
MNRAS 512, 1430–1449 (2022) https://doi.org/10.1093/mnras/stac439 
Advance Access publication 2022 February 18 

QUOKKA : a code for two-moment AMR radiation hydrodynamics on GPUs 

Benjamin D. Wibking 

1 , 2 ‹ and Mark R. Krumholz 

1 , 2 

1 Researc h Sc hool of Astr onomy and Astr ophysics, Mount Str omlo Observatory, Cotter Road, Weston Creek, ACT 2611 Australia 
2 ARC Centre of Excellence for Astronomy in Three Dimensions (ASTRO-3D), Canberra ACT 2600, Australia 

Accepted 2022 February 14. Received 2022 January 30; in original form 2021 October 4 

A B S T R A C T 

We present QUOKKA , a ne w subcycling-in-time, block-structured adapti ve mesh refinement (AMR) radiation hydrodynamics 
(RHD) code optimized for graphics processing units (GPUs). QUOKKA solves the equations of HD with the piecewise parabolic 
method (PPM) in a method-of-lines formulation, and handles radiative transfer via the variable Eddington tensor (VET) 
radiation moment equations with a local closure. We use the AMREX library to handle the AM management. In order to maximize 
GPU performance, we combine explicit-in-time evolution of the radiation moment equations with the reduced speed-of-light 
approximation. We show results for a wide range of test problems for HD, radiation, and coupled RHD. On uniform grids 
in 3D on a single GPU, our code achieves > 250 million hydrodynamic updates per second and almost 40 million radiation 

hydrodynamic updates per second. For RHD problems on uniform grids in 3D, our code scales from 4 to 256 GPUs with an 

efficiency of 76 per cent. The code is publicly released under an open-source license on GitHub . 
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 I N T RO D U C T I O N  

.1 Methods for radiation-hydrodynamics 

n many astrophysical systems, the radiation field carries a substantial
ortion of the total momentum and energy budget, and therefore
ust be included in any numerical simulation. Ho we ver, simulating

uch systems, particularly at high resolution, presents a fundamental
hallenge in both physics and numerics. Part of this challenge is
imensionality: in full generality, the radiation field is go v erned by
he time-dependent equation of radiative transfer 

1 

c 

∂ 

∂ t 
I ν + 

ˆ n · ∇I ν = ην − κ (tot) 
ν ρI ν + 

1 

4 π

∫ 
κ (sca) 

ν ρI ν d �, (1) 

here I ν is the radiation intensity at frequency ν travelling in the
irection specified by the unit vector ˆ n , ην is the matter emissivity,
is the matter density, and κ (tot) 

ν and κ (sca) 
ν are the total and scatting

pecific opacities, respectively. This is a time-dependent integro-
ifferential equation with six dimensions: three positions, two angles
parametrized by ˆ n ), and the frequency. Full numerical solution
f a problem of this dimensionality, at least if it must be done
illions of times to run in tandem with a hydrodynamic (HD) or
agnetohydrodynamic (MHD) simulation, remains out of reach for
ost applications. 
Within the astrophysics community, there are two general ap-

roaches to numerical radiation hydrodynamics (RHD). One is char-
cteristic methods, which solve equation ( 1 ) (or its time-independent
orm), but only along rays pointing back to particular sources (e.g.
bel & Wandelt 2002 ; Rijkhorst et al. 2006 ; Krumholz, Stone & Gar-
iner 2007b ) or rays randomly assigned by Monte Carlo (e.g. Fleck &
ummings 1971 ; Tsang & Milosavljevi ́c 2015 ). A second approach,
 E-mail: ben.wibking@anu.edu.au 

e
m

Pub
hich we will pursue here, is moment methods (e.g. Mihalas & Mi-
alas 1984 ; Castor 2004 ), whereby one takes moments of the transfer
quation, thereby eliminating the angular dimensions of the problem.
ully eliminating the angular dependence requires some care, since

n general for a moving medium the emissivity and opacity depend on
irection, even if the medium itself interacts with light isotropically
n its own rest frame. While one might guess velocity-dependent
eaming effects are unimportant in non-relativistic problems, it turns
ut that one cannot formulate a consistent, energy-conserving theory
f non-relativistic RHD without including them, at least to leading
rder (Mihalas & Klein 1982 ; Lowrie, Morel & Hittinger 1999 ;
rumholz et al. 2007a ). Systems of moment equations where the

adiation moments are written in the lab frame but the emissivity
nd absorption are written in the como ving frame, where the y can
e assumed to be isotropic, are known as mixed-frame formulations.
his is the most common approach in modern RHD codes (although

he comoving frame is increasingly popular; e.g. Skinner et al. 2019 ).
his results in a series of moment equations that one can solve in lieu
f solving the equation of radiative transfer directly, but at the price of
ntroducing the need for a closure relation to approximate the higher

oments that appear in the equations being solved. Some authors
lso combine moment and characteristic methods (e.g. Rosen et al.
017 ). While characteristic and moment methods are the only ones
idely used in astrophysics, in terrestrial applications (for example,
eutron transport calculations for nuclear reactor design) there are
wo other widely used approaches to handle the angular dependence
f the transfer equation. One is to discretise the unit sphere using
eighted quadratures (the discrete ordinates, or S n , method; e.g.
athrop & Carlson 1964 ; Adams 1997 ). The other is to expand

he angular integration in spherical harmonics (the P n method; e.g.
odest 1989 ). These methods can be much more computationally

 xpensiv e than moment methods, possibly by several orders of 
agnitude. 
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One of the simplest closures is the flux-limited diffusion (FLD) 
pproximation (LeBlanc & Wilson 1970 ; Alme & Wilson 1973 ), 
hich retains only the first moment equation, for the radiation 

nergy density, and closes the system by assuming both that the time
eri v ati ve of the radiation flux is zero and that the Eddington tensor,
efined as the ratio of the radiation pressure tensor to the radiation
nergy density, has a fixed v alue. Ho we ver, a long-understood
eficiency of FLD is that it cannot cast shadows (e.g. Hayes &
orman 2003 ), a property that can make a critical difference in the
ynamics of some semitransparent problems (e.g. Davis et al. 2014 ). 
 more accurate approximation is to evolve both the radiation energy 
ensity and the radiation flux, while still invoking a closure relation 
or the Eddington tensor; this is called a two-moment approach, since 
ne solves for the first two moments of the radiation field. When the
ddington tensor is computed via a formal solution of the angle- 
ependent radiative transfer equation, we obtain the quasidiffusion 
r variable Eddington tensor (VET) method (Gol’din 1964 ). When 
etaining a local closure for the radiation pressure tensor in terms of
he radiation energy density E and the flux F , we obtain a local
ET method, commonly referred to as the M1 (‘moment-one‘) 
ethod (Minerbo 1978 ; Levermore 1984 ; Dubroca & Feugeas 1999 ;
onz ́alez, Audit & Huynh 2007 ). There are a number of moment-
ased astrophysical RHD codes, implementing a wide variety of 
losures, in wide use, including ZEUS (Turner & Stone 2001 ), FLASH

Fryxell et al. 2000 ), ORION (Krumholz et al. 2007a ; Shestakov &
ffner 2008 ; Li et al. 2021 ), RAMSES (Commer c ¸on et al. 2011 ;
osdahl et al. 2013 ), ATHENA (Davis, Stone & Jiang 2012 ; Jiang,
tone & Davis 2012 ), ENZO (Reynolds et al. 2009 ; Bryan et al.
014 ), CASTRO (Zhang et al. 2011 , 2013 ; Almgren et al. 2020 ), and
ORNAX (Skinner et al. 2019 ), to give a partial list. 

While the use of moment methods remo v es the dimensionality 
roblem, it leaves a second problem, which is the strong mismatch in
ignal speeds between radiation and sound (or MHD) waves, which in 
 non-relativistic system travel at far less than the speed of light. This
ismatch renders simple explicit methods, as are commonly used for 
D and MHD, impractically slow for radiative transfer, due to the 

iny time-steps that would be imposed by the Courant–Friedrichs–
ewy (CFL) condition. For this reason, numerical methods for RHD 

ither use an implicit method for the radiation part of the problem
e.g. ZEUS , ORION , some versions of RAMSES and ATHENA ) or adopt
he reduced speed-of-light approximation (RSLA; Gnedin & Abel 
001 ; Skinner & Ostriker 2013 , hereafter SO13 ; FORNAX , other
ersions of RAMSES and ATHENA ). The RSLA consists of replacing 
he speed of light c that defines the signal speed in the radiation
oment equations with a lower speed ˆ c , while keeping the terms that

escribe the rate of momentum and energy exchange between gas 
nd radiation unchanged. The lower speed ˆ c , while still substantially 
arger than the HD or MHD signal speeds, is close enough to those
peeds to allow radiation time-steps large enough to render explicit 
ethods computationally feasible. 

.2 Why a new radiation hydrodynamics code? 

n this paper, we describe QUOKKA , 1 a new code for RHD. In
erms of the taxonomy introduced abo v e, QUOKKA is a two-moment
ode that uses the RSLA to allow an explicit treatment of radiation
ransport. QUOKKA is also an adaptive mesh refinement (AMR) code, 
o it begins with a base grid at uniform spatial resolution, but then
 Quadrilateral, Umbra-producing, Orthogonal, Kangaroo-conserving Kode 
or Astrophysics! 

o
o  

o
p  
ynamically adds higher resolution grids as needed to achieve user- 
pecified accuracy goals (Berger & Oliger 1984 ; Berger & Colella
989 ). Ho we ver, these features do not make QUOKKA unique: ORION

nd RAMSES (among others) offer moment-based AMR RMHD, 
hile FORNAX uses RSLA on a dendritic (though not adaptive) grid.
The unique feature of QUOKKA is that it has been designed from

he ground up to run efficiently on graphics processing units (GPUs).
his design goal moti v ated our choice of both algorithms and low-

evel implementation details. While QUOKKA is not the first GPU 

D code in astrophysics (others include GAMER; Schive, Tsai & 

hiueh 2010 ; Schive et al. 2018 ; CHOLLA ; Schneider & Robertson
015 ; CASTRO ; Almgren et al. 2020 , and ARK-RT ; Bloch et al. 2021 ),
or even the first AMR GPU code, it is the first to feature two-moment
MR RHD on GPUs. 
Bringing RHD to GPUs creates some unique challenges. Con- 

emporary compute nodes are often limited by data bandwidth, both 
n terms of moving data between main memory and the CPU or
PU, and in terms of moving data between CPUs or GPUs. For

his reason, implicit methods generally have poor scalability, due to 
he need for global communications during an implicit solve (see 
.g. Appendix E of Skinner et al. 2019 ). This imbalance between
omputation and communication is magnified on GPUs. Likewise, 
obust implicit methods require iterative sparse matrix solvers, which 
chie ve lo wer peak ef ficiency on GPUs compared to CPUs due to
heir heavy use of indirect addressing and highly branching control 
ow. These considerations motivate our choice of an explicit RSLA 

ethod. They also moti v ate our choice of time-inte gration strate gy,
hich as we detail below has been designed to maximize computation 

and therefore minimize the relative amount of communication) on 
ach hydrodynamic time-step. We show that, with this strategy, we 
re able to achieve update computation rates of > 250 million zone
pdates per second per GPU for pure HD, and nearly 40 million for
HD. We also achie ve ≥ 75 per cent parallel ef ficiency (compared 

o single-node performance) out to 256 GPUs. This combination of 
erformance and scaling makes QUOKKA substantially faster than 
ny other public RHD code. 

