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ABSTRACT

We present QUOKKA, a new subcycling-in-time, block-structured adaptive mesh refinement (AMR) radiation hydrodynamics
(RHD) code optimized for graphics processing units (GPUs). QUOKKA solves the equations of HD with the piecewise parabolic
method (PPM) in a method-of-lines formulation, and handles radiative transfer via the variable Eddington tensor (VET)
radiation moment equations with a local closure. We use the AMREX library to handle the AM management. In order to maximize
GPU performance, we combine explicit-in-time evolution of the radiation moment equations with the reduced speed-of-light
approximation. We show results for a wide range of test problems for HD, radiation, and coupled RHD. On uniform grids
in 3D on a single GPU, our code achieves >250 million hydrodynamic updates per second and almost 40 million radiation
hydrodynamic updates per second. For RHD problems on uniform grids in 3D, our code scales from 4 to 256 GPUs with an

efficiency of 76 per cent. The code is publicly released under an open-source license on GitHub.
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1 INTRODUCTION

1.1 Methods for radiation-hydrodynamics

In many astrophysical systems, the radiation field carries a substantial
portion of the total momentum and energy budget, and therefore
must be included in any numerical simulation. However, simulating
such systems, particularly at high resolution, presents a fundamental
challenge in both physics and numerics. Part of this challenge is
dimensionality: in full generality, the radiation field is governed by
the time-dependent equation of radiative transfer
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where /, is the radiation intensity at frequency v travelling in the
direction specified by the unit vector A, 1, is the matter emissivity,
p is the matter density, and «(*V and & are the total and scatting
specific opacities, respectively. This is a time-dependent integro-
differential equation with six dimensions: three positions, two angles
(parametrized by n), and the frequency. Full numerical solution
of a problem of this dimensionality, at least if it must be done
millions of times to run in tandem with a hydrodynamic (HD) or
magnetohydrodynamic (MHD) simulation, remains out of reach for
most applications.

Within the astrophysics community, there are two general ap-
proaches to numerical radiation hydrodynamics (RHD). One is char-
acteristic methods, which solve equation (1) (or its time-independent
form), but only along rays pointing back to particular sources (e.g.
Abel & Wandelt 2002; Rijkhorst et al. 2006; Krumholz, Stone & Gar-
diner 2007b) or rays randomly assigned by Monte Carlo (e.g. Fleck &
Cummings 1971; Tsang & Milosavljevi¢ 2015). A second approach,
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which we will pursue here, is moment methods (e.g. Mihalas & Mi-
halas 1984; Castor 2004), whereby one takes moments of the transfer
equation, thereby eliminating the angular dimensions of the problem.
Fully eliminating the angular dependence requires some care, since
in general for a moving medium the emissivity and opacity depend on
direction, even if the medium itself interacts with light isotropically
in its own rest frame. While one might guess velocity-dependent
beaming effects are unimportant in non-relativistic problems, it turns
out that one cannot formulate a consistent, energy-conserving theory
of non-relativistic RHD without including them, at least to leading
order (Mihalas & Klein 1982; Lowrie, Morel & Hittinger 1999;
Krumbholz et al. 2007a). Systems of moment equations where the
radiation moments are written in the lab frame but the emissivity
and absorption are written in the comoving frame, where they can
be assumed to be isotropic, are known as mixed-frame formulations.
This is the most common approach in modern RHD codes (although
the comoving frame is increasingly popular; e.g. Skinner et al. 2019).
This results in a series of moment equations that one can solve in lieu
of solving the equation of radiative transfer directly, but at the price of
introducing the need for a closure relation to approximate the higher
moments that appear in the equations being solved. Some authors
also combine moment and characteristic methods (e.g. Rosen et al.
2017). While characteristic and moment methods are the only ones
widely used in astrophysics, in terrestrial applications (for example,
neutron transport calculations for nuclear reactor design) there are
two other widely used approaches to handle the angular dependence
of the transfer equation. One is to discretise the unit sphere using
weighted quadratures (the discrete ordinates, or S,, method; e.g.
Lathrop & Carlson 1964; Adams 1997). The other is to expand
the angular integration in spherical harmonics (the P, method; e.g.
Modest 1989). These methods can be much more computationally
expensive than moment methods, possibly by several orders of
magnitude.
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One of the simplest closures is the flux-limited diffusion (FLD)
approximation (LeBlanc & Wilson 1970; Alme & Wilson 1973),
which retains only the first moment equation, for the radiation
energy density, and closes the system by assuming both that the time
derivative of the radiation flux is zero and that the Eddington tensor,
defined as the ratio of the radiation pressure tensor to the radiation
energy density, has a fixed value. However, a long-understood
deficiency of FLD is that it cannot cast shadows (e.g. Hayes &
Norman 2003), a property that can make a critical difference in the
dynamics of some semitransparent problems (e.g. Davis et al. 2014).
A more accurate approximation is to evolve both the radiation energy
density and the radiation flux, while still invoking a closure relation
for the Eddington tensor; this is called a two-moment approach, since
one solves for the first two moments of the radiation field. When the
Eddington tensor is computed via a formal solution of the angle-
dependent radiative transfer equation, we obtain the quasidiffusion
or variable Eddington tensor (VET) method (Gol’din 1964). When
retaining a local closure for the radiation pressure tensor in terms of
the radiation energy density £ and the flux F, we obtain a local
VET method, commonly referred to as the M1 (‘moment-one‘)
method (Minerbo 1978; Levermore 1984; Dubroca & Feugeas 1999;
Gonzdlez, Audit & Huynh 2007). There are a number of moment-
based astrophysical RHD codes, implementing a wide variety of
closures, in wide use, including ZEUS (Turner & Stone 2001), FLASH
(Fryxell et al. 2000), ORION (Krumholz et al. 2007a; Shestakov &
Offner 2008; Li et al. 2021), RAMSES (Commercon et al. 2011;
Rosdahl et al. 2013), ATHENA (Davis, Stone & Jiang 2012; Jiang,
Stone & Davis 2012), ENZO (Reynolds et al. 2009; Bryan et al.
2014), CASTRO (Zhang et al. 2011, 2013; Almgren et al. 2020), and
FORNAX (Skinner et al. 2019), to give a partial list.

While the use of moment methods removes the dimensionality
problem, it leaves a second problem, which is the strong mismatch in
signal speeds between radiation and sound (or MHD) waves, which in
anon-relativistic system travel at far less than the speed of light. This
mismatch renders simple explicit methods, as are commonly used for
HD and MHD, impractically slow for radiative transfer, due to the
tiny time-steps that would be imposed by the Courant—Friedrichs—
Lewy (CFL) condition. For this reason, numerical methods for RHD
either use an implicit method for the radiation part of the problem
(e.g. ZEUS, ORION, some versions of RAMSES and ATHENA) or adopt
the reduced speed-of-light approximation (RSLA; Gnedin & Abel
2001; Skinner & Ostriker 2013, hereafter SO13; FORNAX, other
versions of RAMSES and ATHENA). The RSLA consists of replacing
the speed of light ¢ that defines the signal speed in the radiation
moment equations with a lower speed ¢, while keeping the terms that
describe the rate of momentum and energy exchange between gas
and radiation unchanged. The lower speed ¢, while still substantially
larger than the HD or MHD signal speeds, is close enough to those
speeds to allow radiation time-steps large enough to render explicit
methods computationally feasible.

1.2 Why a new radiation hydrodynamics code?

In this paper, we describe QUOKKA,! a new code for RHD. In
terms of the taxonomy introduced above, QUOKKA is a two-moment
code that uses the RSLA to allow an explicit treatment of radiation
transport. QUOKKA is also an adaptive mesh refinement (AMR) code,
so it begins with a base grid at uniform spatial resolution, but then
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dynamically adds higher resolution grids as needed to achieve user-
specified accuracy goals (Berger & Oliger 1984; Berger & Colella
1989). However, these features do not make QUOKKA unique: ORION
and RAMSES (among others) offer moment-based AMR RMHD,
while FORNAX uses RSLA on a dendritic (though not adaptive) grid.

The unique feature of QUOKKA is that it has been designed from
the ground up to run efficiently on graphics processing units (GPUs).
This design goal motivated our choice of both algorithms and low-
level implementation details. While QUOKKA 1is not the first GPU
HD code in astrophysics (others include GAMER; Schive, Tsai &
Chiueh 2010; Schive et al. 2018; CHOLLA; Schneider & Robertson
2015;CASTRO; Almgren et al. 2020, and ARK-RT; Bloch et al. 2021),
nor even the first AMR GPU code, it is the first to feature two-moment
AMR RHD on GPUs.

Bringing RHD to GPUs creates some unique challenges. Con-
temporary compute nodes are often limited by data bandwidth, both
in terms of moving data between main memory and the CPU or
GPU, and in terms of moving data between CPUs or GPUs. For
this reason, implicit methods generally have poor scalability, due to
the need for global communications during an implicit solve (see
e.g. Appendix E of Skinner et al. 2019). This imbalance between
computation and communication is magnified on GPUs. Likewise,
robust implicit methods require iterative sparse matrix solvers, which
achieve lower peak efficiency on GPUs compared to CPUs due to
their heavy use of indirect addressing and highly branching control
flow. These considerations motivate our choice of an explicit RSLA
method. They also motivate our choice of time-integration strategy,
which as we detail below has been designed to maximize computation
(and therefore minimize the relative amount of communication) on
each hydrodynamic time-step. We show that, with this strategy, we
are able to achieve update computation rates of >250 million zone
updates per second per GPU for pure HD, and nearly 40 million for
RHD. We also achieve > 75per cent parallel efficiency (compared
to single-node performance) out to 256 GPUs. This combination of
performance and scaling makes QUOKKA substantially faster than
any other public RHD code.

The remainder of this paper is organized as follows. In Section 2,
we introduce the set of equations that QUOKKA solves, and detail our
numerical methods for solving them. In Section 3, we present a wide
range of tests that demonstrate the accuracy and capabilities of the
code. Section 4 covers our tests of code performance and scalability.
In Section 5, we discuss the range of applicability of our methods,
and our plans for application and future code expansions. Finally, the
code itself, including all test problems, is freely available on GitHub
under an open-source license.

