to go. However, getting there is not so easy,
because all the stable nuclei shown in the chart except JH contain neutrons. The
reason is that neutrons are required to provide enough nuclear force to hold a nucleus
together against the Coulomb repulsion of the protons. Thus the most obvious first
step for a reaction involving two hydrogen nuclei doesn’t work. We can’t easily do

'H+! H - 2He (61)

because 2He is not a stable nucleus. Any 3He made in such a manner almost imme-
diately disintegrates into two protons, producing no net energy release.

Thus for a reaction to generate energy, one must find a way to bypass 2He and jump
to a stable state. One possible solution to this problem was discovered by Hans
Bethe in 1939: during the very brief period that 3He lives, a weak nuclear reaction
can occur that converts one of the protons into a neutron plus a positron plus a
neutrino. The positron and neutrino, which do not feel the strong nuclear force,
immediately escape from the nucleus, leaving behind a proton plus a neutron. The
proton plus neutron do constitute a stable nucleus: deuterium. The net reaction is
exothermic, and the excess energy mostly goes into the recoil of the deuterium and
positron. This excess energy is then turned into heat when the nuclei collide with
other particle. The final reaction is

H+ 1H>2D4e" +u, (62)

The electron neutrino, v,, escapes the star immediately, while the positron very
quickly encounters an electron and annihilates, producing gamma rays which are
then absorbed and converted into heat:

et +e > 27, (63)

where 7 is the symbol for photon. As we’ll discuss further in a moment, the proton-
neutron conversion is very unlikely because it relies on the weak force, so the reaction
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coefficient for this reaction is very small compared to others in the chain. In terms
of our earlier notation, S(Ey) is very small for this reaction.

The next step in the chain is an encounter between the deuterium nucleus and
another proton, producing helium:

°D + 1H - 3He + 4. (64)

This reaction goes very quickly compared to the first step, because the Coulomb
barrier is the same (deuterium and ordinary hydrogen both have Z = 1), but no
weak nuclear forces are required.

For the last part of the chain, there are three possibilities, known as the pp I, pp
I1, and pp III branches. Branch I involves an encounter between two 5He nuclei
produced in the previous step:

SHe 4 3He — jHe + 21H. (65)

This reaction has a Coulomb barrier four times higher than the first one, but, since
it does not require a weak nuclear interaction, it actually proceeds faster than the
first step. At this point the reaction stops, because jHe is stable, and there is no
route from there to a more massive nucleus that is accessible at the temperatures of
~ 107 K where hydrogen burning occurs.

Branch IT involves an encounter between the 3He and a pre-existing 3He nucleus
to make beryllium, followed by capture of an electron to convert the beryllium to
lithium, followed by capture of one more proton and fission of the resulting nucleus:

SHe + 3He — "Be+41~ (66)
Be+e - ILitur (67)
Wi+l H - 23He. (68)

Finally, branch III involves production of beryllium-7 just like the first step of the
pp II branch, but then an encounter between that and another proton to produce
boron. The boron then decays to beryllium via positron emission, and finally ends
at beryllium-8, which spontaneously splits:

sHe + 3He — Be+~ (69)
e+ 1H - B4y (70)
B — $Be+e +u. (71)

®Be — 2;5He. (72)

As before, the positron produced in the third step immediately encounters an electron
and annihilates into gamma rays.

Which of these chains is most important depends on the local density, temperature,
and chemical composition. Obviously pp II and pp III are more likely when there is
more 3He around, since they require it. In Sun, pp I is 69% of all reactions, pp II is
31%, and pp III is 0.1%.

The net reactions associated with these chains can be written:

41H - jHe + photons, neutrinos, and light particles, (73)
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where the exact number of photons, neutrinos, and light particles depends on which
branch is taken. The total energy release is given by subtracting the mass of He-4
from the mass of 4 protons, and is given by

AE = (4my — mpuc)c® = 26.73 MeV. (74)

The actual amount of energy that goes into heating up the gas depends on the
amount of energy carried away by neutrinos, which escape the star. This is different
for each branch, because each branch involves production of a different number of
neutrinos with different energies. The neutrino loss is 2.0% for pp I, 4.0% for pp II,
and 28.3% for pp III.

In any of the pp branch, the first step, which requires spontaneous conversion of a
proton into a neutron, is by far the slowest, and thus the rate at which it occurs
controls the rate for the entire chain. For this reason, we can calculate the rate
coefficient simply by knowing the properties of this reaction. The reaction begins to
occur at an ignition temperature that is roughly equal T; = 4 x 10° K. The Sun’s
central temperature Ty ~ 1.57 x 10" K, which gives

_171/3
3E, T N\
= = 42.46 | Z?Z? 110 () = 13.5. 75
T kT [’]udloﬁK (75)
The reaction rate varies as temperature to roughly the 4th power. Measuring the
value of S(Ey) for this reaction lets us compute the rate coefficient. If we do not
make the powerlaw approximation and just plug into

3 h

~ E 2 _—1
h 35/271'2 MredeZiZjez S( O)T c (76)
we get
T N\ 33.8
~ —37 -3 -1

If we multiply this by the number density of protons, we get an estimate for the rate
of reactions that a single proton undergoes. The inverse of this is the lifetime of a
proton — the amount of time it takes for it to react with another proton and begin
the reaction chain that will turn it into helium. Thus the proton lifetime is

p_ L mm 83x10'yr (1gem™ ( T )2/3 33.8
“ R pXR X P 100K/ P (T/100K)3 |
(78)

Plugging in a density of 100 g cm™ and a temperature of 1.5 x 107 K, the result is
a bit over 10? yr. Thus the typical proton in the centre of the Sun requires > 10°
yr to undergo fusion. Averaging over a larger volume of the Sun, which has a lower
density and temperature, makes the timescale even longer.