The remainder of this paper is organized as follows. In Section 2 ,
e introduce the set of equations that QUOKKA solves, and detail our
umerical methods for solving them. In Section 3 , we present a wide
ange of tests that demonstrate the accuracy and capabilities of the
ode. Section 4 co v ers our tests of code performance and scalability.
n Section 5 , we discuss the range of applicability of our methods,
nd our plans for application and future code expansions. Finally, the
ode itself, including all test problems, is freely available on GitHub
nder an open-source license. 

 M E T H O D S  

.1 Equations 

e solve the equations of RHD (Pomraning 1973 ; Mihalas &
ihalas 1984 ; Castor 2004 ) for an inviscid, non-relativistic fluid in

ocal thermodynamic equilibrium in the mixed-frame formulation, 
here the radiation variables are defined in an inertial frame (i.e.
ulerian simulation coordinates) and the radiation-matter interaction 

erms are written in the frame comoving with the fluid, with the
ransformations between the frames accounted for via the addition 
f radiation-matter exchange terms that depend explicitly on the ratio 
f fluid velocity to the speed of light, β = v/ c . In this first version
f QUOKKA we omit scattering, so that matter-radiation interaction is 
urely by emission and absorption. We write the equations as follows
MNRAS 512, 1430–1449 (2022) 

https://github.com/BenWibking/quokka-code


1432 B. D. Wibking and M. R. Krumholz 

M

w  

e  

E  

t  

a  

a  

f

w  

m  

P  

t  

t  

o
�  

a  

t  

d  

f
 

m  

e

t  

r  

t  

m

T   

(  

b  

f  

n  

s  

W  

n  

r  

t  

t  

(

T  

d  

i  

o  

l  

y  

t  

e  

a  

p  

t  

o  

e  

r  

t  

d

2

W  

o  

t  

s  

(  

t  

l
 

a  

s  

o  

d  

x  

f  

t  

a  

s  

.  

t
i  

2  

t  

i  

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/512/1/1430/6530656 by Australian N
ational U

niversity user on 27 April 2022
∂ ρ

∂ t 
+ ∇ · ( ρv ) = 0 , (2) 

∂ ( ρv ) 
∂ t 

+ ∇ · ( ρvv + P ) = G , (3) 

∂ E 

∂ t 
+ ∇ · [( E + P ) v 

] = cG 

0 , (4) 

∂ E r 

∂ t 
+ ∇ · F r = −cG 

0 , (5) 

1 

c 2 

∂ F r 

∂ t 
+ ∇ · P r = −G , (6) 

here ρ is the gas density, v is the gas velocity, E is the total
nergy density of the gas, P = δij P is the gas pressure tensor,
 r is the radiation energy density, F r is the radiation flux, P r is

he radiation pressure tensor, ∇ · ρvv denotes the sum ( ρv i v 
j ) ,j ,

nd G 

i is the radiation four-force, with G 

0 the time-like component
nd G consisting of the space-like components. In the mixed-frame
ormulation, the radiation four-force to order β is 

− cG 

0 = ρ( κP 4 πB − κE cE r ) + ρκF 

(v 
c 

· F r 

)
, (7) 

− G = −ρκF 

F r 

c 
+ ρκP 

(
4 πB 

c 

)
v 
c 

+ ρκF 

v P r 

c 
, (8) 

here κF , κE , and κP are the flux-mean, energy-mean, and Planck-
ean specific opacities e v aluated in the comoving frame, B is the
lanck function e v aluated at the gas temperature, and v P r is the

ensor contraction v j P 

ij 
r (Mihalas & Mihalas 1984 ). The latter two

erms in the expression for G correspond to the relativistic work term
f Krumholz et al. ( 2007a ) and are only important in the regime βτ

 1 (where τ is a characteristic optical depth), to which we cannot
pply the RSLA (as discussed below), so we neglect them. Ho we ver,
he term of order β in the expression for cG 

0 corresponds to the work
one by the radiation force on the gas and can be the dominant term
or problems of interest. 

To apply the RSLA to these equations, we first rewrite the radiation
oment equations so that they have a factor of exactly 1/ c next to

ach of the time deri v ati ves 

1 

c 

∂ E r 

∂ t 
+ ∇ ·

(
F r 

c 

)
= −G 

0 , (9) 

1 

c 

∂ 

∂ t 

(
F r 

c 

)
+ ∇ · P r = −G , (10) 

hen we replace this 1/ c factor with a factor of 1 / ̂ c , where ˆ c is the
educed speed of light, and multiply through by factors of ˆ c to obtain
he conservation law form of the reduced speed-of-light radiation
oment equations (e.g. SO13 ) 

∂ E r 

∂ t 
+ ∇ ·

(
ˆ c 

c 
F r 

)
= − ˆ c G 

0 , (11) 

∂ F r 

∂ t 
+ ∇ · ( c ̂  c P r ) = −c ̂  c G . (12) 

he maximum wave speed of this system of equations is bounded by ̂c
as long as the flux satisfies causality, i.e. F r ≤ cE r ). As emphasized
y SO13 , all other factors of c remain unchanged, and, since the
actors of c are unchanged on the right-hand side of the hydrody-
amic equations, the reduced speed-of-light radiation hydrodynamic
ystem does not conserve total energy or momentum for ˆ c �= c.

hen the left-hand side flux divergence terms are negligible, this
on-conservation implies that the equilibrium temperature of the
educed speed-of-light system is slightly modified with respect to
he correct equilibrium temperature, implying that we cannot apply
NRAS 512, 1430–1449 (2022) 
he RSLA to problems in the equilibrium diffusion limit in general
see section 3.2.3 ). 

Writing out the right-hand side terms explicitly, we obtain 

∂ ρ

∂ t 
+ ∇ · ( ρv ) = 0 , (13) 

∂ ( ρv ) 
∂ t 

+ ∇ · ( ρvv + P ) = ρκF F r /c , (14) 

∂ E 

∂ t 
+ ∇ · [( E + P ) v 

] = −cρ( κP a r T 
4 − κE E r ) 

−ρκF 

(v 
c 

· F r 

)
, (15) 

∂ E r 

∂ t 
+ ∇ ·

(
ˆ c 

c 
F r 

)
= ˆ c ρ

(
κP a r T 

4 − κE E r 

)
+ ρκF 

(
ˆ c 

c 

v 
c 

· F r 

)
, (16) 

∂ F r 

∂ t 
+ ∇ · ( c ̂  c P r ) = − ˆ c ρκF F r . (17) 

hese equations make no approximations about the frequency depen-
ence of the radiation field. Ho we ver, for computational tractability,
n what follows, we will approximate κF with the Rosseland mean
pacity κR , which yields the correct radiation force in the diffusion
imit, and approximate κE with the Planck mean opacity κP , which
ields the correct energy absorption and emission in the optically
hin limit for fluids at rest (Mihalas & Mihalas 1984 ). Ho we ver, we
mphasize that the choice to set κF ≈ κR and κE ≈ κP is an additional
pproximation, and that others might be preferable depending on the
hysical system being simulated. In future work, we plan to address
he limitations of these approximate grey opacities via an extension
f our method to the multigroup solution of the radiation moment
quations. Our present set of equations is sufficient for grey non-
elativistic RHD in the semitransparent regime, where we can neglect
he ‘relativistic work term’ that is important only in the dynamic
iffusion ( βτ � 1) regime, as described earlier. 

.2 Solution method 

e solve the system formed by equations ( 13 )–( 17 ) using an
perator split approach, whereby we first advance the hydrodynamic
ransport subsystem (Section 2.2.1 ), then the radiation transport
ubsystem (Section 2.2.2 ), and finally update the local coupling terms
Section 2.2.3 ). The first subsystem uses a single explicit update step,
he second a set of subc ycled e xplicit updates, and the third a purely
ocal implicit update. We describe each of these steps below. 

This update cycle operates within a Berger & Oliger ( 1984 )
nd Berger & Colella ( 1989 ) AMR framework, whereby each
patial variable is represented by a volume average in each cell,
n a rectangular, Cartesian grid. We co v er the entire computational
omain with a coarse grid with cell spacings � x 0 , � y 0 , �z 0 in the
 , y , and z directions; the grid spacings need not be the same, but
or most applications we choose them to be the same. We denote
his coarse grid Level 0. We then dynamically add (or remo v e)
dditional, finer grids o v er parts of the domain in response to user-
pecified refinement criteria. We denote these additional levels 1, 2,
 . . , with each grid on level l having cells a factor of 2 smaller than
hose on level l − 1, so that the cell spacing on level l is � x 0 /2 l 

n the x direction, and similarly for y and z. We use only factor of
 refinements in order to minimize numerical glitches arising from
he discontinuous change in resolution, which can arise especially
n problems where shocks cross the coarse-fine mesh interface at an
blique angle (e.g. Fryxell et al. 2000 ). When adding finer grids, we
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3 As an example, consider the velocity vector with unit magnitude | v | and 
equal components v x = v y = v z . Then each component v i = 

√ 

3 / 3 and the 
sum of components 

∑ 3 
d= 1 v · ˆ e d = 

√ 

3 ≈ 1 . 732. 
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onserv ati vely interpolate the underlying coarse data (using linear 
nterpolation for robustness, regardless of the spatial reconstruction 
sed to compute the fluxes), and when removing finer grids we 
onserv ati v ely av erage do wn the fine data. Time-steps on dif ferent
MR lev els are sub-c ycled, such that the time-step on lev el l is � t l =
 t 0 /2 l . At the end of every two time-steps on level l > 0, we perform
 synchronization step to ensure that we maintain machine-precision 
onservation for all conserved quantities (Section 2.2.4 ). 

Our implementation of AMR in QUOKKA uses the lower level AM-
Core interface provided by the AMREX library (Zhang et al. 2019 ;
MReX Development Team et al. 2021 ) for AM grid generation and

oarse/fine grid interpolation, domain decomposition, and parallel 
ommunication. In addition to solving the RHD equations, QUOKKA 

tself handles the time-stepping and mesh refinement criteria. 

.2.1 Hydrodynamics 

or the solution of the hydrodynamic subsystem (equations 13 –
5 , omitting the matter-radiation coupling terms on the right hand 
ides), we adopt a method-of-lines (or semidiscrete) approach, 
iscretizing the spatial variables while initially keeping the time 
ariable continuous, thereby transforming the partial differential 
quations into a large set of ordinary differential equations (ODEs) 
hat can be integrated in time using a standard ODE integrator 
Hyman 1979 ; Jameson, Schmidt & Turkel 1981 ). For the latter,
e use the second-order strong stability preserving Runge–Kutta 
ethod (RK2-SSP; Shu & Osher 1988 ). Such an approach has been

uccessfully employed in several recent astrophysical HD codes 
Skinner et al. 2019 ; Stone et al. 2020 ). 