2 METHODS

2.1 Equations

We solve the equations of RHD (Pomraning 1973; Mihalas &
Mihalas 1984; Castor 2004) for an inviscid, non-relativistic fluid in
local thermodynamic equilibrium in the mixed-frame formulation,
where the radiation variables are defined in an inertial frame (i.e.
Eulerian simulation coordinates) and the radiation-matter interaction
terms are written in the frame comoving with the fluid, with the
transformations between the frames accounted for via the addition
of radiation-matter exchange terms that depend explicitly on the ratio
of fluid velocity to the speed of light, § = v/c. In this first version
of QUOKKA we omit scattering, so that matter-radiation interaction is
purely by emission and absorption. We write the equations as follows

MNRAS 512, 1430-1449 (2022)

220z 1udy /z uo sesn AjisIaAlun [euoneN uelensny Aq 9G90€59/0€Y |/1/2 L G/aI01HE/SEIUW/WOD dNO dlLSPED.//:SANY WOI) POPEOJUMOQ


https://github.com/BenWibking/quokka-code

1432 B. D. Wibking and M. R. Krumholz

0p
E+V-(pV)=0, 2
)
(aiV) +V-(pw+P) =G, 3)
OF
TS [(E +P)v] =cG°, )
OE, 0
5, +VF=—cG, &)
1 9F,
?az+V'P’=_G’ (6)

where p is the gas density, v is the gas velocity, E is the total
energy density of the gas, P =4;; P is the gas pressure tensor,
E, is the radiation energy density, F, is the radiation flux, P, is
the radiation pressure tensor, V - pvv denotes the sum (pviv/ ).j>
and G' is the radiation four-force, with G° the time-like component
and G consisting of the space-like components. In the mixed-frame
formulation, the radiation four-force to order 8 is

— ¢G" = p(pdnB — krcE) + pir (~ - F, ), 7
C
F, 47tB\ v vP,
—G=—pkp— 4+ pkp | — | — + pkr s (8)
C C C C

where k, kg, and kp are the flux-mean, energy-mean, and Planck-
mean specific opacities evaluated in the comoving frame, B is the
Planck function evaluated at the gas temperature, and VP, is the
tensor contraction v;P (Mihalas & Mihalas 1984). The latter two
terms in the expression for G correspond to the relativistic work term
of Krumholz et al. (2007a) and are only important in the regime St
= 1 (where 7 is a characteristic optical depth), to which we cannot
apply the RSLA (as discussed below), so we neglect them. However,
the term of order f in the expression for cG® corresponds to the work
done by the radiation force on the gas and can be the dominant term
for problems of interest.

To apply the RSLA to these equations, we first rewrite the radiation
moment equations so that they have a factor of exactly 1/c next to
each of the time derivatives

L5 o (B = g0 ©
c ot c) ’
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o3 (?> +V.P, =-G, (10)

then we replace this 1/c factor with a factor of 1/¢, where ¢ is the
reduced speed of light, and multiply through by factors of ¢ to obtain
the conservation law form of the reduced speed-of-light radiation
moment equations (e.g. SO13)

JE, ¢ .

5 + V. EFr = —¢Go, (11)
oF,

Y + V- (céP,) = —céG. (12)

The maximum wave speed of this system of equations is bounded by ¢
(as long as the flux satisfies causality, i.e. F, < cE,). As emphasized
by SOI13, all other factors of ¢ remain unchanged, and, since the
factors of ¢ are unchanged on the right-hand side of the hydrody-
namic equations, the reduced speed-of-light radiation hydrodynamic
system does not conserve total energy or momentum for ¢ # c.
When the left-hand side flux divergence terms are negligible, this
non-conservation implies that the equilibrium temperature of the
reduced speed-of-light system is slightly modified with respect to
the correct equilibrium temperature, implying that we cannot apply
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the RSLA to problems in the equilibrium diffusion limit in general
(see section 3.2.3).
Writing out the right-hand side terms explicitly, we obtain
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These equations make no approximations about the frequency depen-
dence of the radiation field. However, for computational tractability,
in what follows, we will approximate « » with the Rosseland mean
opacity kg, which yields the correct radiation force in the diffusion
limit, and approximate « p with the Planck mean opacity «p, which
yields the correct energy absorption and emission in the optically
thin limit for fluids at rest (Mihalas & Mihalas 1984). However, we
emphasize that the choice to set k & kg and k g = k p is an additional
approximation, and that others might be preferable depending on the
physical system being simulated. In future work, we plan to address
the limitations of these approximate grey opacities via an extension
of our method to the multigroup solution of the radiation moment
equations. Our present set of equations is sufficient for grey non-
relativistic RHD in the semitransparent regime, where we can neglect
the ‘relativistic work term’ that is important only in the dynamic
diffusion (8t 2 1) regime, as described earlier.

2.2 Solution method

We solve the system formed by equations (13)—(17) using an
operator split approach, whereby we first advance the hydrodynamic
transport subsystem (Section 2.2.1), then the radiation transport
subsystem (Section 2.2.2), and finally update the local coupling terms
(Section 2.2.3). The first subsystem uses a single explicit update step,
the second a set of subcycled explicit updates, and the third a purely
local implicit update. We describe each of these steps below.

This update cycle operates within a Berger & Oliger (1984)
and Berger & Colella (1989) AMR framework, whereby each
spatial variable is represented by a volume average in each cell,
on a rectangular, Cartesian grid. We cover the entire computational
domain with a coarse grid with cell spacings Axy, Ayp, Azp in the
X, y, and z directions; the grid spacings need not be the same, but
for most applications we choose them to be the same. We denote
this coarse grid Level 0. We then dynamically add (or remove)
additional, finer grids over parts of the domain in response to user-
specified refinement criteria. We denote these additional levels 1, 2,
..., with each grid on level / having cells a factor of 2 smaller than
those on level / — 1, so that the cell spacing on level [ is Ax,/2'
in the x direction, and similarly for y and z. We use only factor of
2 refinements in order to minimize numerical glitches arising from
the discontinuous change in resolution, which can arise especially
in problems where shocks cross the coarse-fine mesh interface at an
oblique angle (e.g. Fryxell et al. 2000). When adding finer grids, we
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conservatively interpolate the underlying coarse data (using linear
interpolation for robustness, regardless of the spatial reconstruction
used to compute the fluxes), and when removing finer grids we
conservatively average down the fine data. Time-steps on different
AMR levels are sub-cycled, such that the time-step on level /is At; =
Aty/2!. At the end of every two time-steps on level [ > 0, we perform
a synchronization step to ensure that we maintain machine-precision
conservation for all conserved quantities (Section 2.2.4).

Our implementation of AMR in QUOKKA uses the lower level AM-
RCore interface provided by the AMREX library (Zhang et al. 2019;
AMReX Development Team et al. 2021) for AM grid generation and
coarse/fine grid interpolation, domain decomposition, and parallel
communication. In addition to solving the RHD equations, QUOKKA
itself handles the time-stepping and mesh refinement criteria.

2.2.1 Hydrodynamics

For the solution of the hydrodynamic subsystem (equations 13—
15, omitting the matter-radiation coupling terms on the right hand
sides), we adopt a method-of-lines (or semidiscrete) approach,
discretizing the spatial variables while initially keeping the time
variable continuous, thereby transforming the partial differential
equations into a large set of ordinary differential equations (ODEs)
that can be integrated in time using a standard ODE integrator
(Hyman 1979; Jameson, Schmidt & Turkel 1981). For the latter,
we use the second-order strong stability preserving Runge—Kutta
method (RK2-SSP; Shu & Osher 1988). Such an approach has been
successfully employed in several recent astrophysical HD codes
(Skinner et al. 2019; Stone et al. 2020).

We schematically write the time-step At used for the RK2-SSP
integration as

A=y 2 (18)
0 Ik

where Ax is the minimum grid spacing, |A| is a maximum signal

speed, and Cj is a stability coefficient. Analysis of the stability

polynomial of a Runge—Kutta integrator applied to the linearized

HD equations (Colella et al. 2011; McCorquodale & Colella 2011)

yields a value for |A| of

D
Al =max Y "[(v- &) + ], (19)
d=1

where v is the fluid velocity, € is the unit vector in coordinate direction

d, ¢, 1s the adiabatic sound speed, and the maximum is taken over all

cells. However, even in the linear case, such an eigenvalue analysis

gives, in general, only a necessary condition for stability and not a

sufficient condition (Reddy & Trefethen 1992). For this reason, we

more conservatively estimate the value of |1| as

[A] = D max(|v| + ¢,), (20)

and compute the time-step Az on each AMR level as
C Ax

t= @1

D max(|v| + c¢y)

where we define the dimensionless factor Cy/D to be the CFL
number so as to be consistent with its standard definition in one
spatial dimension.> When written in this form, for both forward
Euler and RK2-SSP, the maximum stable coefficient Cy for a system

2This is the same time-step criterion used in the FORNAX code, with D = 3
and Ax = Ar/+/2; see equation 37 of Skinner et al. 2019.
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of constant-coefficient, linear equations is Cy = 1. The maximum
stable CFL number in 3D for the RK2-SSP integrator is therefore
1/3. We note that it is not sufficient to estimate |A| as max (|v| +
¢y), since the component-wise sum of the velocities may exceed the
vector magnitude |v| and therefore violate the lower bound given by
equation (19).}

We find that such a method-of-lines scheme is not stable when
combining higher order spatial reconstruction with forward Euler
time integration. However, we find it is stable for time-steps satisfying
the above time-step criterion when used with higher order (second-
order or higher) Runge—Kutta methods. We note that this stability
problem with forward Euler is also found by Stone et al. (2020) in the
method-of-lines implementation of ATHENA-++-, but does not appear
for single-step integrators that average in time the reconstructed
profiles of characteristic waves over the cell interfaces, as done in
the original version of PPM (Colella & Woodward 1984).

As Skinner et al. (2019) notes, in contrast to fully-discrete unsplit
hydrodynamic methods such as the corner transport upwind (CTU)
method (Colella 1990), the coupling across corners of each cell is
achieved via the use of a multistage time integrator, rather than via
direct computation of fluxes from diagonal neighbours of each cell.
While we are formally limited to a smaller time-step compared to
the CTU method (due to the factor of 1/D), our method may be
more robust in practice, as the CTU integrator has been found to
be unstable in supersonic turbulence with strong radiative cooling
unless very small (S 0.1) CFL numbers are employed (Schneider &
Robertson 2017).

We reconstruct the hydrodynamic variables on each face of each
cell from the cell-average variables of the neighbouring cells. We
perform this reconstruction using the piecewise parabolic method
(PPM; Colella & Woodward 1984, hereafter CW84) using the
primitive hydrodynamic variables (density, velocity, and pressure).
As is standard, the conversion from conserved (density, momentum,
and energy) to primitive variables is carried out assuming that the
volume average and cell centered states are equivalent, which is an
approximation accurate to O(Ax?). As noted by several authors, the
PPM algorithm is therefore formally second-order accurate in spatial
resolution.* After the primitive variables have been defined, for the
reconstruction step proper, we use the standard interface-centered
PPM stencil

7 1
qjvi2 = ﬁ(q_,- +qj1) — E(Qﬁz +qj-1)- (22)

We follow the implementation of Stone et al. (2020) in re-grouping
the above terms symmetrically with respect to the interface i + 1/2
S0 as to preserve exact symmetry in floating point arithmetic.

We do not perform the slope-limiting and contact steepening steps
of CW84. We instead prevent new extrema in the reconstructed
states by limiting the interface states at the faces of a given cell
to the minimum and maximum of the cell-average values of cell
under consideration and its two neighbouring cells along the axis of
reconstruction, similar to the monotonicity constraint introduced by
Mignone, Plewa & Bodo (2005). This is followed by the extrema
detection and overshoot correction step within each cell as described

3As an example, consider the velocity vector with unit magnitude |v| and
equal components v, = vy = v,. Then each component v; = V/3/3 and the
sum of components Z?{:l V-8 =3~ 1.732.