Finally, combining the reaction rate coefficient R with an energy release of () = 13.4
MeV per reaction (since 26.73 MeV is what we get when we use 4 protons, and each
pp reaction only uses 2), the corresponding energy generation rate is

~ R 79
9 m%l (1—1—6,']‘) AZ.A] Q ( )
T N\ %3 33.8
] (o (B PP B -2 O S
<10 <1 gcm—3> 100K/ P s k)s| B8 s(80)
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If we do want to make a powerlaw fit, the index is

T—2

3

4. (81)

UV =

. The CNO cycle

The p — p chain faces a relatively small Coulomb barrier, since the rate-limiting step
has Z = 1 for both reactants. However, it is slow because it requires spontaneous
proton-neutron conversion within the short time that two protons are close to one
another in a violently unstable configuration. There is another possible route to
turning hydrogen into helium-4 which has a different tradeoff: a larger Coulomb
barrier, but no need for a weak reaction in a short period.

This second route is called the CNO cycle, and was discovered independently by
Hans Bethe and Carl-Friedrich von Weizsacker in 1938. It relies on the fact that
cabron, nitrogen, and oxygen are fairly abundant in the universe, and are present in
a star even before it starts nuclear burning. They can act as catalysts in a proton
fusion reaction. The reaction chain is

2ot H > BN4y (82)
PN —» PC+ef +u, (83)
BC+1H > N4y (84)
UN+1H > P04+ (85)
§5O — %5N +et +u, (86)
PN+ 1H — 2C+ 3He (87)
Alternately, the chain can be:
PN+ 1H - PO0+y (88)
£0 —»> PN+et +u, (89)
BN+ 1H - P04+ (90)
L0+ H — §F+y (91)
SF - 0+4ef 41, (92)
O+ H — I'N+;He (93)

The first route is generally the more important one, by a large factor.

Note that both of these chains have the property that it neither creates nor destroys
any carbon or nitrogen nuclei. One starts with (2C and ends with it, or starts with
N and ends with it. Thus the net reaction is exactly the same as for the p — p
chain:

4 TH — 5He + photons, neutrinos, and light particles, (94)

In this sense, the carbon or nitrogen acts as a catalyst. They enable the reaction to
take place, but are not themselves consumed or created by it. Since the net reaction
is the same as for p — p, the net energy release is also the same, except for slightly
different neutrino losses. For the CNO cycle, () =~ 25 MeV once the neutrino losses
are factored in, as opposed to 27 MeV for p — p.

In each of these reaction chains, it makes sense to distinguish between reactions that
involve creation of a positron et and reactions that do not. The former are called
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[ decays, and they rely on the weak nuclear force. However, they are much faster
than the first step of the p — p chain, because the take place in nuclei that are stable
except for the weak reaction they undergo. Thus there is no need for precisely timing
the reaction with the period when two protons are in close proximity.

At the temperature found in the Sun, however, the rate-limiting step is not the
decays, but the need to overcome strong Coulomb barriers. The ignition temperature
is about 1.5 x 107 K, about the Sun’s central temperature. Analysis of the full
reaction rate is tricky because which step is the rate-limiting one depends on the
relative abundances of C, N, O, and the other catalysts, which are in turn determined
by the reaction cycle itself. Once things reach equilibrium, however, it turns out that
the step

BN+ H-> PO 44 (95)

is the rate-limiting one. This step appears in both cycles.
Plugging Z, =7, Z; = 1, and fiea = (14)(1)/(14 4+ 1) = 0.93 into our equation for
the temperature-dependence gives

1/3

3E, 5 T \* T N\

Using the laboratory measurement for S(Ey) for this reaction, the rate coefficient is

—2/3 152 e
) exp [—W] cm S 7, (97)

=86x1 —19<
R=86x10" (1o

and the corresponding energy generation rate is

T N3 152
4= 87 x 107X Xexo <1 z fm3> (k) oo [‘@/mm/] erg g s
(98)
where Xcno is the total mass fraction of carbon, nitrogen, and oxygen. This is
roughly Z/2, where Z is the total mass fraction of metals.

It is informative to evaluate ¢ for the p — p chain and for the CNO cycle using values
appropriate to the centre of the Sun: p ~ 10 g em™3, T'~ 1.5 x 10" K, X = 0.71,
Z = 0.02. This gives

Gpp = S2erggls! (99)
gcno = 6dergg st (100)

Thus the p — p chain dominates in the Sun by about a factor of 10. However, it is
important to notice that, because it has 152 instead of 33.8 in the exponential, the
CNO cycle is much more temperature-sensitive than the p — p chain. If we assign a
powerlaw approximation, the index is

7—2_
=

Thus stars a bit more massive than the Sun, which we will see have higher central
temperatures, the CNO cycle dominates. In stars smaller than the Sun, the CNO
cycle is completely irrelevant.

UV =

20. (101)

This also brings out a general feature of all the nuclear reactions we will consider: the
temperature-sensitivity is determined by 7, and 7 in turn depends on the charges
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of the nuclei involved, Z, because it is determined by the Coulomb barrier. The
stronger the nuclear charge, the stronger the Coulomb barrier, and thus the higher
the ignition temperature and the more temperature-sensitive the reaction becomes.
We have already seen that the CNO cycle produces energy as a rate that varies as
T?° and the temperature-sensitivity only gets stronger as we march up the periodic
table.

17