We schematically write the time-step � t used for the RK2-SSP
ntegration as 

t = C 0 
�x 

| λ| , (18) 

here � x is the minimum grid spacing, | λ| is a maximum signal
peed, and C 0 is a stability coefficient. Analysis of the stability 
olynomial of a Runge–K utta inte grator applied to the linearized 
D equations (Colella et al. 2011 ; McCorquodale & Colella 2011 )
ields a value for | λ| of 

 λ| = max 
D ∑ 

d= 1 

[( v · ˆ e d ) + c s ] , (19) 

here v is the fluid velocity, ̂  e is the unit vector in coordinate direction
 , c s is the adiabatic sound speed, and the maximum is taken o v er all
ells. Ho we ver, e ven in the linear case, such an eigenvalue analysis
ives, in general, only a necessary condition for stability and not a
ufficient condition (Reddy & Trefethen 1992 ). For this reason, we 
ore conserv ati vely estimate the v alue of | λ| as 

 λ| = D max ( | v | + c s ) , (20) 

nd compute the time-step � t on each AMR level as 

t = 

C 0 

D 

�x 

max ( | v | + c s ) 
, (21) 

here we define the dimensionless factor C 0 / D to be the CFL
umber so as to be consistent with its standard definition in one
patial dimension. 2 When written in this form, for both forward 
uler and RK2-SSP, the maximum stable coefficient C 0 for a system
 This is the same time-step criterion used in the FORNAX code, with D = 3 
nd �x = �r/ 

√ 

2 ; see equation 37 of Skinner et al. 2019 . 

4

2
t
o

f constant-coefficient, linear equations is C 0 = 1. The maximum 

table CFL number in 3D for the RK2-SSP integrator is therefore
/3. We note that it is not sufficient to estimate | λ| as max ( | v | +
 s ), since the component-wise sum of the velocities may exceed the
ector magnitude | v | and therefore violate the lower bound given by
quation ( 19 ). 3 

We find that such a method-of-lines scheme is not stable when
ombining higher order spatial reconstruction with forward Euler 
ime integration. Ho we ver, we find it is stable for time-steps satisfying
he abo v e time-step criterion when used with higher order (second-
rder or higher) Runge–Kutta methods. We note that this stability 
roblem with forward Euler is also found by Stone et al. ( 2020 ) in the
ethod-of-lines implementation of ATHENA ++ , but does not appear 

or single-step integrators that average in time the reconstructed 
rofiles of characteristic waves over the cell interfaces, as done in
he original version of PPM (Colella & Woodward 1984 ). 

As Skinner et al. ( 2019 ) notes, in contrast to fully-discrete unsplit
ydrodynamic methods such as the corner transport upwind (CTU) 
ethod (Colella 1990 ), the coupling across corners of each cell is

chieved via the use of a multistage time integrator, rather than via
irect computation of fluxes from diagonal neighbours of each cell. 
hile we are formally limited to a smaller time-step compared to

he CTU method (due to the factor of 1/ D ), our method may be
ore robust in practice, as the CTU integrator has been found to

e unstable in supersonic turbulence with strong radiative cooling 
nless very small ( � 0.1) CFL numbers are employed (Schneider &
obertson 2017 ). 
We reconstruct the hydrodynamic variables on each face of each 

ell from the cell-average variables of the neighbouring cells. We 
erform this reconstruction using the piecewise parabolic method 
PPM; Colella & Woodward 1984 , hereafter CW84 ) using the
rimiti ve hydrodynamic v ariables (density , velocity , and pressure).
s is standard, the conversion from conserved (density, momentum, 

nd energy) to primitive variables is carried out assuming that the
 olume a verage and cell centered states are equi v alent, which is an
pproximation accurate to O( �x 2 ). As noted by several authors, the
PM algorithm is therefore formally second-order accurate in spatial 
esolution. 4 After the primitive variables have been defined, for the 
econstruction step proper, we use the standard interface-centered 
PM stencil 

 j+ 1 / 2 = 

7 

12 
( q j + q j+ 1 ) − 1 

12 
( q j+ 2 + q j−1 ) . (22) 

e follow the implementation of Stone et al. ( 2020 ) in re-grouping
he abo v e terms symmetrically with respect to the interface i + 1/2
o as to preserve exact symmetry in floating point arithmetic. 

We do not perform the slope-limiting and contact steepening steps 
f CW84 . We instead prevent new extrema in the reconstructed
tates by limiting the interface states at the faces of a given cell
o the minimum and maximum of the cell-average values of cell
nder consideration and its two neighbouring cells along the axis of
econstruction, similar to the monotonicity constraint introduced by 

ignone, Plewa & Bodo ( 2005 ). This is followed by the extrema
etection and o v ershoot correction step within each cell as described
MNRAS 512, 1430–1449 (2022) 

 We note that there exist fully fourth-order versions of PPM (Felker & Stone 
018 ), but because fourth-order accuracy does not permit local source terms 
o be e v aluated independently for each cell, we choose to implement a second- 
rder method. 
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y CW84 . In this step, the parabola assumed to exist across each
ell is examined. If an ‘overshoot’ (as defined by CW84 ) of the
arabola is detected, we follow the original CW84 prescription of
erforming linear reconstruction on the side of the cell affected by
he o v ershoot. If an e xtremum is instead detected, rather than forcing
he reconstruction to a constant value across the cell as done by
W84 , we revert to performing a linear reconstruction within the
f fected cell, follo wing Balsara ( 2017 ). We note that these latter two
teps only examine the interface values, and do not guarantee that
he interface states lie within neighbouring cell-average values, and
herefore the cell-average limiting carried out in the first step is not
edundant. Any of these limiting steps may make the interface states
iscontinuous, with distinct states associated with each of the two
ells adjacent to an interface. 

We also implement reconstruction based on a piecewise-linear
ethod (PLM) using the monotonized-central (MC) slope limiter

Van Leer 1977 ). We use PPM reconstruction by default, but allow
LM reconstruction via a compile-time option. 
In some cases, especially in underresolved strong shocks, the

revious steps do not provide sufficient dissipation to a v oid os-
illations. This problem was recognized by CW84 , who proposed
 shock flattening procedure in combination with a small amount
f artificial viscosity. We find that this shock flattening procedure
s not sufficient in multidimensional problems. Instead, we follow

iller & Colella ( 2002 ), who generalize the CW84 shock-flattening
rocedure for multidimensional HD. Using this latter method, we
nd that no artificial viscosity is needed and we do not include any

n our implementation. 
Finally, in order to compute the flux of mass, momentum, and

nergy between cells, we use the HLLC Riemann solver with the
primiti ve v ariable Riemann solv er’ wav espeeds and intermediate
tates (T oro 2013 ). W e make the standard approximation that the
ace-average flux is the same as the face-centered flux, and therefore
his step is also second-order accurate in spatial resolution. For each
ell, the fluxes across each face are then added together to produce
n unsplit spatial divergence term used by each stage of the Runge–
 utta inte grator to advance the cell in time. 
In multidimensional simulations, it has been long recognized

hat in strong grid-aligned shocks, the HLLC Riemann solver can
nphysically amplify the so-called ‘carbuncle’ instability (Quirk
994 ). In astrophysical problems, this is most often encountered in
trong explosions. Implementing additional dissipation in the form
f artificial viscosity (e.g. Gittings et al. 2008 ), the ‘H-correction’
Sanders, Morano & Druguet 1998 ), or by adaptively switching to
n HLL Riemann solver (Harten, Lax & Leer 1983 ) for computing
uxes perpendicular to strong shocks (e.g. Quirk 1994 ; Skinner et al.
019 ) are possible solutions to this issue. In future work, we plan to
mplement an adaptive procedure to fix the carbuncle instability via
he latter method. 

Future work may also include implementing an adaptive method
o reduce the order of reconstruction in order to preserve density
nd pressure positivity in near-vacuum regions, such as the mul-
idimensional optimal order detection (MOOD) method of Clain,
iot & Loub ̀ere ( 2011 ). An alternative solution may be to adaptively

witch to an exact (iterative) Riemann solver depending on the flow
onditions (Toro 2013 ). 

.2.2 Radiation 

e solve the radiation transport subsystem (equations 16 –17 , again
mitting the terms on the right-hand side) in a similar method-of-
NRAS 512, 1430–1449 (2022) 
ines fashion. Our approach is most similar to that of Skinner et al.
 2019 ), who also evolve the radiation moment equations with a
ime-explicit method-of-lines approach; ho we ver, they do not use
ither PPM reconstruction or a reduced speed of light. Because
ven with the RSLA the signal speed for the radiation subsystem
s substantially larger than for the hydrodynamic subsystem, we
volve the former explicitly in time with several radiation time-steps
er hydrodynamic time-step. In the regime of applicability of the
SLA, this approach allows a much more computationally efficient

olution to the radiation moment equations, due to the fact that
 xplicit methods hav e a greater arithmetic intensity per byte of data,
ave simple memory access patterns and control flows (compared to
mplicit solvers), and do not require global communication across
he computational domain in order to advance the solution in time.
ll these features are greatly beneficial on GPUs, where the ratio
f floating-point arithmetic performance to memory bandwidth is
ypically greater than on CPUs. 

We carry out each radiation subcycle using the same RK2-SSP
ntegrator (Shu & Osher 1988 ) that we use for HD. We likewise
se a finite volume representation of the radiation variables, with
 PPM spatial reconstruction (or optionally, PLM) of the radiation
nergy density E r and reduced flux f = F r /cE r ; the only difference
n our procedures for HD and radiation is that for radiation we do
ot employ a shock flattening procedure. There can exist unphysical
adiation shocks when using local closures, since in general such
losures make the radiation subsystem non-linear, but there is no
pplicable shock flattening procedure to suppress this effect. We
arry out reconstruction in terms of the reduced flux f rather than the
bsolute flux F r in order to suppress unphysical fluxes | F r | > cE.
his is ef fecti ve in 1D problems, but in multidimensional problems,

he magnitude of the radiation flux may still exceed cE r , which
s an unphysical state in which local closures cannot compute the
ddington factor at all. Reducing the order of reconstruction to
rst order (piecewise constant) when the interface states violate this
onstraint helps but does not eliminate the issue in all cases. For the
urpose of computing the local closure only, we use rescale the flux
uch that | F r | = cE r whenever | F r | > cE r . For particularly difficult
roblems, especially in order to a v oid unphysical instabilities in the
ropagation of non-grid-aligned optically thin radiation fronts, we
nd that it is necessary to reconstruct the radiation variables using
LM reconstruction. 
One drawback to upwind finite volume methods for radiation

ransport is that in naiv e form, the y do not give the correct behaviour
or dif fusi v e re gions where the optical depth per cell is much
reater than unity. This failure occurs because numerical diffusion
ominates o v er physical diffusion when using upwind methods when
he mean free path of photons is not resolved (Lowrie & Morel
001 ). One common approach to fix this incorrect behaviour is to
odify the Riemann solver in the optically thick regime to reduce

he upwind bias of the spatial deri v ati ve (Audit et al. 2002 ; Skinner
t al. 2019 ; Mezzacappa et al. 2020 ). Ho we ver, this can lead to
iolations of causality (i.e. | F r | > cE r ) when the radiation flux is in
he streaming regime (Audit et al. 2002 ), which occurs especially
t discontinuities in the opacity between optically thin cells and
ptically thick cells. The only apparent fix for this problem, which
e adopt, is to disable the optical-depth correction in the Riemann

olver for those cells where it produces a causality-violating state.
e find that this condition is only acti v ated when f → 1, so it may not

ualitati vely af fect the solution. Ho we ver, we also advocate refining
n the gradient in the optical depth per cell in order to resolve the
oundary layers in such situations whenever it is computationally
easible. 
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For computing the flux of radiation quantities between cells, we 
se an HLL Riemann solv er, with wav espeeds computed assuming
he Eddington factors are fixed at the beginning of the time-step 
Balsara 1999 ). This approach allows us to substitute different closure 
elations for the Eddington factors without requiring a modification 
f the Riemann solver, unlike previous implementations that are 
estricted to a single local closure (e.g. Gonz ́alez et al. 2007 ; SO13 ;
kinner et al. 2019 ). In principle, we could even use Eddington

ensors computed via a short characteristics formal solution of the 
adiative transfer equation (e.g. Davis et al. 2012 ), but we leave
xploration of a non-local VET method to future work. 