4We note that there exist fully fourth-order versions of PPM (Felker & Stone
2018), but because fourth-order accuracy does not permit local source terms
to be evaluated independently for each cell, we choose to implement a second-
order method.
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by CW84. In this step, the parabola assumed to exist across each
cell is examined. If an ‘overshoot’ (as defined by CW84) of the
parabola is detected, we follow the original CW84 prescription of
performing linear reconstruction on the side of the cell affected by
the overshoot. If an extremum is instead detected, rather than forcing
the reconstruction to a constant value across the cell as done by
CW84, we revert to performing a linear reconstruction within the
affected cell, following Balsara (2017). We note that these latter two
steps only examine the interface values, and do not guarantee that
the interface states lie within neighbouring cell-average values, and
therefore the cell-average limiting carried out in the first step is not
redundant. Any of these limiting steps may make the interface states
discontinuous, with distinct states associated with each of the two
cells adjacent to an interface.

We also implement reconstruction based on a piecewise-linear
method (PLM) using the monotonized-central (MC) slope limiter
(Van Leer 1977). We use PPM reconstruction by default, but allow
PLM reconstruction via a compile-time option.

In some cases, especially in underresolved strong shocks, the
previous steps do not provide sufficient dissipation to avoid os-
cillations. This problem was recognized by CW84, who proposed
a shock flattening procedure in combination with a small amount
of artificial viscosity. We find that this shock flattening procedure
is not sufficient in multidimensional problems. Instead, we follow
Miller & Colella (2002), who generalize the CW84 shock-flattening
procedure for multidimensional HD. Using this latter method, we
find that no artificial viscosity is needed and we do not include any
in our implementation.

Finally, in order to compute the flux of mass, momentum, and
energy between cells, we use the HLLC Riemann solver with the
‘primitive variable Riemann solver’ wavespeeds and intermediate
states (Toro 2013). We make the standard approximation that the
face-average flux is the same as the face-centered flux, and therefore
this step is also second-order accurate in spatial resolution. For each
cell, the fluxes across each face are then added together to produce
an unsplit spatial divergence term used by each stage of the Runge—
Kutta integrator to advance the cell in time.

In multidimensional simulations, it has been long recognized
that in strong grid-aligned shocks, the HLLC Riemann solver can
unphysically amplify the so-called ‘carbuncle’ instability (Quirk
1994). In astrophysical problems, this is most often encountered in
strong explosions. Implementing additional dissipation in the form
of artificial viscosity (e.g. Gittings et al. 2008), the ‘H-correction’
(Sanders, Morano & Druguet 1998), or by adaptively switching to
an HLL Riemann solver (Harten, Lax & Leer 1983) for computing
fluxes perpendicular to strong shocks (e.g. Quirk 1994; Skinner et al.
2019) are possible solutions to this issue. In future work, we plan to
implement an adaptive procedure to fix the carbuncle instability via
the latter method.

Future work may also include implementing an adaptive method
to reduce the order of reconstruction in order to preserve density
and pressure positivity in near-vacuum regions, such as the mul-
tidimensional optimal order detection (MOOD) method of Clain,
Diot & Loubere (2011). An alternative solution may be to adaptively
switch to an exact (iterative) Riemann solver depending on the flow
conditions (Toro 2013).

2.2.2 Radiation

We solve the radiation transport subsystem (equations 16—17, again
omitting the terms on the right-hand side) in a similar method-of-
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lines fashion. Our approach is most similar to that of Skinner et al.
(2019), who also evolve the radiation moment equations with a
time-explicit method-of-lines approach; however, they do not use
either PPM reconstruction or a reduced speed of light. Because
even with the RSLA the signal speed for the radiation subsystem
is substantially larger than for the hydrodynamic subsystem, we
evolve the former explicitly in time with several radiation time-steps
per hydrodynamic time-step. In the regime of applicability of the
RSLA, this approach allows a much more computationally efficient
solution to the radiation moment equations, due to the fact that
explicit methods have a greater arithmetic intensity per byte of data,
have simple memory access patterns and control flows (compared to
implicit solvers), and do not require global communication across
the computational domain in order to advance the solution in time.
All these features are greatly beneficial on GPUs, where the ratio
of floating-point arithmetic performance to memory bandwidth is
typically greater than on CPUs.

We carry out each radiation subcycle using the same RK2-SSP
integrator (Shu & Osher 1988) that we use for HD. We likewise
use a finite volume representation of the radiation variables, with
a PPM spatial reconstruction (or optionally, PLM) of the radiation
energy density E, and reduced flux f = F, /cE,; the only difference
in our procedures for HD and radiation is that for radiation we do
not employ a shock flattening procedure. There can exist unphysical
radiation shocks when using local closures, since in general such
closures make the radiation subsystem non-linear, but there is no
applicable shock flattening procedure to suppress this effect. We
carry out reconstruction in terms of the reduced flux f rather than the
absolute flux F, in order to suppress unphysical fluxes |F,| > cE.
This is effective in 1D problems, but in multidimensional problems,
the magnitude of the radiation flux may still exceed cE,, which
is an unphysical state in which local closures cannot compute the
Eddington factor at all. Reducing the order of reconstruction to
first order (piecewise constant) when the interface states violate this
constraint helps but does not eliminate the issue in all cases. For the
purpose of computing the local closure only, we use rescale the flux
such that |F,| = cE, whenever |F,| > cE,. For particularly difficult
problems, especially in order to avoid unphysical instabilities in the
propagation of non-grid-aligned optically thin radiation fronts, we
find that it is necessary to reconstruct the radiation variables using
PLM reconstruction.

One drawback to upwind finite volume methods for radiation
transport is that in naive form, they do not give the correct behaviour
for diffusive regions where the optical depth per cell is much
greater than unity. This failure occurs because numerical diffusion
dominates over physical diffusion when using upwind methods when
the mean free path of photons is not resolved (Lowrie & Morel
2001). One common approach to fix this incorrect behaviour is to
modify the Riemann solver in the optically thick regime to reduce
the upwind bias of the spatial derivative (Audit et al. 2002; Skinner
et al. 2019; Mezzacappa et al. 2020). However, this can lead to
violations of causality (i.e. |F,| > cE,) when the radiation flux is in
the streaming regime (Audit et al. 2002), which occurs especially
at discontinuities in the opacity between optically thin cells and
optically thick cells. The only apparent fix for this problem, which
we adopt, is to disable the optical-depth correction in the Riemann
solver for those cells where it produces a causality-violating state.
We find that this condition is only activated when f — 1, so it may not
qualitatively affect the solution. However, we also advocate refining
on the gradient in the optical depth per cell in order to resolve the
boundary layers in such situations whenever it is computationally
feasible.
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For computing the flux of radiation quantities between cells, we
use an HLL Riemann solver, with wavespeeds computed assuming
the Eddington factors are fixed at the beginning of the time-step
(Balsara 1999). This approach allows us to substitute different closure
relations for the Eddington factors without requiring a modification
of the Riemann solver, unlike previous implementations that are
restricted to a single local closure (e.g. Gonzalez et al. 2007; SO13;
Skinner et al. 2019). In principle, we could even use Eddington
tensors computed via a short characteristics formal solution of the
radiative transfer equation (e.g. Davis et al. 2012), but we leave
exploration of a non-local VET method to future work.

Our default closure relation for the Eddington tensor is the
Levermore (1984) closure, which is derived by assuming that the
radiation field is isotropic in some (unknown) reference frame and
then computing a Lorentz transform from this reference frame to
one in which the reduced flux f matches the value in the cell under
consideration. This procedure leads to a radiation pressure tensor
(e.g. Gonzalez et al. 2007; Rosdahl et al. 2013; SO13)

1— 3 —1
P,:(TXI+ X2 ﬁﬁ)E,, (23)

where | is the identity tensor, and the Eddington factor x, and the
flux direction cosine f are

3+4f7
X=
5+2/4-3f2
F,

=

(24)

(25)

IF, |

When the radiation flux is exactly zero, we drop the direction-
dependent term in equation (23). By considering a coordinate system
where the radiation flux is aligned with a coordinate axis, we see that
X is the component of the Eddington tensor in the direction of the
radiation flux.

We emphasize that this is only one possible choice of closure,
and a variety of alternative local closures exist (e.g. Minerbo 1978;
Levermore & Pomraning 1981). We refer readers to Janka (1992)
and Koerner & Janka (1992) for systematic comparisons to angle-
dependent transport solutions for neutrinos, and Olson, Auer &
Hall (2000) for comparisons to photon solutions. Because of its
prominence in the neutrino transport literature, as well as marginally
favourable performance on some test problems, we also provide
an implementation of the Minerbo (1978) closure in addition to
the default Levermore (1984) option. However, users can also
implement any local closure of their choice simply by providing
an implementation of a function that maps from the reduced flux f
to the Eddington factor x for their preferred closure. Doing so does
not come at any cost in computational performance.

2.2.3 Matter-radiation coupling

Following the computation of the hyperbolic part of the radiation
subsystem, we use an implicit method to evaluate the source terms
(those appearing on the right-hand sides of equations 13—17) for both
the radiation and hydrodynamic subsystems; this update occurs once
per radiation subcycle, and thus several times per hydrodynamic step.
Since there are no spatial derivatives in these terms, each cell can be
updated independently.

The radiation-matter coupling update occurs in three steps. The
first is to handle the energy source terms cp(xpa,T* — Kk E,) that
appear in equations (15) and (16). In the regime of problems to
which we can apply the RSLA this term is often the stiffest, and
we therefore update it using the backward-Euler implicit method

1435

of Howell & Greenough (2003), specialized to the case of a single
material and extended to include a reduced speed of light. Let E, =
E — pv?/2 be the gas internal energy, and let E{’ and E{" be the
gas internal energy and radiation energy at the end of the hyperbolic
update, where the superscript (¢) indicates quantities evaluated at this
point in the update cycle. We compute the new gas internal energy
E;’ *+1 and radiation energy EY*D, where (¢ + 1) indicates the state
after accounting for the exchange term, by solving the implicit system

0=Fo = (B —EY) + (5) R, (26)
0=Fp = (E£z+1) _ Eﬁt)) —(R+ S)(r+l) , 27)
where

R = Atpkp(4niB — ¢E,), (28)

At is the radiation substep time-step, and S is an optional source term
that we include to allow, for example, addition of radiation by stellar
sources. The quantities Fz and Fy are the residual errors in the gas
energy and radiation energy, respectively.

To solve this system via Newton—Raphson iteration, we require
the Jacobian matrix, the elements of which are

aFG c) OR
3E, =1+ (%) 3z, (29
dF,
aEf = —cAtpkp, (30)
dFx .
oF = ok (31
oF

R — 1+ eAtpp, (32)
OE,
where
aR A 9B 0K N
oo = lkn 3+ 5 (b - e )

and C, is the gas total heat capacity at constant volume. From the
Jacobian, we can write the change in radiation and gas temperature
for each iterative update as

— FrtnFg
AE, =— OFR 0FG * (34)
+n -
O, O,
AFG
FG+AE, 5%
AEg = —T), (35)
dEg

where n = —(3Fr/OE,)(OFG/IE,)~". We repeatedly apply equa-
tions (34) and (35) to the radiation and gas energies until the
system converges. Howell & Greenough (2003) leave unspecified the
convergence criteria they use for their solver. After experimenting
with several possibilities, we decide to stop the Newton—Raphson
iterations when the residuals F and F satisfy

‘ < € and (36)
tot
c FR
- <€, (37
¢ Ey

where

Eow = B+ £ (B0 +5). (9)

When ¢ = ¢, E\ is the total (internal gas plus radiation) energy
at the end of the time-step. By default, the relative tolerance € is
set to 10719, We find that larger tolerances produce unacceptably
inaccurate solutions for many problems. In especially stiff problems,
it may be necessary to reduce the tolerance to the order of machine
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precision for double-precision floating point arithmetic (~10~1). If
the solver exceeds a specified maximum number of iterations (400
by default) without converging, the code prints an error message and
exits. Convergence failure usually occurs only when the intial time-
step has not been sufficently reduced compared to the CFL time-step
at the start of a simulation.

Once the Newton—Raphson iterations have converged, we have
obtained the updated gas internal energy and radiation energy, and
we proceed to the next two steps of updating the coupling terms.
We first update the radiation and gas momenta, accounting for
the coupling term pkzF,/c. To do so, we compute the flux mean
opacity kp using the updated gas temperature. Then, following
Skinner et al. (2019), we use a backward-Euler discretization of
the radiation flux source term (modified to include a reduced speed
of light)

t
F(1+l) _ Fg)

)= T (39)
1 + pkpcAt

In order to ensure momentum conservation when ¢ = ¢, we apply
the difference in radiation flux in an equal and opposite manner to
the gas momenta (as advocated by Skinner et al. 2019)

AF, = F¢+h — FO), (40)

(o)D) = (pv)© — Ak (41)

cc

The final step is to compute the work done by the radiation
force on the gas. Since we are evolving the conserved variables,
this term cannot be computed explicitly as written in equation (16)
without causing a significant error in the gas internal energy when the
radiation force is stiff. We instead compute this term as the difference
in gas kinetic energy over the time-step A Ey,, then add this quantity
to the total gas energy and subtract this quantity from the radiation
energy

EGHD E;Hl) 4 (El((’lz1 + AEkin) , (42)

E!TD « EMHD — (£) AEy,, (43)

where E¢ D denotes the total gas energy at the end of the time-step.
This completes the update for all radiation-matter coupling terms.

2.2.4 Level synchronization procedure

As explained by Berger & Colella (1989), in an AMR calculation, it
is necessary to adjust the solution on the coarse AMR level following
the solution on any refined level in order to maintain conservation
of the evolved quantities (e.g. mass, momentum, energy). For
hyperbolic equations evolved explicitly in time, this is traditionally
done by saving the flux at the coarse-fine grid boundary in a ‘flux
register’ for both the flux computed on the fine level and the flux
computed on the coarse level. In general, these fluxes are different
due to the differing stencil used on the coarse and fine levels, and
without correction, this would lead to a loss of conservation of energy
(and any other conserved quantities). The flux register stores this
mismatch, and in the synchronization step, adds the missing mass,
momentum, or energy to the cells on the coarse level immediately
adjacent to the coarse-fine boundary.

As noted by Howell & Greenough (2003), an implicit radiation
update has additional difficulties in ensuring conservation, since
radiation can propagate much further than a single grid cell on the
coarse grid. Our radiation update is fully explicit, but we would like
to advance each AMR level on the hydrodynamic time-scale, rather

MNRAS 512, 1430-1449 (2022)

than on the radiation time-scale, so we have a similar long-range
signal propagation difficulty. Rosdahl et al. (2013) outline three
possible solutions to the problem: (i) perform the radiation solve
after each coarse hydrodynamic step, keeping subcycling-in-time on
refined levels (which would be very inaccurate), (ii) use a single
global time-step for all AMR levels, which allows one to advance
the radiation solution on all levels in each radiation substep (which
would be very computationally expensive, since in our applications
of interest, the global time-step is typically limited by the time-
step of the highest-resolution level), or (iii) restrict the time-step
for each level to the minimum of the radiation and hydrodynamic
time-steps. In our code, we set the coarse time-step such that the
number of radiation substeps per level is limited to a maximum
value Ngyb, max in order to minimize the signal propagation distance
from the coarse-fine boundaries. The flux mismatch at the coarse-
fine boundaries is added to the immediately adjacent cells on the
coarse grid at the end of each level advance. When Ngp max = 1,
our solution is identical to the flux synchronization method used
in the RAMSES AMR code (Rosdahl et al. 2013). However, as a
default we set the parameter Ngp, max to 10, which appears to be
sufficient to avoid significant discontinuities in the radiation energy
and flux at coarse-fine boundaries, but still allows for significant
subcycling and thus a substantially lower computational cost. We
use this value for all test problems shown in this work, but users are
able to set this parameter as desired for either greater efficiency or
greater consistency at refinement boundaries. When this parameter
is too large, however, it is possible for the coarse level to fail
to maintain positivity of the radiation energy or causality of the
radiation flux.

3 TEST PROBLEMS

‘We now proceed to describe a series of tests that we have conducted to
verify QUOKKA’s accuracy and convergence characteristics, starting
with tests of the hydrodynamic subsystem (Section 3.1), followed
by tests of the radiation transport and radiation-matter exchange
subsystems (Section 3.2), and concluding with tests of coupled RHD
(Section 3.3).

Additional example problems and an automated test suite of 20
test problems with checks against exact solutions are included with
QUOKKA’s source code. We run this test suite for each commit and
pull request in our GitHub repository. While continuous integration
tests such as ours cannot guarantee bug-free software, this practice
has flagged and prevented the introduction of several bugs during the
development of QUOKKA. In order to maintain high software quality,
we also run the commercial static code analyzer SONARQUBE® on
every commit and pull request.

3.1 Hydrodynamics

For all our HD tests, we disable the radiation portion of the code.
These tests evaluate the hydrodynamic transport solver in isolation.

3.1.1 Sound wave

We compute the propagation of a sound wave in one dimension
in order to measure the convergence of our numerical method to

3 Available from SonarSource SA, Switzerland via https://www.sonarqube.or
g. We have detected several bugs affecting solution correctness in other HD
codes using this tool.
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Figure 1. The error ||AU|| in the solution (equation 45) for a sound wave
as a function of spatial resolution per wavelength N. Black circles show
numerical results, and the dashed line is a power law that scales as N;z
normalized to the observed error at the smallest N,.

the exact solution as a function of spatial resolution, following
the test described by Stone et al. (2008). With U denoting the
vector of conserved variables (p, pv,, pv,, pv., E), we initialize
the simulations with the initial state Uy + §U, where

8U = AR ssin(27x), (44)

where R = (1, —1, 1, 1, 1.5) is the right eigenvector of the linearized
hydrodynamic system, and Uy is the background state with density
p =1, velocity v = 0, and pressure P = 1/y. We set the adiabatic
index y = 5/3 and the wave amplitude A = 107%. We simulate a
periodic domain x = 0 to 1 and evolve the system for one wave period,
allowing us to compute the error of the solution by direct comparison
of the initial conditions and the final state of the simulation. We define
the error vector

1
(AU = 2D Uik = Uiy (45)

where k denotes a component of each state vector, Uj is the vector
of conserved variables in cell i at the final time-step, and Ui is the
vector of conserved variables in cell i in the initial conditions. Each
component | AU/ is therefore the L; norm of the error of a component
of the solution state. We assess the accuracy of the solution based on
the root-mean-square (rms) of the components of this error vector,
denoted ||AUJ|.

We run simulations using PPM reconstruction and a CFL number
of 0.1, using grid sizes from N, = 16 to 1024. We show the error
norm as a function of resolution in Fig. 1. For N, = 16, we obtain
[|AU|| = 1.0 x 1077, for N, = 128, we obtain ||AU|| = 1.6 x 107°,
and for N, = 1024, we obtain ||AU|| = 1.7 x 10~''. The results
for our code are in excellent agreement with those from the ATHENA
hydrodynamic solver (fig. 7 of Stone et al. 2008). The N2 scaling of
the error norm indicates that our hydrodynamic solver converges at
second order in spatial resolution, as expected from the formal order
of accuracy of the method.

1437

LI e e o e e e e e e e R S B
10~ ——density T
N —velocity ]
3 ——pressure / 10 -
8._ —
6._ —
4._ —
2._ —
- boocosessseee -
() bssssssssssss |
llllllllllllllllllllllllllll
0 1 2 3 4 5

length x

Figure 2. Density, velocity, and pressure profiles for the stationary shock
tube test (Section 3.1.3). Lines show the QUOKKA simulation result. For
comparison, we show the exact solutions for density, velocity, and pressure
as circles of the same colour.

3.1.2 Contact discontinuity

The HLLC Riemann solver has the property that it can resolve
an isolated stationary contact discontinuity with infinite resolution
(Toro 2013). The HLL solver, on the other hand, introduces a large
amount of numerical diffusion for this problem (see fig. 10.20 of
Toro 2013). To verify that our hydrodynamic implementation can
maintain a perfect contact discontinuity, we simulate a system where
the initial conditions have a left- and right-hand state separated with
a discontinuity at x = 0.5. The left-hand state is p, = 1.4, p;, = 1.0,
and the right-hand state is pg = 1.0 and 1.0. Since this is a pure
contact discontinuity, the solution should not evolve from the initial
state. We set the velocity to zero, and use an adiabatic index y =
1.4. We evolve the solution numerically until # = 2. The error with
respect to the correct solution is exactly zero.

3.1.3 Stationary shock tube

Our next test is a stationary shock tube, which we set up using the
parameters suggested on the website of FX Timmes.® This shock tube
problem is substantially more difficult to solve than the standard Sod
(1978) shock tube test due to the larger jump in pressure and density
at the discontinuity. We initialize left- and right-hand states with a
discontinuity at xo = 2, with the left-hand state p, = 10 and 100, and
the right state pg = 1 and 1. The initial velocity is zero. We evolve
the solution using a CFL number of 0.1 until # = 0.4 on a grid of
1000 cells on the domain [0, 5]. We use a small CFL number since
the wave structure at the discontinuity creates waves that propagate
faster than the linearized Roe eigenvalues would predict.

We show QUOKKA’s results for this test in Fig. 2. As for the
sound wave test, we compute the L; error norm for each of the
conserved variables, and then compute the rms of those error norms.
The rms L; error norm divided by the rms norm of the exact solution

Ohttp://cococubed.asu.edu/code_pages/exact_riemann.shtm]
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is 1.12 x 1073, Inspecting the solution in Fig. 2, we see that the
agreement between the exact solution and the numerical solution
is very good. The only noticeable differences are small oscillations
near discontinuities in the derivative of the solution at x ~ 2.4 and
near the density discontinuity at x ~ 3.6. We find that the shock
flattening method of Miller & Colella (2002) is essential to produce a
reasonable solution to this problem. Without it, we find unacceptably
large post-shock oscillations (not shown).

3.1.4 ‘LeBlanc’ test

We next carry out the ‘LeBlanc’ shock tube test, originally published
by Benson (1992) and further described by Pember & Anderson
(2001). In this problem, we initialize a left-hand state with p, = 1
and % x 107!, and a right state with pg = 1073 and % x 10719, We
set the initial velocity to zero and use an adiabatic index y = 5/3.
This is an extreme shock tube that far exceeds any shock that may
be encountered in any conceivable application, featuring a pressure
jump of nine orders of magnitude, and is therefore an excellent test
problem. We evolve this simulation until # = 6 using a grid of 2000
cells and a CFL number of 0.1. The resulting state is shown in Fig. 3.
Pember & Anderson (2001) highlight the difficulty of obtaining the
correct specific internal energy in the solution for this test, but we
find that QUOKKA produces the correct shock location and specific
internal energy, with the exception of a small overshoot at the shock
location. The use of shock flattening is essential for this problem.
Overall, the performance of our code on this problem is excellent.