Our default closure relation for the Eddington tensor is the 
evermore ( 1984 ) closure, which is derived by assuming that the

adiation field is isotropic in some (unknown) reference frame and 
hen computing a Lorentz transform from this reference frame to 
ne in which the reduced flux f matches the value in the cell under
onsideration. This procedure leads to a radiation pressure tensor 
e.g. Gonz ́alez et al. 2007 ; Rosdahl et al. 2013 ; SO13 ) 

 r = 

(
1 − χ

2 
I + 

3 χ − 1 

2 
ˆ n ̂ n 

)
E r , (23) 

here I is the identity tensor, and the Eddington factor χ , and the
ux direction cosine ˆ n are 

= 

3 + 4 f 2 

5 + 2 
√ 

4 − 3 f 2 
, (24) 

ˆ  = 

F r 

| F r | . (25) 

hen the radiation flux is exactly zero, we drop the direction- 
ependent term in equation ( 23 ). By considering a coordinate system
here the radiation flux is aligned with a coordinate axis, we see that
is the component of the Eddington tensor in the direction of the

adiation flux. 
We emphasize that this is only one possible choice of closure, 

nd a variety of alternative local closures exist (e.g. Minerbo 1978 ;
evermore & Pomraning 1981 ). We refer readers to Janka ( 1992 )
nd Koerner & Janka ( 1992 ) for systematic comparisons to angle-
ependent transport solutions for neutrinos, and Olson, Auer & 

all ( 2000 ) for comparisons to photon solutions. Because of its
rominence in the neutrino transport literature, as well as marginally 
a v ourable performance on some test problems, we also provide 
n implementation of the Minerbo ( 1978 ) closure in addition to
he default Levermore ( 1984 ) option. However, users can also 
mplement any local closure of their choice simply by providing 
n implementation of a function that maps from the reduced flux f 
o the Eddington factor χ for their preferred closure. Doing so does 
ot come at any cost in computational performance. 

.2.3 Matter-radiation coupling 

ollowing the computation of the hyperbolic part of the radiation 
ubsystem, we use an implicit method to e v aluate the source terms
those appearing on the right-hand sides of equations 13 –17 ) for both
he radiation and hydrodynamic subsystems; this update occurs once 
er radiation subcycle, and thus several times per hydrodynamic step. 
ince there are no spatial deri v ati ves in these terms, each cell can be
pdated independently. 
The radiation-matter coupling update occurs in three steps. The 

rst is to handle the energy source terms c ρ( κP a r T 

4 − κE E r ) that
ppear in equations ( 15 ) and ( 16 ). In the regime of problems to
hich we can apply the RSLA this term is often the stiffest, and
e therefore update it using the backward-Euler implicit method 
f Howell & Greenough ( 2003 ), specialized to the case of a single
aterial and extended to include a reduced speed of light. Let E g =
 − ρv 2 /2 be the gas internal energy, and let E 

( t) 
g and E 

( t) 
r be the

as internal energy and radiation energy at the end of the hyperbolic
pdate, where the superscript ( t ) indicates quantities e v aluated at this
oint in the update cycle. We compute the new gas internal energy
 

( t+ 1) 
g and radiation energy E 

( t+ 1) 
r , where ( t + 1) indicates the state

fter accounting for the exchange term, by solving the implicit system

 = F G 

≡ (
E 

( t+ 1) 
g − E 

( t) 
g 

) + 

( c 

ˆ c 

)
R 

( t+ 1) , (26) 

 = F R ≡
(
E 

( t+ 1) 
r − E 

( t) 
r 

) − ( R + S ) ( t+ 1) , (27) 

here 

 ≡ �tρκP (4 πB − ˆ c E r ) , (28) 

 t is the radiation substep time-step, and S is an optional source term
hat we include to allow, for example, addition of radiation by stellar
ources. The quantities F G and F R are the residual errors in the gas
nergy and radiation energy, respectively. 

To solve this system via Newton–Raphson iteration, we require 
he Jacobian matrix, the elements of which are 

∂ F G 

∂ E g 

= 1 + 

(
c 
ˆ c 

)
∂ R 
∂ E g 

, (29) 

∂ F G 

∂ E r 

= −c�tρκP , (30) 

∂ F R 

∂ E g 

= − ∂ R 
∂ E g 

, (31) 

∂ F R 

∂ E r 

= 1 + ˆ c �tρκP , (32) 

here 

∂ R 

∂ E g 

= 

ρ�t 

C v 

[
κP 

∂ B 
∂ T 

+ 

∂ κP 

∂ T 

(
4 πB − ˆ c E 

t+ 1 
r 

)]
, (33) 

nd C v is the gas total heat capacity at constant volume. From the
acobian, we can write the change in radiation and gas temperature
or each iterative update as 

E r = − F R + ηF G 
∂ F R 
∂ E r 

+ η
∂ F G 
∂ E r 

, (34) 

E g = − F G + �E r 
∂ F G 
∂ E r 

∂ F G 
∂ E g 

, (35) 

here η ≡ −( ∂ F R / ∂ E g )( ∂ F G / ∂ E g ) −1 . We repeatedly apply equa-
ions ( 34 ) and ( 35 ) to the radiation and gas energies until the
ystem converges. Howell & Greenough ( 2003 ) leave unspecified the
onvergence criteria they use for their solver. After experimenting 
ith several possibilities, we decide to stop the Newton–Raphson 

terations when the residuals F R and F G satisfy ∣∣∣∣ F G 

E tot 

∣∣∣∣ < ε and (36) ∣∣∣∣ c ˆ c F R 

E tot 

∣∣∣∣ < ε, (37) 

here 

 tot ≡ E 

( t) 
g + 

c 
ˆ c 

(
E 

( t) 
r + S 

)
. (38) 

hen ˆ c = c, E tot is the total (internal gas plus radiation) energy
t the end of the time-step. By default, the relative tolerance ε is
et to 10 −10 . We find that larger tolerances produce unacceptably 
naccurate solutions for many problems. In especially stiff problems, 
t may be necessary to reduce the tolerance to the order of machine
MNRAS 512, 1430–1449 (2022) 
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recision for double-precision floating point arithmetic ( ∼10 −15 ). If
he solver exceeds a specified maximum number of iterations (400
y default) without converging, the code prints an error message and
 xits. Conv ergence failure usually occurs only when the intial time-
tep has not been sufficently reduced compared to the CFL time-step
t the start of a simulation. 

Once the Newton–Raphson iterations hav e conv erged, we hav e
btained the updated gas internal energy and radiation energy, and
e proceed to the next two steps of updating the coupling terms.
e first update the radiation and gas momenta, accounting for

he coupling term ρκF F r /c. To do so, we compute the flux mean
pacity κF using the updated gas temperature. Then, following
kinner et al. ( 2019 ), we use a backward-Euler discretization of

he radiation flux source term (modified to include a reduced speed 
f light) 

 

( t+ 1) 
r = 

F 

( t) 
r 

1 + ρκF ̂  c �t 
. (39) 

n order to ensure momentum conservation when ˆ c = c, we apply
he difference in radiation flux in an equal and opposite manner to
he gas momenta (as advocated by Skinner et al. 2019 ) 

 F r ≡ F 

( t+ 1) 
r − F 

( t) 
r , (40) 

 ρv ) ( t+ 1) = ( ρv ) ( t) − � F r 
ˆ c c . (41) 

The final step is to compute the work done by the radiation
orce on the gas. Since we are evolving the conserved variables,
his term cannot be computed explicitly as written in equation ( 16 )
ithout causing a significant error in the gas internal energy when the

adiation force is stiff. We instead compute this term as the difference
n gas kinetic energy o v er the time-step � E kin , then add this quantity
o the total gas energy and subtract this quantity from the radiation
nergy 

 

( t+ 1) ← E 

( t+ 1) 
g + 

(
E 

( t) 
kin + �E kin 

)
, (42) 

 

( t+ 1) 
r ← E 

( t+ 1) 
r − (

ˆ c 
c 

)
�E kin , (43) 

here E 

( t + 1) denotes the total gas energy at the end of the time-step.
his completes the update for all radiation-matter coupling terms. 

.2.4 Le vel sync hr onization pr ocedure 

s explained by Berger & Colella ( 1989 ), in an AMR calculation, it
s necessary to adjust the solution on the coarse AMR level following
he solution on any refined level in order to maintain conservation
f the evolved quantities (e.g. mass, momentum, energy). For
yperbolic equations evolved explicitly in time, this is traditionally
one by saving the flux at the coarse-fine grid boundary in a ‘flux
egister’ for both the flux computed on the fine level and the flux
omputed on the coarse lev el. In general, these flux es are different
ue to the differing stencil used on the coarse and fine levels, and
ithout correction, this would lead to a loss of conservation of energy

and any other conserved quantities). The flux register stores this
ismatch, and in the synchronization step, adds the missing mass,
omentum, or energy to the cells on the coarse level immediately

djacent to the coarse-fine boundary. 
As noted by Howell & Greenough ( 2003 ), an implicit radiation

pdate has additional difficulties in ensuring conservation, since
adiation can propagate much further than a single grid cell on the
oarse grid. Our radiation update is fully explicit, but we would like
o advance each AMR level on the hydrodynamic time-scale, rather
NRAS 512, 1430–1449 (2022) 
han on the radiation time-scale, so we have a similar long-range
ignal propagation difficulty. Rosdahl et al. ( 2013 ) outline three
ossible solutions to the problem: (i) perform the radiation solve
fter each coarse hydrodynamic step, keeping subcycling-in-time on
efined levels (which would be very inaccurate), (ii) use a single
lobal time-step for all AMR levels, which allows one to advance
he radiation solution on all levels in each radiation substep (which
ould be very computationally expensive, since in our applications
f interest, the global time-step is typically limited by the time-
tep of the highest-resolution level), or (iii) restrict the time-step
or each level to the minimum of the radiation and hydrodynamic
ime-steps. In our code, we set the coarse time-step such that the
umber of radiation substeps per level is limited to a maximum
alue N sub, max in order to minimize the signal propagation distance
rom the coarse-fine boundaries. The flux mismatch at the coarse-
ne boundaries is added to the immediately adjacent cells on the
oarse grid at the end of each level advance. When N sub, max = 1,
ur solution is identical to the flux synchronization method used
n the RAMSES AMR code (Rosdahl et al. 2013 ). Ho we ver, as a
efault we set the parameter N sub, max to 10, which appears to be
ufficient to a v oid significant discontinuities in the radiation energy
nd flux at coarse-fine boundaries, but still allows for significant
ubcycling and thus a substantially lower computational cost. We
se this value for all test problems shown in this work, but users are
ble to set this parameter as desired for either greater efficiency or
reater consistency at refinement boundaries. When this parameter
s too large, ho we ver, it is possible for the coarse level to fail
o maintain positivity of the radiation energy or causality of the 
adiation flux. 