3.1.5 Wave-shock interaction (Shu—Osher) test

We show the Shu—Osher test in Fig. 4. Following the description of
Shu & Osher (1989), the initial conditions are, on the left-hand side,

pr(x) = 3.857143, (46)
vr(x) = 2.629369, (47
P(x) = 10.33333, (48)

and the right-hand state is

pr(x) =14 0.2sin(5x), 49)
vr(x) =0, (50)
Pr(x) = 1. (51

We compute a reference solution using ATHENA++ (Stone et al.
2020) with the VL2 integrator, PPM reconstruction in the character-
istic variables, and the HLLC Riemann solver on a grid of 1600 cells.
Our solution is computed using PPM reconstruction (in the primitive
variables), the RK2-SSP integrator, and the HLLC Riemann solver
on a grid of 400 cells. The agreement is very good, with comparable
resolution of the high-frequency features to the third-order essentially
non-oscillatory (ENO) scheme of Shu & Osher (1989). When PLM
reconstruction is used instead for the same number of grid cells,
the high-frequency features are aliased (not shown; see also fig. 14
of Shu & Osher 1989), indicating a significantly higher effective
resolution for PPM-based methods even in the presence of shocks.

3.1.6 Slow-moving shock

We show a slow-moving shock in Fig. 5 using the parameters from
Jin & Liu (1996), where p; = 3.86, (pv), = —3.1266, and E; =
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Figure 3. Upper panel: density, velocity, and pressure profiles for the
‘LeBlanc’ shock tube test problem (Section 3.1.4). Lower panel: the specific
internal energy. In both panels, solid lines show the QUOKKA simulation result,
and circles in corresponding colours show the exact result.

27.0913, and the right-side state pg = 1.0, (pv)g = —3.44, and
Er = 8.4168, with y = 1.4. This corresponds to the shock jump
moving to the right with a velocity vgyoex = 0.1096. For a CFL
number of 0.2, this corresponds to the shock taking ~250 time-steps
to move across a single cell. This may not be a common scenario
for our applications, but it may occur in a protostellar accretion
shock, for instance. The quality of the solution is again significantly
improved by shock flattening. The post-shock oscillations for slow-
moving shocks may still be present with first-order reconstruction
(Jin & Liu 1996; Lee 2011), so it is difficult to completely eliminate.
We also find that adding a small amount of artificial viscosity
does not significantly reduce the oscillations. A modification to
PPM reconstruction based on a characteristic wave decomposition
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Figure 4. Density as a function of position for the Shu—Osher wave-shock
interaction problem (Section 3.1.5). Here, we show a comparison between
the QUOKKA solution (shown as circles) and a reference solution (shown as a
solid line) computed using ATHENA++ (Stone et al. 2020).

4.0

3.5

3.0

2.5

density

2.0

1.5

——simulation
- exact solution

PR SR [T SR TN SN SR S SN NN U RN SR S ST |

0.2 0.4 0.6 0.8 1.0
length x

ol by by by e by by e |

1.0

LU LI B S B m e o e e o e e e e e e
T T T T T T T

o
o

Figure 5. Density profiles for the slow-moving shock test problem (Sec-
tion 3.1.6). We show a comparison between the QUOKKA (solid line) and
exact solutions (circles).

succeeds in significantly reducing this oscillation (Lee 2011), which
we may consider implementing in a future version of the code.

3.1.7 Strong rarefaction

We next test the performance of our code on the 1-2-3 problem
of Einfeldt et al. (1991), which features a strong rarefaction and is
designed to induce failures in approximate Riemann solvers. The
initial conditions consist of left- and right-hand states with equal
density and energy, p. = pg = 1 and E;, = Ex = 3, and equal
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Figure 6. Profiles of density (top) and specific internal energy (bottom) for
the strong rarefaction test problem (Section 3.1.7). In both panels, we show a
comparison between the QUOKKA solution computed using the default HLLC
Riemann solver (solid line) and a solution computed using an exact, iterative
Riemann solver (circles).

magnitude but oppositely directed velocities, (pv), = —2, (pv)g = 2.
We evolve the system to = (.15, using a CFL number 0.8 and a grid
of N, = 100 cells, and show the resulting state in Fig. 6. We obtain the
exact solution to which we compare the QUOKKA result using an exact
Riemann solver. We find that the solution for the density profile is
very close to the exact solution, except for a small discrepancy at the
lowest density near x = 0.5. However, the most difficult aspect of this
problem is obtaining the correct specific internal energy. Our results
compare favourably with other solutions obtained with approximate
Riemann solvers, where factors of two or three errors are obtained
near x ~ 0.5 (Toro 2013). Obtaining the correct specific internal
energy in the lowest density part of the flow may require the adaptive
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use of an exact Riemann solver in near-vacuum regions. None the
less, our code is stable and well-behaved for this problem.

3.1.8 Kelvin—Helmholtz instability

To show the performance of QUOKKA in two dimensions, we simulate
the Kelvin—Helmholtz instability created by counter-propagating gas
flows with a shear layer between them. The purpose of this test is to
illustrate the ability of the code to maintain the contact discontinuity
between the flows as Kelvin—-Helmholz rolls develop, even as we
add deep AMR nesting. Following Stone et al. (2020), we use a two-
dimensional periodic box on the domain [0, 1] along each axis with
density and velocity given by

p =1.5—0.5tanh(3j/L), (52)
v, = 0.5tanh(y/L), (53)
v, = Acos(47(x — xo)) exp(—yz/az), (54)

where xp = 0.5, yo = 0.5, § = |y — yo| — 0.25, the shearing layer
thickness L = 0.01, o = 0.2, and perturbation amplitude A = 0.01.
The initial pressure is uniform with P = 2.5 and we adopt an adiabatic
index y = 1.4. We enable AMR, with cells tagged for refinement if the
relative density gradient on either side of the cell in either direction
exceeds 0.2, and we allow up to four levels of refinement on top of a
base grid size of 20482. Thus, the peak resolution of the calculation is
327682, Each local AMR grid has a uniform size of 1282. We evolve
the system to # = 1.5 with a CFL number of 0.4, and show the resulting
numerical solution in Fig. 7. We are able to carry out this calculation
on a single GPU in ~4.5 h of wallclock time. While there appears to
be no converged solution to this problem without explicit dissipation,
we find that our hydrodynamic solver is able to resolve the Kelvin—
Helmholz rolls with very little dissipation and with significant small-
scale structure caused by secondary instabilities, as expected for
inviscid simulations (Lecoanet et al. 2016). There are no visible
artifacts at resolution boundaries.

3.1.9 Liska—Wendroff implosion

We next present our results for the so-called Liska—Wendroff implo-
sion test (Hui, Li & Li 1999; Liska & Wendroff 2003). This problem
consists of the square domain [0, 0.3]%, with an inner region x + y <
0.15 and an exterior region, where x + y > 0.15 for an ideal gas with
adiabatic index y = 1.4. The inner region has initial density p =0.125
and pressure P = 0.14 and the outer region begins with density p = 1
and pressure P = 1. We simulate the subsequent evolution to t = 2.5
on a uniform grid of 10242 cells with reflecting boundary conditions
with a CFL number of 0.4. These initial conditions lead to a shock
directed towards the origin, which is then reflected many times by
the upper and right walls before finally converging in a jet traveling
away from the origin along the diagonal x = y, as shown in Fig. 8.
Liska & Wendroff (2003) note that only codes that discretely preserve
symmetry between x- and y-directions successfully produce the jet.
In order to recover the jet in QUOKKA, we found it necessary to code
the RK2-SSP integrator so that the fluxes in the x- and y-direction
are added in an exactly symmetrical manner for each stage of the
update. Additionally, when running the problem on NVIDIA GPUs,
we preserve this symmetry only if we disable fused multiply-add
(FMA) operations via the nvcc compiler option fmad = false,
since the compiler otherwise breaks the symmetry expressed in the
source code between the x- and y-direction fluxes. With this compiler
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Figure 7. A simulation of the Kelvin—Helmholz instability with four levels
of refinement. The top panel shows the full simulation domain, and the lower
two panels show-successive zoom-ins on parts of the domain. Grid boundaries
are shown for levels / > 2. Colour shows density.
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Figure 8. The two-dimensional implosion test (Liska & Wendroff 2003)
on a 1024% grid at t = 2.5. The density is shown with 16 equally spaced
contours between 0.4 and 1.1, with the colourmap showing the density over
the same range. A thin jet shoots along the x—y diagonal. The solution is
exactly symmetric.

option, QUOKKA exactly preserves symmetry along the diagonal and
successfully recovers the jet.

3.2 Radiation

For our radiation tests, we disable the hydrodynamic part of the
code and only use the radiation transport and gas-radiation exchange
updates. These tests evaluate the accuracy of those portions of the
code.

3.2.1 Marshak wave

We next compute a Marshak wave (Marshak 1958). The problem
consists of a uniform gas with a constant density p = 10 gcm™> and
constant opacities kp = kg = 577 cm? g~'. The gas has a uniform
initial temperature of 10* K, but at = 0, we impose on the left-hand
side of the domain a boundary condition consisting of a half-isotropic
flux with a radiation temperature of 3.481334 x 10° K. The radiation
drives a wave of heat into the gas. Following Su & Olson (1996),
we set the gas heat capacity at constant volume C, so a functional
form that makes it possible to linearize the matter-radiation coupling
terms, and thus obtain a semi-analytic solution

C, = 2 = oT?, (55)

where Ej = (a/4) T*, @ = 4a,/e, and € = 1. With this heat capacity,
Su & Olson (1996) obtain a semi-analytic quadrature solution of the
radiation diffusion equation for this problem as a function of €. We
evolve the solution until time r = 7/(ecpk), where T = 10, using
a simulation domain on the interval [0cm, 3.466205 x 1073 cm]
resolved by grid of N, = 400 cells. We note that this implies an
optical depth per cell of 7 = 0.05, so this problem does not test
the accuracy of our code in the asymptotic diffusion limit (where
Teen > 1; the accuracy in this limit is instead tested via the radiation

10~ 1073 1072
length x (cm)

Figure 9. A Marshak wave test problem (Section 3.2.1). The radiation
temperature and gas temperature computed by QUOKKA are shown as solid
lines, while the analytic solution for the diffusion approximation is shown as
circles.

pressure tube problem in Section 3.3.1). We do not use a reduced
speed of light for this test.

Since we solve the moment equations, rather than just the diffusion
equation, we do not expect our numerical solution to agree with the
Su & Olson solution at the leading edge of the wave, where our code
respects causality and restricts the propagation speed of the wave
to ¢; this constraint is violated in the diffusion approximation that
Su & Olson adopt. However, we can still compare to their solution
in the region where F, < cE, and diffusion is a good approximation.
In this region, we obtain excellent agreement with the semi-analytic
solution, as shown in Fig. 9. Note that the difference between our
numerical solution and the ‘exact’ solution at x > 3 x 1073 cm is
not an error in our solution. Rather, it is a result of our code properly
capturing the finite speed of light, while the semi-analytic solution
does not.