 TEST  PROBLEMS  

e now proceed to describe a series of tests that we have conducted to
 erify QUOKKA ’s accurac y and conv ergence characteristics, starting
ith tests of the hydrodynamic subsystem (Section 3.1 ), followed
y tests of the radiation transport and radiation-matter exchange
ubsystems (Section 3.2 ), and concluding with tests of coupled RHD
Section 3.3 ). 

Additional example problems and an automated test suite of 20
est problems with checks against exact solutions are included with
UOKKA ’s source code. We run this test suite for each commit and
ull request in our GitHub repository. While continuous integration
ests such as ours cannot guarantee bug-free software, this practice
as flagged and prevented the introduction of several bugs during the
evelopment of QUOKKA . In order to maintain high software quality,
e also run the commercial static code analyzer SONARQUBE 5 on

very commit and pull request. 

.1 Hydrodynamics 

or all our HD tests, we disable the radiation portion of the code.
hese tests e v aluate the hydrodynamic transport solver in isolation. 

.1.1 Sound wave 

e compute the propagation of a sound wave in one dimension
n order to measure the convergence of our numerical method to

https://www.sonarqube.org
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Figure 1. The error || � U || in the solution (equation 45 ) for a sound wave 
as a function of spatial resolution per wavelength N x . Black circles show 

numerical results, and the dashed line is a power law that scales as N 

−2 
x 

normalized to the observed error at the smallest N x . 
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Figure 2. Density , velocity , and pressure profiles for the stationary shock 
tube test (Section 3.1.3 ). Lines show the QUOKKA simulation result. For 
comparison, we show the exact solutions for density , velocity , and pressure 
as circles of the same colour. 
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he exact solution as a function of spatial resolution, following 
he test described by Stone et al. ( 2008 ). With U denoting the
ector of conserved variables ( ρ, ρv x , ρv y , ρv z , E ), we initialize
he simulations with the initial state U 0 + δU , where 

U = A R sin (2 πx) , (44) 

here R = (1, −1, 1, 1, 1.5) is the right eigenvector of the linearized
ydrodynamic system, and U 0 is the background state with density 
= 1, velocity v = 0, and pressure P = 1/ γ . We set the adiabatic

ndex γ = 5/3 and the wave amplitude A = 10 −6 . We simulate a
eriodic domain x = 0 to 1 and evolve the system for one wave period,
llowing us to compute the error of the solution by direct comparison
f the initial conditions and the final state of the simulation. We define
he error vector 

 � U ) k = 

1 

N x 

∑ 

i 

∣∣U i,k − U 

0 
i,k 

∣∣ (45) 

here k denotes a component of each state vector, U i is the vector
f conserved variables in cell i at the final time-step, and U i 

0 is the
ector of conserved variables in cell i in the initial conditions. Each
omponent | � U | k is therefore the L 1 norm of the error of a component
f the solution state. We assess the accuracy of the solution based on
he root-mean-square (rms) of the components of this error vector, 
enoted || � U || . 
We run simulations using PPM reconstruction and a CFL number 

f 0.1, using grid sizes from N x = 16 to 1024. We show the error
orm as a function of resolution in Fig. 1 . For N x = 16, we obtain
| � U || = 1.0 × 10 −7 , for N x = 128, we obtain || � U || = 1.6 × 10 −9 ,
nd for N x = 1024, we obtain || � U || = 1.7 × 10 −11 . The results
or our code are in excellent agreement with those from the ATHENA

ydrodynamic solver (fig. 7 of Stone et al. 2008 ). The N 

−2 
x scaling of

he error norm indicates that our hydrodynamic solver converges at 
econd order in spatial resolution, as expected from the formal order 
f accuracy of the method. 
.1.2 Contact discontinuity 

he HLLC Riemann solver has the property that it can resolve
n isolated stationary contact discontinuity with infinite resolution 
Toro 2013 ). The HLL solver, on the other hand, introduces a large
mount of numerical diffusion for this problem (see fig. 10 .20 of
 oro 2013 ). T o verify that our hydrodynamic implementation can
aintain a perfect contact discontinuity, we simulate a system where 

he initial conditions have a left- and right-hand state separated with
 discontinuity at x = 0.5. The left-hand state is ρL = 1.4, p L = 1.0,
nd the right-hand state is ρR = 1.0 and 1.0. Since this is a pure
ontact discontinuity, the solution should not evolve from the initial 
tate. We set the velocity to zero, and use an adiabatic index γ =
.4. We evolve the solution numerically until t = 2. The error with
espect to the correct solution is exactly zero. 

.1.3 Stationary shock tube 

ur next test is a stationary shock tube, which we set up using the
arameters suggested on the website of FX Timmes. 6 This shock tube
roblem is substantially more difficult to solve than the standard Sod
 1978 ) shock tube test due to the larger jump in pressure and density
t the discontinuity. We initialize left- and right-hand states with a
iscontinuity at x 0 = 2, with the left-hand state ρL = 10 and 100, and
he right state ρR = 1 and 1. The initial velocity is zero. We evolve
he solution using a CFL number of 0.1 until t = 0.4 on a grid of
000 cells on the domain [0, 5]. We use a small CFL number since
he wave structure at the discontinuity creates waves that propagate 
aster than the linearized Roe eigenvalues would predict. 

We show QUOKKA ’s results for this test in Fig. 2 . As for the
ound wave test, we compute the L 1 error norm for each of the
onserved variables, and then compute the rms of those error norms.
he rms L 1 error norm divided by the rms norm of the exact solution
MNRAS 512, 1430–1449 (2022) 
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s 1.12 × 10 −3 . Inspecting the solution in Fig. 2 , we see that the
greement between the exact solution and the numerical solution
s very good. The only noticeable differences are small oscillations
ear discontinuities in the deri v ati ve of the solution at x ≈ 2.4 and
ear the density discontinuity at x ≈ 3.6. We find that the shock
attening method of Miller & Colella ( 2002 ) is essential to produce a
easonable solution to this problem. Without it, we find unacceptably
arge post-shock oscillations (not shown). 

.1.4 ‘LeBlanc’ test 

e next carry out the ‘LeBlanc’ shock tube test, originally published
y Benson ( 1992 ) and further described by Pember & Anderson
 2001 ). In this problem, we initialize a left-hand state with ρL = 1
nd 2 

3 × 10 −1 , and a right state with ρR = 10 −3 and 2 
3 × 10 −10 . We

et the initial velocity to zero and use an adiabatic index γ = 5/3.
his is an extreme shock tube that far e xceeds an y shock that may
e encountered in any concei v able application, featuring a pressure
ump of nine orders of magnitude, and is therefore an excellent test
roblem. We evolve this simulation until t = 6 using a grid of 2000
ells and a CFL number of 0.1. The resulting state is shown in Fig. 3 .
ember & Anderson ( 2001 ) highlight the difficulty of obtaining the
orrect specific internal energy in the solution for this test, but we
nd that QUOKKA produces the correct shock location and specific

nternal energy, with the exception of a small overshoot at the shock
ocation. The use of shock flattening is essential for this problem.
verall, the performance of our code on this problem is excellent. 

.1.5 Wave-shock interaction (Shu–Osher) test 

e show the Shu–Osher test in Fig. 4 . Following the description of
hu & Osher ( 1989 ), the initial conditions are, on the left-hand side,

L ( x) = 3 . 857143 , (46) 

 L ( x) = 2 . 629369 , (47) 

 L ( x) = 10 . 33333 , (48) 

nd the right-hand state is 

R ( x) = 1 + 0 . 2 sin (5 x) , (49) 

 R ( x) = 0 , (50) 

 R ( x) = 1 . (51) 

e compute a reference solution using ATHENA ++ (Stone et al.
020 ) with the VL2 integrator, PPM reconstruction in the character-
stic variables, and the HLLC Riemann solver on a grid of 1600 cells.
ur solution is computed using PPM reconstruction (in the primitive
ariables), the RK2-SSP integrator, and the HLLC Riemann solver
n a grid of 400 cells. The agreement is very good, with comparable
esolution of the high-frequency features to the third-order essentially
on-oscillatory (ENO) scheme of Shu & Osher ( 1989 ). When PLM
econstruction is used instead for the same number of grid cells,
he high-frequency features are aliased (not shown; see also fig. 14
f Shu & Osher 1989 ), indicating a significantly higher ef fecti ve
esolution for PPM-based methods even in the presence of shocks. 

.1.6 Slow-moving shock 

e show a slow-moving shock in Fig. 5 using the parameters from
in & Liu ( 1996 ), where ρL = 3.86, ( ρv) L = −3.1266, and E L =

NRAS 512, 1430–1449 (2022) 
7.0913, and the right-side state ρR = 1.0, ( ρv) R = −3.44, and
 R = 8.4168, with γ = 1.4. This corresponds to the shock jump
oving to the right with a velocity v shock = 0.1096. For a CFL

umber of 0.2, this corresponds to the shock taking ∼250 time-steps
o mo v e across a single cell. This may not be a common scenario
or our applications, but it may occur in a protostellar accretion
hock, for instance. The quality of the solution is again significantly
mpro v ed by shock flattening. The post-shock oscillations for slow-
oving shocks may still be present with first-order reconstruction

Jin & Liu 1996 ; Lee 2011 ), so it is difficult to completely eliminate.
e also find that adding a small amount of artificial viscosity

oes not significantly reduce the oscillations. A modification to
PM reconstruction based on a characteristic wave decomposition
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Figure 4. Density as a function of position for the Shu–Osher wave-shock 
interaction problem (Section 3.1.5 ). Here, we show a comparison between 
the QUOKKA solution (shown as circles) and a reference solution (shown as a 
solid line) computed using ATHENA ++ (Stone et al. 2020 ). 

Figure 5. Density profiles for the slow-moving shock test problem (Sec- 
tion 3.1.6 ). We show a comparison between the QUOKKA (solid line) and 
exact solutions (circles). 
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ucceeds in significantly reducing this oscillation (Lee 2011 ), which 
e may consider implementing in a future version of the code. 

.1.7 Strong rarefaction 

e next test the performance of our code on the 1–2–3 problem
f Einfeldt et al. ( 1991 ), which features a strong rarefaction and is
esigned to induce failures in approximate Riemann solvers. The 
nitial conditions consist of left- and right-hand states with equal 
ensity and energy, ρL = ρR = 1 and E L = E R = 3, and equal
agnitude but oppositely directed velocities, ( ρv) L = −2, ( ρv) R = 2.
e evolve the system to t = 0.15, using a CFL number 0.8 and a grid

f N x = 100 cells, and show the resulting state in Fig. 6 . We obtain the
xact solution to which we compare the QUOKKA result using an exact
iemann solver. We find that the solution for the density profile is
ery close to the exact solution, except for a small discrepancy at the
owest density near x = 0.5. However, the most difficult aspect of this
roblem is obtaining the correct specific internal energy. Our results 
ompare fa v ourably with other solutions obtained with approximate 
iemann solvers, where factors of two or three errors are obtained
ear x ≈ 0.5 (Toro 2013 ). Obtaining the correct specific internal
nergy in the lowest density part of the flow may require the adaptive
MNRAS 512, 1430–1449 (2022) 
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se of an exact Riemann solver in near-vacuum regions. None the
ess, our code is stable and well-behaved for this problem. 