3.2.2 Su-Olson problem

‘We next compute a problem involving radiation penetrating a cold
medium but with an internal radiation source rather than a radiation
source at the boundary. This problem is defined in dimensionless
units, where a, = ¢ = 1, with opacities kp = kg = 1, a constant
density p = 1, and a radiation source

S(x, 1) = {OQ“’T;}

where we have a normalization factor Q = (2x0)~', radiation source
temperature 7y = 1, and spatial extent of the source xo = 0.5 and
temporal extent fp = 10. The initial radiation and gas energies
are zero in the idealized problem, but we set them to 107'° in
our simulation since the radiation solver requires non-zero gas and
radiation energies. The gas velocity is zero. We adopt reflecting
boundary conditions on the domain [0, 30] on a grid of N, = 1500
cells. We do not reduce the speed of light for this test.

0<x <xpandt < ¢y,

(56)
X = Xxport = ty,

MNRAS 512, 1430-1449 (2022)
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Figure 10. The Su-Olson test problem (Section 3.2.2). The numerical
solution is the solid line, with the exact diffusion solution shown as circles
and the exact transport solution shown as crosses.

When using the heat capacity given by equation (55), a semi-
analytic solution of the angle-dependent transport equation may be
obtained with a Fourier-Laplace transform (Su & Olson 1997). This
solution assumes that v = 0 at all times, so we drop all v/c terms for
this problem. We show our numerical solution using CFL number
0.4 at time r = 10 in Fig. 10; for comparison, we also show the
exact transport solution and the exact diffusion solution. We find
that with the Levermore (1984) closure, we obtain a solution in
between the diffusion solution and the transport solution. While it
makes little difference at + = 10, we find better agreement with the
transport solution at earlier times when using the Minerbo (1978)
closure (not shown). In this problem, some regions near the internal
radiation source (located at 0 < x < 0.5) have Eddington factors x
< 1/3, which cannot be represented by any local closure of the form
given by equation (23). None the less, we obtain a solution that is
more accurate than one would obtain by using a radiation diffusion
equation.

3.2.3 Radiation-matter energy exchange

We next isolate the implicit matter-radiation energy exchange solver
by solving a problem with no transport. Following Turner & Stone
(2001), we set up a uniform domain with periodic boundary condi-
tions, where the gas and radiation are initially out of thermal equi-
librium. The initial radiation energy density is E, = 10'? ergcm™
and, the initial gas energy density £, = 10? ergcm™3. The density
p = 1077 gem™3 and the specific opacity kp» = 1.0 cm? g~'. Rather
than using a constant heat capacity (as Turner & Stone 2001 do),
we use the heat capacity given by equation (55), which allows us to
obtain an algebraic solution for the matter temperature 7 as a function
of time ¢

T = (TJ1 — SEO) exp [—g (a, + %%) /c,oct] + gEo, (57)
where Ey = E, + (c¢/¢) E, and Ey= Eyla, + (é/c)(ot/4)]_I are
constant as a function of time. Taking the limit t — oo, we
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Figure 11. Time evolution of the gas temperature in the radiation-matter
coupling test (Section 3.2.3). The simulated gas temperature using RSLA
is shown as the solid line. The exact solution for the physically correct gas
temperature (i.e. without RSLA; equation 57) is shown as the dashed line.

immediately see that the equilibrium temperature T4 is modified
whenever ¢ # ¢, contrary to previous claims in the literature

Ti=tEo= Eofa, +(5) 5] (58)

Fundamentally, this occurs whenever RSLA is employed (and ¢ #
c¢) because the quantity Eq = E, + (c/¢) E, is conserved in this
problem, not the total energy E\ = E, + E,. This is a generic failing
of the RSLA, which does not conserve total energy. However, in
practice when the boundary conditions are such that the quantity Ey
is not conserved, the physically correct steady-state solution may
still be obtained — this is the situation for all the radiation-HD test
problems we present in Section 3.3, and is also the situation for most
applications of interest.

To test QUOKKA'’s ability to recover the analytic solution, we sim-
ulate the problem using a constant time-step At = 1078 s until =
1072 s. We use a reduced speed of light & = 0.1c. We show the time
evolution of the matter temperature in Fig. 11 both when using RSLA
and without. We find that the numerical solution agrees with the exact
solution to better than one part in 10° at each time-step for both cases.
The RSLA equilibrium temperature is approximately 20 per cent
higher than the physically correct equilibrium temperature.

3.2.4 Shadow test

We next illustrate the performance of our radiation solver in two
dimensions with a shadowing test based on that of Hayes & Norman
(2003); our test differs from theirs only in that we use planar x—y
geometry instead of cylindrical r—z coordinates. The goal of this
test is to evaluate how well an RHD scheme casts sharp shadows,
recovering the geometric optics limit that should prevail when the
optical depth is low. This problem consists of a rectangular domain
of 1.0 by 0.12 cm with a streaming radiation source incident from the
left boundary and an outflow boundary condition on the right. The
lower boundary is reflecting, and the upper boundary allows outflow.
In the middle lies an optically thick cylinder. The initial gas and
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Figure 12. Results for the shadow test (Section 3.2.4). Colour shows the radiation temperature. The solid line shows a density contour indicating the position

of the ‘cloud’.

radiation temperatures are 290 K and the incident flux has a radiation
temperature of 1740K. The background has a density of pp, =
1073 gecm ™3, and the cylinder has a density of p = 1.0 gcm™>. The
gas has an opacity pk = (p/pye)? 0.1 cm~!, a mean molecular weight
u = 10my, and an adiabatic index y = 5/3. We allow two levels of
mesh refinement on top of a base grid of 280 x 80 cells, tagging cells
for refinement when the relative gradient in radiation energy density
exceeds 0.1. The problem is evolved until t =5 x 10~!'s with a
CFL number of 0.4. We do not reduce the speed of light for this test.
For this problem, we find it necessary to reduce the relative tolerance
of the implicit matter-radiation coupling solver to 10~'>. Otherwise,
there are unphysical radiation shocks reflected from the cylinder.

We show the radiation temperature at the end of the simulation
in Fig. 12. After the beam of light has crossed the domain, we
find a sharp shadow cast behind the cylinder, as one would expect
physically. However, there are some residual artefacts from a
transient beam of light that initially curved around the cylinder and
reflected against the lower boundary, as seen in the low-temperature
shock-like features within the shadow near the right edge of the
domain. This appears to be an unavoidable artefact of using a local
VET closure. (This does not occur when using the Eddington tensor
obtained from the geometric optics limit, i.e. f,, = 1.) Overall, this
test shows that QUOKKA produces qualitatively correct results for
semitransparent problems.

3.2.5 Beam test

We next test our code on a beam or ‘searchlight’ test involving
streaming radiation propagating without any absorption, adopting
parameters from Gonzalez et al. (2007) with the only modification
in that we move the beam to the lower left-hand corner of the box.
The domain is a square box [0cm, 2cm]? with constant density
p = 1.0gem™3, gas and radiation temperature 7 = 300 K, and zero
opacity. A beam of radiation enters the domain at a 45° angle from
the lower left-hand corner (x < 0.0625cm or y < 0.0625 cm) with
a radiation temperature of 1000 K. We use AMR with a base grid of
1282 and two levels of refinement to simulate this problem, refining
wherever the relative gradient of the radiation energy density exceeds
0.1. For this problem, we use PLM reconstruction for the radiation
variables in order to avoid oscillations near the leading edge of the
beam. We use a CFL number of 0.4. We show the radiation energy
density at time t = 1.172 (L /c), where L is the box size, in Fig. 13.
The beam stays relatively narrow as it crosses the box, but at the
leading edge of the beam, we see there is a transient bow shock-
like feature which is due to our use of a local VET closure. Our
code performs reasonably well on this problem, showing only a
small amount of diffusion of the beam as it propagates. The bow
shock feature appears to be an unphysical ‘radiation shock’ that can
occur due to the non-linear behaviour of non-constant local VET
closures. For instance, it can be shown that the radiation moment

Figure 13. The beam test in vacuum (Section 3.2.5). Colour shows the
logarithm of the radiation energy density.

equations without source terms with the Levermore (1984) closure
are mathematically identical to the hydrodynamic equations of an
ultrarelativistic gas (Hanawa & Audit 2014). After the leading edge
of the beam has crossed the box, the bow shock feature leaves the
box and a narrow beam of light remains.

3.3 Radiation hydrodynamics

Our final suite of tests use the full suite of physics in QUOKKA, and
involve coupled radiation and HD.

3.3.1 Radiation pressure tube

Our first radiation-hydrodynamic test is the the radiation pressure
tube problem of Krumholz et al. (2007a). This problem is designed
to show that the radiation pressure gradient can stably balance the
gas pressure gradient both in the regime where radiation pressure
dominates and in the regime where gas pressure dominates for a
problem where the optical depth is sufficiently large that the radiation
is in the equilibrium diffusion regime. We adopt the opacities
kp = kg = 100cm? g~!, mean molecular weight i = 2.33my, and
adiabatic index y = 5/3. The exact steady-state solution in the
diffusion approximation is given by the solution to the differential
equations

MNRAS 512, 1430-1449 (2022)
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Figure 14. Temperature profiles for the radiation pressure tube test (Sec-
tion 3.3.1). The radiation and gas temperatures are both shown, but only the
latter line is visible because the two temperatures are nearly identical. The
temperature for the exact diffusion solution is shown in the black circles. The
simulated and exact temperatures agree to within 0.2 per cent.

dp

L= (2o +4a1) 4L, (59)
&’T 3 (dT\2 | 1dpdT

=) =—7 (a) +;£$, (60)

where the left-side temperature, density, and density gradient are
To=2.75x 10’K, py = 1.0gcm™3, and dpy/dx = 0.005 gcm™,
We solve this equation on the domain [0cm, 128 cm] in order to
obtain the initial conditions for this problem. The left- and right-hand
side initial conditions are adopted as Dirichlet boundary conditions
for our simulation. The reduced speed of light ¢ is set to 10 ¢, o &
4.03 x 108 cms™!, where ¢, ¢ is the sound speed at the left-hand
boundary.

After evolving for a sound crossing time ¢ = L, /¢, ~ 3.177 x
107 s with a CFL number of 0.4 on a grid of 128 cells, we obtain the
numerical solution shown in Fig. 14. We note that these parameters
imply an optical depth per cell of Ty ~ 102, so this problem tests
the accuracy of our numerical methods in the asymptotic diffusion
regime, where 7. > 1. Our numerical solution agrees with the
initial conditions (obtained from the exact diffusion solution) to
better than 0.2 per cent. Since the boundary conditions do not require
conservation of the quantity Ey (see Section 3.2.3), we find that we
are able to obtain the physically correct solution even when ¢ # c.

3.3.2 Optically thin radiation-driven wind

In order to test the radiation-gas momentum coupling in the optically
thin limit, we next simulate a radiation-driven wind in the limit of very
low optical depth. We consider an isothermal gas with sound speed
¢y = 0.2kms™!, with constant opacitieskp =0and kg =5 cm? g_l .
A flux of radiation F,  enters the computational domain from the
left-hand side at x = 0, inducing an acceleration ay = kgF, o/c in
the gas; we choose the density of the gas low enough that the optical
depth is negligible, so the flux and acceleration are constant across
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Figure 15. Mach number as a function of position for a radiation-driven
wind (Section 3.3.2). The solid line is the QUOKKA numerical solution, while
the points show the exact solution given by equation (61).

the domain. Consider a fluid parcel moving at Mach number M, at
x = 0, where the radiation flux enters the domain. Integrating the
gas momentum equation with respect to position x yields a Bernoulli
equation for the Mach number M as a function of position

b - () )
where L = c2./ap is the characteristic acceleration length of the
problem. If the density at x = 0 is pg, then from conservation
of mass, in steady state the density as a function of position is
p= (MO/M)pO,7 For our test, we choose M, = 1.1, and we set
po = 3.897212 x 107" gecm™3; for our chosen value of kg, this
yields an optical depth T = 107 from x = 0 to x = L.

To simulate this problem, we set up a domain from x = 0 to L,
resolved by N, = 128 cells. We initialize the system with the exact
solution (equation 61), and also use the exact solution to impose
Dirichlet boundary conditions on the density, velocity, and radiation
flux. We evolve the system until # = 10 (L /cr) using a CFL number
of 0.4; for this calculation, we use an isothermal Riemann solver. We
set the reduced speed of light to ¢ = 10M; ¢y, where M, is the Mach
number at the right-side boundary. In Fig. 15, we show the exact
solution for the Mach number (circles) compared to the solution
produced by QUOKKA (solid line), finding excellent agreement.

3.3.3 Subcritical radiative shock

We next simulate a subcritical radiative shock, following the set-
up used by Skinner et al. (2019) with the dimensionless pa-
rameters for the Mach M = 3 example given by Lowrie & Ed-
wards (2008). We scale to cgs units with the opacities kp = kg =

7We neglect gravitational forces in this problem, but we note that our solution
is formally equivalent to the Eddington ratio ngqq = 2 case of the plane-
parallel radiation-inhibited Bondi accretion problem of SO13.

220z 1udy /z uo sesn AjisIaAlun [euoneN uelensny Aq 9G90€59/0€Y |/1/2 L G/aI01HE/SEIUW/WOD dNO dlLSPED.//:SANY WOI) POPEOJUMOQ


art/stac439_f14.eps
art/stac439_f15.eps

Two-moment AMR radiation hydrodynamics on GPUs

T T T
[ ——radiation
4.0

|
Q
n

3.5

3.0

2.5

2.0

temperature (dimensionless)

1.5

1.0

el by by by by by by e

LI B i e e o e B B L B e e e e e e o
T T T T T T

l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
length x (dimensionless)

Figure 16. Radiation and matter temperatures in a subcritical radiative shock
with M = 3 (Section 3.3.3). The simulation results as shown as solid lines,
while the exact steady-state solution is shown as circles.

577 cm? g~ '(1 gecm™3/p), mean molecular weight p = my, and adia-
batic index y = 5/3. The left-side state consists of p; = 5.69 gcm™3,
velocity v, = 5.19 x 10" cms™!, and temperature (gas and radia-
tion) 7, = 2.18 x 10°K. The right-side state is pg = 17.1 gcm_3,
v = 1.73 x 107 cms™', and Tx = 7.98 x 10° K. These states are
also used as Dirichlet boundary conditions for the simulation. In order
to exactly match the assumptions used in the semi-analytic solution
of Lowrie & Edwards (2008), we use the Eddington approximation
(i.e. P, = (1/3)E,]) to close the radiation pressure tensor for this
problem.® Following Skinner et al. (2019), we use a reduced speed
of light ¢ = 10(v;, + ¢, 1), where ¢ is the adiabatic sound speed
of the left-side state. We use a CFL number of 0.4 and evolve until
t = 107°s on a grid of 512 cells on the domain [0 cm, 0.01575 cm],
with the discontinuity placed between the left- and right-side states
xo = 0.0130 cm. The shock drifts 1.5 per cent of the domain length
to the right from the location of the initial discontinuity, which may
be due to a combination of the initial numerical transient and our
use of the asymptotic states as boundary conditions, rather than the
exact states expected at a finite distance from the shock location. This
makes the steady-state location of the shock on the simulation grid not
well-defined. After accounting for this drift, the agreement between
the numerical and semi-analytic solution is excellent, as shown in
Fig. 16. We find that the relative error of the gas temperature in
L, norm is 0.4 per cent, which is at least as good as the solution of
Skinner et al. (2019) for the same spatial resolution. In this problem,
we find that using shock flattening is essential to obtain a non-
oscillatory temperature structure for the Zel’dovich spike (the gas
temperature discontinuity shown in Fig. 11; Zel’dovich & Raizer
1967).

8We provide a PYTHON code that computes the semi-analytic solution for ra-
diative shocks using the Eddington approximation (Lowrie & Edwards 2008)
in our https://github.com/BenWibking/quokka-code GitHub repository.
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3.3.4 Radiation-driven dust shell

As a final example, we consider a non-steady-state RHD problem:
the radiation-driven dust shell problem from SO13, consisting of an
initial shell of dusty gas placed at radius r, with the radial density
profile

P = ey <— Sl "’)2) (62)
4mr2y /2ol 205, )

where My, is the mass of the shell and o g, is the thickness of the shell.

We place a point-like source of radiation, representing a central star,

at » = 0. The radiation source is smoothed so that it can be resolved

on the computational grid, using a Gaussian profile of the form

. L, r

Jjr) = Wexp <_§3) s (63)
where L, is the luminosity of the source and o, is a smoothing
parameter defining the spatial extent of the source. Under the thin-
shell approximation and neglecting gas pressure forces, SO13 obtain
an equation of motion for the shell. Starting from rest, the resulting
shell velocity, written in terms of the shell Mach number My, is

dR 1
Mg = — =V2Moy /1 — —, 64
W=7 V2M, R (64)

with dimensionless radius R = r/ry, dimensionless time T = t/t,
characteristic time 7y = ry/cr, reference sound speed ¢, and reference
Mach number M,

L*
Mo ="y |28 (65)
’ A7troc

Following the parameters used by SO13, we set kp = kg =
20cm?g~!, ¢ =2kms™!, rp=5pc, My, = 5 x 10° Mg, and
L, =2x 10% ergs~!. We note that ¢, is only a reference sound
speed and does not change the thin-shell solution since pressure
forces are assumed to be negligible. We adopt values of o, = 0.3r)
and oy, = 0.3r9/(2+/210g 2).

We initialize our simulation of this problem using the density
profile (equation 62) and the quasi-static radiation energy and flux
derived by SO13. We initialize the gas temperature in equilibrium
with the radiation temperature. A density floor is set at pgoor =
1078 pg, where py = Msh/(47tr3/3). A pressure floor is likewise set at
Pioor = 1073P,, where Py = y,oocf. We use an adiabatic equation of
state with y = 5/3 and a mean molecular weight u = 2.33my,
where my is the mass of the hydrogen atom. We use a uniform
grid of 128% and PLM reconstruction for both hydrodynamic and
radiation variables. Following SO13, we reduce the speed of light
to ¢ = 860 c,. The simulation is evolved until # = 0.125¢#, using
a CFL number of 0.3. The shell velocity as a function of time is
shown in Fig. 17. Our simulation has values slightly lower than
expected from the thin-shell solution, whereas SO13 find simulated
shell velocities slightly higher than the thin shell solution. Exact
agreement cannot be expected since SO13 do not specity their values
for the parameters o, and o, and differences in implementation
details of our radiation hydrodynamic solvers. Overall, we find very
good agreement between the simulation (shown as crosses) and the
thin-shell solution (solid line).

4 PERFORMANCE AND SCALING

The entire motivation for QUOKKA is to achieve high performance on
RHD problems run on GPUs. We therefore next test the performance
and scaling of the code. All the tests we present were performed on the
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Figure 17. Shell velocity as a function of dimensionless time 7' = #/t; in the
radiation-driven dust shell test (Section 3.3.4). The exact thin-shell solution
is shown as the solid line, while the circles show the mass-weighted shell
velocity from the simulation.

Gadi supercomputer at the National Computational Infrastructure,’
using the gpuvolta nodes. Each node has two 24-core Intel Xeon
Platinum 8268 (Cascade Lake) 2.9-GHz CPUs and four Nvidia
Tesla Volta V100-SXM2-32GB GPUs connected to each other in
an all-to-all topology with NVLink 2.0. Nodes are coupled via HDR
InfiniBand in a Dragonfly + topology.

4.1 Weak scaling

We first demonstrate that QUOKKA has excellent parallel scaling
efficiency when keeping the number of computational cells fixed per
GPU (referred to as weak scaling). For our first test of weak scaling,
we show the scalability of the HD solver on uniform grids, disabling
mesh refinement and radiation. We simulate a Sedov—Taylor blast
wave (Taylor 1946; Sedov 1959) in a 3D periodic box on the domain
[ — 1, 1] in each coordinate direction. The initial conditions consist
of a spherical region of high pressure P = 10 for radii » < 0.1 and
low pressure P = 0.1 for » > 0.1, with a uniform density of p = 1
and zero velocity, for an ideal gas with adiabatic index y = 5/3.

We run with a varying number of GPUs with two 256 grids
per GPU, increasing the resolution of our simulation as we extend
to greater numbers of GPUs. However, a power-of-two resolution
increase does not easily map on to a jump from 1 to 4 GPU, so
the single-GPU simulation only uses a grid size of 256*. The grid
size of the simulations therefore ranges from 2563 (for 1 GPU) to
20483 (for 256 GPU). We set the AMReX domain decomposition
parameters blocking_factor and max_grid_size to a value
of 128, leading the computational grid to be decomposed into arrays
of size 1283. (We also tested local grid sizes of 256 but found
only a few per cent performance improvement on this problem.) We
use one MPI rank per GPU for all simulations. The CFL number
is 0.25 and we evolve for 100 time-steps for each simulation. We
assess performance by counting the total number of cell-updates and

“https://nci.org.au/our-systems/hpc-systems
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Table 1. Weak scaling efficiency for HD with PPM reconstruction as a
function of the number of GPUs for a Sedov blast wave with periodic boundary
conditions.

Scaling
efficiency
Nodes GPUs Mzones GPU™! 57! (per cent) Grid size
0.25 1 113.34 - 256
1 4 70.68 100.00 5123
8 32 57.75 81.70 10243
64 256 58.50 82.76 20483

Table 2. Weak scaling efficiency for HD with PLM reconstruction as a
function of the number of GPUs for a Sedov blast wave with periodic boundary
conditions.

Scaling
efficiency
Nodes GPUs Mzones GPU 57! (per cent) Grid size
0.25 1 157.75 - 256
1 4 85.94 100.00 5123
8 32 74.77 87.00 10243
64 256 65.18 75.84 20483

dividing by the number of GPUs in order to obtain the performance
figure-of-merit in the units of 1 million cells (or zones) per time-step
per GPU per second (Mzones GPU™! s7!). We report the results in
Table 1.

We find a & 40 per cent drop in performance per GPU when going
from 1 to 4 GPU, corresponding to using all 4 GPU on a single node
of the compute cluster. We hypothesize that this is due to the limited
communication bandwidth between GPUs on a node. For intra-node
scaling on CPUs, Stone et al. (2020) report a similar decrease in
performance when going from one CPU to all the CPUs on a node
for ATHENA++ , which they attribute to limitations of memory
bandwidth. However, significantly different scaling behaviour is
observed when running the K-ATHENA HD code on GPUs (Grete,
Glines & O’Shea 2019) on the Summit supercomputer,'” finding a
99 per cent weak scaling efficiency going from 1 to 6 GPU on a single
node, so there may be some inefficiency in our current GPU-to-GPU
communication method. We find that using CUDA-aware MPI does
not improve performance for our code. However, we observe only
a modest drop in performance per GPU when going from 1 node
(4 GPU) to 64node (256 GPU), yielding a parallel efficiency of
83 percent on 64 node when compared to running on 1node. We
could not run on larger numbers of GPU nodes due to job size
limitations, but we expect scaling to continue to thousands of GPUs
based on the parallel scaling observed for other GPU HD codes based
on AMReX, such as CASTRO (Almgren et al. 2020).