.1.8 Kelvin–Helmholtz instability 

o show the performance of QUOKKA in two dimensions, we simulate
he Kelvin–Helmholtz instability created by counter-propagating gas
ows with a shear layer between them. The purpose of this test is to

llustrate the ability of the code to maintain the contact discontinuity
etween the flows as Kelvin–Helmholz rolls dev elop, ev en as we
dd deep AMR nesting. Following Stone et al. ( 2020 ), we use a two-
imensional periodic box on the domain [0, 1] along each axis with
ensity and velocity given by 

= 1 . 5 − 0 . 5 tanh ( ̃  y /L ) , (52) 

 x = 0 . 5 tanh ( ̃  y /L ) , (53) 

 y = A cos (4 π( x − x 0 )) exp ( − ˜ y 2 /σ 2 ) , (54) 

here x 0 = 0.5, y 0 = 0.5, ˜ y = | y − y 0 | − 0 . 25, the shearing layer
hickness L = 0.01, σ = 0.2, and perturbation amplitude A = 0.01.
he initial pressure is uniform with P = 2.5 and we adopt an adiabatic

ndex γ = 1.4. We enable AMR, with cells tagged for refinement if the
elative density gradient on either side of the cell in either direction
xceeds 0.2, and we allow up to four levels of refinement on top of a
ase grid size of 2048 2 . Thus, the peak resolution of the calculation is
2 768 2 . Each local AMR grid has a uniform size of 128 2 . We evolve
he system to t = 1.5 with a CFL number of 0.4, and show the resulting
umerical solution in Fig. 7 . We are able to carry out this calculation
n a single GPU in ∼4.5 h of wallclock time. While there appears to
e no converged solution to this problem without explicit dissipation,
e find that our hydrodynamic solver is able to resolve the Kelvin–
elmholz rolls with very little dissipation and with significant small-

cale structure caused by secondary instabilities, as expected for
nviscid simulations (Lecoanet et al. 2016 ). There are no visible
rtifacts at resolution boundaries. 

.1.9 Liska–Wendroff implosion 

e next present our results for the so-called Liska–Wendroff implo-
ion test (Hui, Li & Li 1999 ; Liska & Wendroff 2003 ). This problem
onsists of the square domain [0, 0.3] 2 , with an inner region x + y ≤
.15 and an e xterior re gion, where x + y > 0.15 for an ideal gas with
diabatic index γ = 1.4. The inner region has initial density ρ = 0.125
nd pressure P = 0.14 and the outer region begins with density ρ = 1
nd pressure P = 1. We simulate the subsequent evolution to t = 2.5
n a uniform grid of 1024 2 cells with reflecting boundary conditions
ith a CFL number of 0.4. These initial conditions lead to a shock
irected towards the origin, which is then reflected many times by
he upper and right walls before finally converging in a jet traveling
way from the origin along the diagonal x = y , as shown in Fig. 8 .
iska & Wendroff ( 2003 ) note that only codes that discretely preserve
ymmetry between x - and y -directions successfully produce the jet.
n order to reco v er the jet in QUOKKA , we found it necessary to code
he RK2-SSP integrator so that the fluxes in the x - and y -direction
re added in an exactly symmetrical manner for each stage of the
pdate. Additionally, when running the problem on NVIDIA GPUs,
e preserve this symmetry only if we disable fused multiply-add

FMA) operations via the nvcc compiler option fmad = false ,
ince the compiler otherwise breaks the symmetry expressed in the
ource code between the x - and y -direction fluxes. With this compiler
NRAS 512, 1430–1449 (2022) 
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Figure 8. The two-dimensional implosion test (Liska & Wendroff 2003 ) 
on a 1024 2 grid at t = 2.5. The density is shown with 16 equally spaced 
contours between 0.4 and 1.1, with the colourmap showing the density o v er 
the same range. A thin jet shoots along the x –y diagonal. The solution is 
exactly symmetric. 
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ption, QUOKKA exactly preserves symmetry along the diagonal and 
uccessfully reco v ers the jet. 

.2 Radiation 

or our radiation tests, we disable the hydrodynamic part of the 
ode and only use the radiation transport and gas-radiation exchange 
pdates. These tests e v aluate the accuracy of those portions of the
ode. 

.2.1 Marshak wave 

e next compute a Marshak wave (Marshak 1958 ). The problem 

onsists of a uniform gas with a constant density ρ = 10 g cm 

−3 and
onstant opacities κP = κR = 577 cm 

2 g −1 . The gas has a uniform
nitial temperature of 10 4 K, but at t = 0, we impose on the left-hand
ide of the domain a boundary condition consisting of a half-isotropic
ux with a radiation temperature of 3 . 481334 × 10 6 K. The radiation
riv es a wav e of heat into the gas. Following Su & Olson ( 1996 ),
e set the gas heat capacity at constant volume C v so a functional

orm that makes it possible to linearize the matter-radiation coupling 
erms, and thus obtain a semi-analytic solution 

 v ≡ ∂ E int 
∂ T 

= αT 3 , (55) 

here E int = ( α/ 4) T 4 , α = 4 a r / ε, and ε = 1. With this heat capacity,
u & Olson ( 1996 ) obtain a semi-analytic quadrature solution of the
adiation diffusion equation for this problem as a function of ε. We
volve the solution until time t = τ /( εc ρκ), where τ = 10, using
 simulation domain on the interval [0 cm , 3 . 466205 × 10 −3 cm ]
esolved by grid of N x = 400 cells. We note that this implies an
ptical depth per cell of τ cell ≈ 0.05, so this problem does not test
he accuracy of our code in the asymptotic diffusion limit (where 
cell � 1; the accuracy in this limit is instead tested via the radiation
ressure tube problem in Section 3.3.1 ). We do not use a reduced
peed of light for this test. 

Since we solve the moment equations, rather than just the diffusion
quation, we do not expect our numerical solution to agree with the
u & Olson solution at the leading edge of the wave, where our code
espects causality and restricts the propagation speed of the wave 
o c ; this constraint is violated in the diffusion approximation that
u & Olson adopt. Ho we ver, we can still compare to their solution

n the region where F r 
 cE r and diffusion is a good approximation.
n this region, we obtain excellent agreement with the semi-analytic 
olution, as shown in Fig. 9 . Note that the difference between our
umerical solution and the ‘exact’ solution at x � 3 × 10 −3 cm is
ot an error in our solution. Rather, it is a result of our code properly
apturing the finite speed of light, while the semi-analytic solution 
oes not. 

.2.2 Su–Olson problem 

e next compute a problem involving radiation penetrating a cold 
edium but with an internal radiation source rather than a radiation

ource at the boundary. This problem is defined in dimensionless 
nits, where a r = c = 1, with opacities κP = κR = 1, a constant
ensity ρ = 1, and a radiation source 

 ( x , t) = 

{
Q a r T 

4 
H 

0 ≤ x < x 0 and t < t 0 , 

0 x ≥ x 0 or t ≥ t 0 , 
(56) 

here we have a normalization factor Q = (2 x 0 ) −1 , radiation source
emperature T H = 1, and spatial extent of the source x 0 = 0.5 and
emporal extent t 0 = 10. The initial radiation and gas energies
re zero in the idealized problem, but we set them to 10 −10 in
ur simulation since the radiation solver requires non-zero gas and 
adiation energies. The gas velocity is zero. We adopt reflecting 
oundary conditions on the domain [0, 30] on a grid of N x = 1500
ells. We do not reduce the speed of light for this test. 
MNRAS 512, 1430–1449 (2022) 
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M

Figure 10. The Su-Olson test problem (Section 3.2.2 ). The numerical 
solution is the solid line, with the exact diffusion solution shown as circles 
and the exact transport solution shown as crosses. 
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When using the heat capacity given by equation ( 55 ), a semi-
nalytic solution of the angle-dependent transport equation may be
btained with a Fourier-Laplace transform (Su & Olson 1997 ). This
olution assumes that v = 0 at all times, so we drop all v/ c terms for
his problem. We show our numerical solution using CFL number
.4 at time t = 10 in Fig. 10 ; for comparison, we also show the
xact transport solution and the exact diffusion solution. We find
hat with the Levermore ( 1984 ) closure, we obtain a solution in
etween the diffusion solution and the transport solution. While it
akes little difference at t = 10, we find better agreement with the

ransport solution at earlier times when using the Minerbo ( 1978 )
losure (not shown). In this problem, some regions near the internal
adiation source (located at 0 ≤ x < 0.5) have Eddington factors χ
 1/3, which cannot be represented by any local closure of the form

iven by equation ( 23 ). None the less, we obtain a solution that is
ore accurate than one would obtain by using a radiation diffusion

quation. 

.2.3 Radiation-matter energy exchange 

e next isolate the implicit matter-radiation energy exchange solver
y solving a problem with no transport. Following Turner & Stone
 2001 ), we set up a uniform domain with periodic boundary condi-
ions, where the gas and radiation are initially out of thermal equi-
ibrium. The initial radiation energy density is E r = 10 12 erg cm 

−3 

nd, the initial gas energy density E g = 10 2 erg cm 

−3 . The density
= 10 −7 g cm 

−3 and the specific opacity κP = 1 . 0 cm 

2 g −1 . Rather
han using a constant heat capacity (as Turner & Stone 2001 do),
e use the heat capacity given by equation ( 55 ), which allows us to
btain an algebraic solution for the matter temperature T as a function
f time t 

 

4 = 

(
T 4 0 − ˆ c 

c 
˜ E 0 

)
exp 

[− 4 
α

(
a r + 

ˆ c 
c 

α
4 

)
κρct 

] + 

ˆ c 
c 

˜ E 0 , (57) 

here E 0 = E g + ( c/ ̂ c ) E r and ˜ E 0 = E 0 [ a r + ( ̂ c /c)( α/ 4) ] −1 are
onstant as a function of time. Taking the limit t → ∞ , we
NRAS 512, 1430–1449 (2022) 
mmediately see that the equilibrium temperature T eq is modified
henever ˆ c �= c, contrary to previous claims in the literature 

 

4 
eq = 

ˆ c 
c 

˜ E 0 = 

ˆ c 
c 
E 0 

[
a r + 

(
ˆ c 
c 

)
α
4 

]−1 
. (58) 

undamentally, this occurs whenever RSLA is employed (and ˆ c �=
) because the quantity E 0 = E g + ( c/ ̂ c ) E r is conserved in this
roblem, not the total energy E tot = E g + E r . This is a generic failing
f the RSLA, which does not conserve total energy. Ho we ver, in
ractice when the boundary conditions are such that the quantity E 0 

s not conserved, the physically correct steady-state solution may
till be obtained – this is the situation for all the radiation-HD test
roblems we present in Section 3.3 , and is also the situation for most
pplications of interest. 

To test QUOKKA ’s ability to reco v er the analytic solution, we sim-
late the problem using a constant time-step �t = 10 −8 s until t =
0 −2 s. We use a reduced speed of light ˆ c = 0 . 1 c. We show the time
volution of the matter temperature in Fig. 11 both when using RSLA
nd without. We find that the numerical solution agrees with the exact
olution to better than one part in 10 5 at each time-step for both cases.
he RSLA equilibrium temperature is approximately 20 per cent
igher than the physically correct equilibrium temperature. 

.2.4 Shadow test 

e next illustrate the performance of our radiation solver in two
imensions with a shadowing test based on that of Hayes & Norman
 2003 ); our test differs from theirs only in that we use planar x −y
eometry instead of cylindrical r −z coordinates. The goal of this
est is to e v aluate ho w well an RHD scheme casts sharp shadows,
eco v ering the geometric optics limit that should pre v ail when the
ptical depth is low. This problem consists of a rectangular domain
f 1 . 0 by 0 . 12 cm with a streaming radiation source incident from the
eft boundary and an outflow boundary condition on the right. The
ower boundary is reflecting, and the upper boundary allows outflow.
n the middle lies an optically thick cylinder. The initial gas and
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Figure 12. Results for the shadow test (Section 3.2.4 ). Colour shows the radiation temperature. The solid line shows a density contour indicating the position 
of the ‘cloud’. 
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Figure 13. The beam test in vacuum (Section 3.2.5 ). Colour shows the 
logarithm of the radiation energy density. 
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adiation temperatures are 290 K and the incident flux has a radiation
emperature of 1740 K. The background has a density of ρbg = 

0 −3 g cm 

−3 , and the cylinder has a density of ρcl = 1 . 0 g cm 

−3 . The
as has an opacity ρκ = ( ρ/ρbg ) 2 0 . 1 cm 

−1 , a mean molecular weight
= 10 m H , and an adiabatic index γ = 5/3. We allow two levels of
esh refinement on top of a base grid of 280 × 80 cells, tagging cells

or refinement when the relative gradient in radiation energy density 
xceeds 0.1. The problem is evolved until t = 5 × 10 −11 s with a
FL number of 0.4. We do not reduce the speed of light for this test.
or this problem, we find it necessary to reduce the relative tolerance
f the implicit matter-radiation coupling solver to 10 −15 . Otherwise, 
here are unphysical radiation shocks reflected from the cylinder. 

We show the radiation temperature at the end of the simulation 
n Fig. 12 . After the beam of light has crossed the domain, we
nd a sharp shadow cast behind the cylinder, as one would expect
hysically. Ho we ver, there are some residual artefacts from a 
ransient beam of light that initially curved around the cylinder and 
eflected against the lower boundary, as seen in the low-temperature 
hock-like features within the shadow near the right edge of the 
omain. This appears to be an una v oidable artefact of using a local
ET closure. (This does not occur when using the Eddington tensor
btained from the geometric optics limit, i.e. f xx = 1.) Overall, this
est shows that QUOKKA produces qualitatively correct results for 
emitransparent problems. 

.2.5 Beam test 

e next test our code on a beam or ‘searchlight’ test involving
treaming radiation propagating without any absorption, adopting 
arameters from Gonz ́alez et al. ( 2007 ) with the only modification
n that we mo v e the beam to the lower left-hand corner of the box.
he domain is a square box [0 cm , 2 cm ] 2 with constant density
= 1 . 0 g cm 

−3 , gas and radiation temperature T = 300 K, and zero
pacity. A beam of radiation enters the domain at a 45 ◦ angle from
he lower left-hand corner ( x < 0 . 0625 cm or y < 0 . 0625 cm ) with
 radiation temperature of 1000 K. We use AMR with a base grid of
28 2 and two levels of refinement to simulate this problem, refining 
here ver the relati ve gradient of the radiation energy density exceeds
.1. For this problem, we use PLM reconstruction for the radiation 
ariables in order to a v oid oscillations near the leading edge of the
eam. We use a CFL number of 0.4. We show the radiation energy
ensity at time t = 1 . 172 ( L/c), where L is the box size, in Fig. 13 .
he beam stays relatively narrow as it crosses the box, but at the

eading edge of the beam, we see there is a transient bow shock-
ike feature which is due to our use of a local VET closure. Our
ode performs reasonably well on this problem, showing only a 
mall amount of diffusion of the beam as it propagates. The bow
hock feature appears to be an unphysical ‘radiation shock’ that can 
ccur due to the non-linear behaviour of non-constant local VET 

losures. For instance, it can be shown that the radiation moment 
quations without source terms with the Levermore ( 1984 ) closure
re mathematically identical to the hydrodynamic equations of an 
ltrarelativistic gas (Hanawa & Audit 2014 ). After the leading edge
f the beam has crossed the box, the bow shock feature leaves the
ox and a narrow beam of light remains. 

.3 Radiation hydrodynamics 

ur final suite of tests use the full suite of physics in QUOKKA , and
nvolve coupled radiation and HD. 

.3.1 Radiation pr essur e tube 

ur first radiation-hydrodynamic test is the the radiation pressure 
ube problem of Krumholz et al. ( 2007a ). This problem is designed
o show that the radiation pressure gradient can stably balance the
as pressure gradient both in the regime where radiation pressure 
ominates and in the regime where gas pressure dominates for a
roblem where the optical depth is sufficiently large that the radiation
s in the equilibrium diffusion regime. We adopt the opacities 
P = κR = 100 cm 

2 g −1 , mean molecular weight μ = 2 . 33 m H 

, and
diabatic index γ = 5/3. The exact steady-state solution in the 
iffusion approximation is given by the solution to the differential 
quations 
MNRAS 512, 1430–1449 (2022) 
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Figure 14. Temperature profiles for the radiation pressure tube test (Sec- 
tion 3.3.1 ). The radiation and gas temperatures are both shown, but only the 
latter line is visible because the two temperatures are nearly identical. The 
temperature for the exact diffusion solution is shown in the black circles. The 
simulated and exact temperatures agree to within 0.2 per cent. 
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7 We neglect gravitational forces in this problem, but we note that our solution 
is formally equi v alent to the Eddington ratio ηEdd = 2 case of the plane- 
parallel radiation-inhibited Bondi accretion problem of SO13 . 
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d ρ

d x 
= − μ

k B T 

(
k B 
μ

ρ + 

4 
3 a r T 

3 
)

d T 
d x , (59) 

d 2 T 

d x 2 
= − 3 

T 

(
d T 
d x 

)2 + 

1 
ρ

d ρ
d x 

d T 
d x , (60) 

here the left-side temperature, density, and density gradient are
 0 = 2 . 75 × 10 7 K, ρ0 = 1 . 0 g cm 

−3 , and d ρ0 / d x = 0 . 005 g cm 

−4 .
e solve this equation on the domain [0 cm , 128 cm ] in order to

btain the initial conditions for this problem. The left- and right-hand
ide initial conditions are adopted as Dirichlet boundary conditions
or our simulation. The reduced speed of light ˆ c is set to 10 c s, 0 ≈
 . 03 × 10 8 cm s −1 , where c s , 0 is the sound speed at the left-hand
oundary. 
After evolving for a sound crossing time t = L x /c s, 0 ≈ 3 . 177 ×

0 −6 s with a CFL number of 0.4 on a grid of 128 cells, we obtain the
umerical solution shown in Fig. 14 . We note that these parameters
mply an optical depth per cell of τ cell ∼ 10 2 , so this problem tests
he accuracy of our numerical methods in the asymptotic diffusion
egime, where τ cell � 1. Our numerical solution agrees with the
nitial conditions (obtained from the exact diffusion solution) to
etter than 0.2 per cent. Since the boundary conditions do not require
onservation of the quantity E 0 (see Section 3.2.3 ), we find that we
re able to obtain the physically correct solution even when ˆ c �= c. 

.3.2 Optically thin radiation-driven wind 

n order to test the radiation-gas momentum coupling in the optically
hin limit, we next simulate a radiation-driven wind in the limit of very
ow optical depth. We consider an isothermal gas with sound speed
 T = 0 . 2 km s −1 , with constant opacities κP = 0 and κR = 5 cm 

2 g −1 .
 flux of radiation F r , 0 enters the computational domain from the

eft-hand side at x = 0, inducing an acceleration a 0 = κR F r , 0 / c in
he gas; we choose the density of the gas low enough that the optical
epth is negligible, so the flux and acceleration are constant across
NRAS 512, 1430–1449 (2022) 
he domain. Consider a fluid parcel moving at Mach number M 0 at
 = 0, where the radiation flux enters the domain. Integrating the
as momentum equation with respect to position x yields a Bernoulli
quation for the Mach number M as a function of position 

1 

2 
M 

2 
0 = 

1 

2 
M 

2 + log 

(
M 0 

M 

)
−

( x 

L 

)
, (61) 

here L = c 2 T /a 0 is the characteristic acceleration length of the
roblem. If the density at x = 0 is ρ0 , then from conservation
f mass, in steady state the density as a function of position is
= ( M 0 /M) ρ0 . 7 For our test, we choose M 0 = 1 . 1, and we set

0 = 3 . 897212 × 10 −19 g cm 

−3 ; for our chosen value of κR , this
ields an optical depth τ = 10 −6 from x = 0 to x = L . 
To simulate this problem, we set up a domain from x = 0 to L ,

esolved by N x = 128 cells. We initialize the system with the exact
olution (equation 61 ), and also use the exact solution to impose
irichlet boundary conditions on the density , velocity , and radiation
ux. We evolve the system until t = 10 ( L/c T ) using a CFL number
f 0.4; for this calculation, we use an isothermal Riemann solver. We
et the reduced speed of light to ˆ c = 10 M 1 c T , where M 1 is the Mach
umber at the right-side boundary. In Fig. 15 , we show the exact
olution for the Mach number (circles) compared to the solution
roduced by QUOKKA (solid line), finding excellent agreement. 

.3.3 Subcritical radiative shock 

e next simulate a subcritical radiative shock, following the set-
p used by Skinner et al. ( 2019 ) with the dimensionless pa-
ameters for the Mach M = 3 example given by Lowrie & Ed-
ards ( 2008 ). We scale to cgs units with the opacities κP = κR =
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Figure 16. Radiation and matter temperatures in a subcritical radiative shock 
with M = 3 (Section 3.3.3 ). The simulation results as shown as solid lines, 
while the exact steady-state solution is shown as circles. 
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77 cm 

2 g −1 (1 g cm 

−3 /ρ), mean molecular weight μ = m H , and adia-
atic index γ = 5/3. The left-side state consists of ρL = 5 . 69 g cm 

−3 ,
elocity v L = 5 . 19 × 10 7 cm s −1 , and temperature (gas and radia-
ion) T L = 2 . 18 × 10 6 K. The right-side state is ρR = 17 . 1 g cm 