In Table 2, we show the same performance numbers as in Table 1,
but using PLM reconstruction for each simulation instead of PPM
reconstruction. We find that the performance improves significantly
on a single GPU, going from 113 million zone-updates per second
to 158 million zone-updates per second. However, communication
overheads limit the relative performance improvement when using
large numbers of nodes, as the 64-node case goes from 59 million
zone-updates per GPU per second using PPM to only 65 million zone-
updates per GPU per second using PLM. Since the computations on
each local grid are less expensive with PLM but the communication

10https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
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Table 3. Weak scaling efficiency for RHD as a function of the number of
GPUs for the radiation-driven shell test (Section 3.3.4) with periodic boundary
conditions.
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Table 5. Strong scaling efficiency for RHD as a function of the number of
GPUs for the radiation-driven shell test (Section 3.3.4) with periodic boundary
conditions on a base grid of 256> cells and two levels of refinement. The
number of cells per GPU is computed as an average over all time-steps.

Scaling
efficiency Nodes GPUs Mzones GPU~'s™! <g§{j Scaling Speedup
Nodes GPUs Mzones GPU~!'s™!  (per cent) Grid size efficiency
0.25 1 22.55 - 256° 1 4 4.95 421.8° 100.00 1.00x
1 4 10.32 100.00 5123 2 8 4.30 334.83 86.70 1.73x
8 32 7.92 76.75 10247 4 16 3.26 265.7° 65.83 2.63x
64 256 7.87 76.19 20483 8 32 2.61 210.9° 52.69 4.21x
Cells Cells Cells

Nodes GPUs (Gru =0 (Gev =1 (Geo =2

1 4 161.3° 259.13 376.7°
Table 4. Performance for both Sedov and radiating shell tests as a function 2 8 128.03 205.63 299,03
of the number of GPUs for a single node with four NVIDIA A100 GPUs. 4 16 101.63 163.23 237.33

8 32 80.6° 129.5°% 188.43

BC fill time
GPUs Mzones GPU™'s™!  (per cent) Grid size Problem
1 254.05 2.00 256° Sedov
4 150.26 42.03 5123 Sedov
1 39.04 3.12 256° Rad. shell
4 18.17 53.27 5123 Rad. shell

costs remain the same, the scaling efficiency decreases slightly as
well, from 83 to 76 per cent.

We next test the scaling behaviour for full RHD solver on uniform
grids. Table 3 lists the performance per GPU and parallel efficiency
measured with respect to single-node performance for the radiation-
driven shell test problem run for 50 time-steps. Since we have
many radiation substeps per hydrodynamic step (set here to 10; see
Section 2.2.4), the performance metric in units of Mzones GPU ™' 57!
is lower by a factor comparable to but somewhat smaller than the
number of radiation substeps per hydro step; a single radiation update
is slightly less costly than a single hydrodynamic update. In this case,
we observe a steeper drop in performance when going from 1 to 4
GPU (approximately a factor of 2). The lower parallel efficiency is
not surprising, since each radiation substep requires communicating
boundary conditions between grids, so the amount of inter-GPU
communication per hydro time-step increases significantly for RHD.
None the less, as is the case for HD, there is little additional
performance penalty when scaling from 1 to 64 node. We measure a
parallel efficiency in this case of 76 per cent.

In Table 4, we list the performance metrics of the code on both the
Sedov problem and the radiation-driven shell problem running on a
compute node with newer NVIDIA A100 GPUs. Since we only have
access to a limited number of these GPUs, we only show performance
data for a single GPU and a single compute node (4 GPUs). The
single GPU case achieves 254 million hydrodynamic zone-updates
per second using PPM, making QUOKKA, as far as we are aware, the
fastest PPM HD code that currently exists. On the radiation-driven
shell problem, the code achieves 39 million radiation hydrodynamic
zone-updates per second. In both cases, the performance per GPU
drops by a factor of approximately 2 when using all 4 GPU on the
node. This is almost entirely due to the time spent communicating
boundary conditions, as shown in the table (‘BC fill time’, which
denotes the percentage of total wall time spent filling ghost cells for
each local grid). If communication of boundary data and computation
over the local grids could be perfectly overlapped, the parallel
efficiency going from 1 to 4 GPU would be >99 percent for HD
and >96 for RHD.

Finally, we point out that absolute speed of QUOKKA is excellent.
Comparison between CPU and GPU codes is non-trivial, since it

obviously depends on the CPU-to-GPU ratio on a particular compute
platform. However, it is worth pointing out that QUOKKA’s update
rate per core (normalized by the number of CPU cores per compute
node) for radiation-HD on GPU is comparable to or better than
ATHENA++s for HD on CPU.

4.2 Strong scaling with AMR

Many applications of interest will seek to minimize either the total
runtime of the simulation or the total node-hours used for a simulation
for a problem of a fixed size. Additionally, most applications we
are interested in will benefit from or require the use of AMR. We
therefore test the ability of QUOKKA to scale an AMR radiation
hydrodynamic simulation of fixed size to larger numbers of GPUs in
order to either minimize total runtime or total node-hours (referred to
as strong scaling). For this test, we initialize the radiation-driven shell
problem (Section 3.3.4) on a base grid of 2563 cells with two levels
of mesh refinement based on the relative gradient in the gas density.
We run each simulation for 50 time-steps, with a CFL number of
0.3 and PLM reconstruction for both HD and radiation. We set the
AMReX domain decomposition parameters blocking_factor set
to 32 and max_grid_size set to a value of 128, so that all grids
are between 32° and 128° in size, with possible non-cubic grids at
intermediate sizes. The number of GPUs used for each simulation
is varied, scaling from 1node (4 GPU) to 8 node (32 GPU). This
is a particularly stringest test, since the level-by-level AMR time-
stepping requires that each level be computed separately, limiting
the amount of parallelism that can be distributed across GPUs. There
is also additional communication overhead when AMR is enabled
compared to a single-level uniform grid simulation. We show the
scaling results in Table 5. Comparing Tables 3 and 5, the performance
per GPU for a single node is lower than that of a uniform grid
simulation by ~50 per cent. (A similar, although somewhat smaller,
overhead when enabling AMR is also observed with CPU codes, e.g.
ATHENA++ ; Stone et al. 2020). The scaling efficiency is reasonable
for 2 and 4 nodes (66 per cent for 4 node), but drops significantly at
8node to 53 per cent parallel efficiency. We hypothesize that this is
due to the small number of cell-updates per GPU once 32 GPU are in
use for this problem (approximately 2113 ~ 9.4 x 10° cell GPU™).
We find that performance on a single GPU is significantly diminished
for uniform-grid problems smaller than 256°, so this performance
drop may be largely due to the inability to use all GPU hardware
threads when the amount of work per GPU is small. Similar GPU
performance behaviour is observed when running K-ATHENA on
GPUs for varying problem sizes per GPU (Grete et al. 2019). This
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effect is also magnified by the sequential nature of the level-by-
level time-stepping. For level / = 1, the number of cells per GPU
drops below 2563 for 8 GPU, and for level / = 2, it drops below
2563 for 16 GPU. High scaling efficiency is obtained before reaching
these thresholds, so it appears that reasonable performance on GPUs
may be obtained with AMR when all refinement levels have at
least 256° cells per GPU on average. In general, obtaining the best
possible GPU performance may require an adjustment to the mesh
refinement parameters usually used when running on CPUs. For self-
gravitating problems, scaling may be aided by the self-similar nature
of gravitational collapse, leading to an approximately equal number
of cells on each refinement level for appropriate refinement criteria
(see discussion in Stone et al. 2020).

5 DISCUSSION AND CONCLUSIONS

We conclude by discussing some of the limitations of QUOKKA as it
currently exists, and our plans for future expansions of the code that
will address at least some of these.

5.1 Range of applicability

Our method is limited in its range of applicability due to the use
of a reduced speed of light. In the streaming limit, ¢ may be
chosen so that it is larger than the fastest radiation-driven fronts
(e.g. ionization fronts, some Marshak waves) in order to maintain
the correct dynamics (Gnedin & Abel 2001). In the diffusion limit,
¢ may be chosen so that it is larger than the effective diffusion
speed ~c/z. In this regime, we see that energy non-conservation
may cause the equilibrium temperature in a closed box to differ from
the physically correct equilibrium temperature (Section 3.2.3), but in
most astrophysical RHD applications, the boundary conditions are
not those of a closed system, and in this case our method recovers
correct solutions without difficulty (e.g. Section 3.3.3). However, as
emphasized by SO13, there is no constant choice of ¢ that enables
one to preserve the ordering of the hydrodynamic signal speed c;
+ |v|, the dynamic diffusion speed ~|v| + ¢/t, and the reduced
speed of light ¢ such that vhyaro <K Vifiusion <K €. Extensions to the
reduced speed-of-light method are possible that enable qualitatively
correct behaviour in a larger parameter space, but we leave their
implementation to future work (Wibking et al., in preparation).

5.2 Future extensions

There are several ways in which our code may be extended to include
more physics or more accurate radiation transport. The easiest
additional radiative process to include is monoenergetic, isotropic
scattering, with a straightforward extension for moment methods
(e.g. Jiang et al. 2012). Also relatively straightforward would be an
extension to include coarse frequency dependence of the radiation
via a multigroup extension of our radiation-matter coupling implicit
solver. Even with a relatively small number of energy groups, many
additional applications would be possible, including observational
comparisons.

In order to improve the accuracy of the solution, one might also
eschew local closures entirely and substitute a non-local closure for
the Eddington tensor based on solution of the discrete ordinates
(Sn) equations (e.g. Davis et al. 2012; Jiang et al. 2012), or using our
moment method as a non-linear pre-conditioner to accelerate the con-
vergence of the thermal emission term in the Sy equations themselves
(Park et al. 2012). The latter is an attractive option especially when
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used in combination with photon-conserving spatial discretizations
of the Sy equations (Adams 1997, 2001).

In the near future, we plan to add support for self-gravity with
AMReX’s geometric multigrid solver for GPUs (Zhang et al. 2019),
sink and star particles for star cluster simulations (e.g. Krumholz,
McKee & Klein 2004; Offner et al. 2009), and optically thin line
cooling for the interstellar medium. These additions will enable
simulations of the interstellar medium, galactic winds, and star
clusters, among others.

RHD codes like ours will enable the widespread use of more
accurate radiation transport methods and an ever-greater dynamic
range in both space and time. As we approach the era of exascale
supercomputers, we see a bright future for AMR RHD on GPU
architectures.

Software: AMREX (AMReX Development Team et al. 2021),
MATPLOTLIB (Hunter 2007), NUMPY (Harris et al. 2020), VISIT (Childs
etal. 2012), and YT (Turk et al. 2011).
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