−3 ,
 R = 1 . 73 × 10 7 cm s −1 , and T R = 7 . 98 × 10 6 K. These states are
lso used as Dirichlet boundary conditions for the simulation. In order 
o exactly match the assumptions used in the semi-analytic solution 
f Lowrie & Edwards ( 2008 ), we use the Eddington approximation
i.e. P r = (1 / 3) E r I ) to close the radiation pressure tensor for this
roblem. 8 Following Skinner et al. ( 2019 ), we use a reduced speed
f light ˆ c = 10( v L + c s,L ), where c s , L is the adiabatic sound speed
f the left-side state. We use a CFL number of 0.4 and evolve until
 = 10 −9 s on a grid of 512 cells on the domain [0 cm , 0 . 01575 cm ],
ith the discontinuity placed between the left- and right-side states 
 0 = 0 . 0130 cm . The shock drifts 1.5 per cent of the domain length
o the right from the location of the initial discontinuity, which may
e due to a combination of the initial numerical transient and our
se of the asymptotic states as boundary conditions, rather than the 
 xact states e xpected at a finite distance from the shock location. This
akes the steady-state location of the shock on the simulation grid not 
ell-defined. After accounting for this drift, the agreement between 

he numerical and semi-analytic solution is excellent, as shown in 
ig. 16 . We find that the relative error of the gas temperature in
 1 norm is 0.4 per cent, which is at least as good as the solution of
kinner et al. ( 2019 ) for the same spatial resolution. In this problem,
e find that using shock flattening is essential to obtain a non-
scillatory temperature structure for the Zel’dovich spike (the gas 
emperature discontinuity shown in Fig. 11 ; Zel’dovich & Raizer 
967 ). 
 We provide a PYTHON code that computes the semi-analytic solution for ra- 
iative shocks using the Eddington approximation (Lowrie & Edwards 2008 ) 
n our https:// github.com/BenWibking/ quokka-code GitHub repository. 

t

4

T  

R  

a  
.3.4 Radiation-driven dust shell 

s a final example, we consider a non-steady-state RHD problem: 
he radiation-driven dust shell problem from SO13 , consisting of an
nitial shell of dusty gas placed at radius r 0 with the radial density
rofile 

( r ) = 

M sh 

4 πr 2 
√ 

2 πσ 2 
sh 

exp 

(
− ( r − r 0 ) 2 

2 σ 2 
sh 

)
, (62) 

here M sh is the mass of the shell and σ sh is the thickness of the shell.
e place a point-like source of radiation, representing a central star,

t r = 0. The radiation source is smoothed so that it can be resolved
n the computational grid, using a Gaussian profile of the form 

( r ) = 

L � 

(2 πσ 2 
� ) 

3 / 2 
exp 

(
− r 2 

2 σ 2 
� 

)
, (63) 

here L � is the luminosity of the source and σ � is a smoothing
arameter defining the spatial extent of the source. Under the thin-
hell approximation and neglecting gas pressure forces, SO13 obtain 
n equation of motion for the shell. Starting from rest, the resulting
hell velocity, written in terms of the shell Mach number M sh , is 

 sh ≡ d R 

d T 
= 

√ 

2 M 0 

√ 

1 − 1 

R 

, (64) 

ith dimensionless radius R ≡ r / r 0 , dimensionless time T ≡ t / t 0 ,
haracteristic time t 0 = r 0 / c T , reference sound speed c s , and reference
ach number M 0 

 0 = c −1 
s 

√ 

L � κR 

4 πr 0 c 
. (65) 

ollowing the parameters used by SO13 , we set κP = κR =
0 cm 

2 g −1 , c s = 2 km s −1 , r 0 = 5 pc , M sh = 5 × 10 5 M �, and
 � = 2 × 10 42 erg s −1 . We note that c s is only a reference sound

peed and does not change the thin-shell solution since pressure 
orces are assumed to be negligible. We adopt values of σ � = 0.3 r 0 
nd σsh = 0 . 3 r 0 / (2 

√ 

2 log 2 ). 
We initialize our simulation of this problem using the density 

rofile (equation 62 ) and the quasi-static radiation energy and flux
erived by SO13 . We initialize the gas temperature in equilibrium
ith the radiation temperature. A density floor is set at ρfloor =
0 −8 ρ0 , where ρ0 = M sh / (4 πr 3 0 / 3). A pressure floor is likewise set at
 floor = 10 −8 P 0 , where P 0 = γρ0 c 

2 
s . We use an adiabatic equation of

tate with γ = 5/3 and a mean molecular weight μ = 2.33 m H ,
here m H is the mass of the hydrogen atom. We use a uniform
rid of 128 3 and PLM reconstruction for both hydrodynamic and 
adiation v ariables. Follo wing SO13 , we reduce the speed of light
o ˆ c = 860 c s . The simulation is evolved until t = 0 . 125 t 0 using
 CFL number of 0.3. The shell velocity as a function of time is
hown in Fig. 17 . Our simulation has values slightly lower than
xpected from the thin-shell solution, whereas SO13 find simulated 
hell velocities slightly higher than the thin shell solution. Exact 
greement cannot be expected since SO13 do not specify their values
or the parameters σ � and σ sh and differences in implementation 
etails of our radiation hydrodynamic solv ers. Ov erall, we find very
ood agreement between the simulation (shown as crosses) and the 
hin-shell solution (solid line). 

 P E R F O R M A N C E  A N D  SCALI NG  

he entire moti v ation for QUOKKA is to achieve high performance on
HD problems run on GPUs. We therefore next test the performance
nd scaling of the code. All the tests we present were performed on the
MNRAS 512, 1430–1449 (2022) 
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Figure 17. Shell velocity as a function of dimensionless time T = t / t 0 in the 
radiation-driven dust shell test (Section 3.3.4 ). The exact thin-shell solution 
is shown as the solid line, while the circles show the mass-weighted shell 
velocity from the simulation. 
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Table 1. Weak scaling efficiency for HD with PPM reconstruction as a 
function of the number of GPUs for a Sedov blast wave with periodic boundary 
conditions. 

Nodes GPUs Mzones GPU 

–1 s –1 

Scaling 
efficiency 
(per cent) Grid size 

0.25 1 113.34 – 256 3 

1 4 70.68 100.00 512 3 

8 32 57.75 81.70 1024 3 

64 256 58.50 82.76 2048 3 

Table 2. Weak scaling efficiency for HD with PLM reconstruction as a 
function of the number of GPUs for a Sedov blast wave with periodic boundary 
conditions. 

Nodes GPUs Mzones GPU 

–1 s –1 

Scaling 
efficiency 
(per cent) Grid size 

0.25 1 157.75 – 256 3 

1 4 85.94 100.00 512 3 

8 32 74.77 87.00 1024 3 

64 256 65.18 75.84 2048 3 
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adi supercomputer at the National Computational Infrastructure, 9 

sing the gpuvolta nodes. Each node has two 24-core Intel Xeon
latinum 8268 (Cascade Lake) 2.9-GHz CPUs and four Nvidia
esla Volta V100-SXM2-32GB GPUs connected to each other in
n all-to-all topology with NVLink 2.0. Nodes are coupled via HDR
nfiniBand in a Dragonfly + topology. 

.1 Weak scaling 

e first demonstrate that QUOKKA has excellent parallel scaling
fficiency when keeping the number of computational cells fixed per
PU (referred to as weak scaling ). For our first test of weak scaling,
e show the scalability of the HD solver on uniform grids, disabling
esh refinement and radiation. We simulate a Sedov–Taylor blast
av e (Taylor 1946 ; Sedo v 1959 ) in a 3D periodic box on the domain

 − 1, 1] in each coordinate direction. The initial conditions consist
f a spherical region of high pressure P = 10 for radii r < 0.1 and
ow pressure P = 0.1 for r ≥ 0.1, with a uniform density of ρ = 1
nd zero velocity, for an ideal gas with adiabatic index γ = 5/3. 

We run with a varying number of GPUs with two 256 3 grids
er GPU, increasing the resolution of our simulation as we extend
o greater numbers of GPUs. Ho we ver, a po wer-of-two resolution
ncrease does not easily map on to a jump from 1 to 4 GPU, so
he single-GPU simulation only uses a grid size of 256 3 . The grid
ize of the simulations therefore ranges from 256 3 (for 1 GPU) to
048 3 (for 256 GPU). We set the AMR e X domain decomposition
arameters blocking factor and max grid size to a value
f 128, leading the computational grid to be decomposed into arrays
f size 128 3 . (We also tested local grid sizes of 256 3 but found
nly a few per cent performance impro v ement on this problem.) We
se one MPI rank per GPU for all simulations. The CFL number
s 0.25 and we evolve for 100 time-steps for each simulation. We
ssess performance by counting the total number of cell-updates and
NRAS 512, 1430–1449 (2022) 

 https://nci.or g.au/our - systems/hpc- systems 1
ividing by the number of GPUs in order to obtain the performance
gure-of-merit in the units of 1 million cells (or zones) per time-step
er GPU per second (Mzones GPU 

–1 s –1 ). We report the results in
able 1 . 
We find a ≈ 40 per cent drop in performance per GPU when going

rom 1 to 4 GPU, corresponding to using all 4 GPU on a single node
f the compute cluster. We hypothesize that this is due to the limited
ommunication bandwidth between GPUs on a node. For intra-node
caling on CPUs, Stone et al. ( 2020 ) report a similar decrease in
erformance when going from one CPU to all the CPUs on a node
or ATHENA ++ , which they attribute to limitations of memory
andwidth. Ho we ver, significantly dif ferent scaling behaviour is
bserved when running the K-ATHENA HD code on GPUs (Grete,
lines & O’Shea 2019 ) on the Summit supercomputer, 10 finding a
9 per cent weak scaling efficiency going from 1 to 6 GPU on a single
ode, so there may be some inefficiency in our current GPU-to-GPU
ommunication method. We find that using CUDA-aware MPI does
ot impro v e performance for our code. Ho we v er, we observ e only
 modest drop in performance per GPU when going from 1 node
4 GPU) to 64 node (256 GPU), yielding a parallel efficiency of
3 per cent on 64 node when compared to running on 1 node. We
ould not run on larger numbers of GPU nodes due to job size
imitations, but we expect scaling to continue to thousands of GPUs
ased on the parallel scaling observed for other GPU HD codes based
n AMR e X , such as CASTRO (Almgren et al. 2020 ). 
In Table 2 , we show the same performance numbers as in Table 1 ,

ut using PLM reconstruction for each simulation instead of PPM
econstruction. We find that the performance impro v es significantly
n a single GPU, going from 113 million zone-updates per second
o 158 million zone-updates per second. Ho we ver, communication
 v erheads limit the relative performance impro v ement when using
arge numbers of nodes, as the 64-node case goes from 59 million
one-updates per GPU per second using PPM to only 65 million zone-
pdates per GPU per second using PLM. Since the computations on
ach local grid are less e xpensiv e with PLM but the communication
0 https:// www.olcf.ornl.gov/ olcf- resources/compute- systems/summit/
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Table 3. Weak scaling efficiency for RHD as a function of the number of 
GPUs for the radiation-driven shell test (Section 3.3.4 ) with periodic boundary 
conditions. 

Nodes GPUs Mzones GPU 

–1 s –1 

Scaling 
efficiency 
(per cent) Grid size 

0.25 1 22.55 – 256 3 

1 4 10.32 100.00 512 3 

8 32 7.92 76.75 1024 3 

64 256 7.87 76.19 2048 3 

Table 4. Performance for both Sedov and radiating shell tests as a function 
of the number of GPUs for a single node with four NVIDIA A100 GPUs. 

GPUs Mzones GPU 

–1 s –1 
BC fill time 
(per cent) Grid size Problem 

1 254.05 2.00 256 3 Sedov 
4 150.26 42.03 512 3 Sedov 
1 39.04 3.12 256 3 Rad. shell 
4 18.17 53.27 512 3 Rad. shell 
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Table 5. Strong scaling efficiency for RHD as a function of the number of 
GPUs for the radiation-driven shell test (Section 3.3.4 ) with periodic boundary 
conditions on a base grid of 256 3 cells and two levels of refinement. The 
number of cells per GPU is computed as an average over all time-steps. 

Nodes GPUs Mzones GPU 

–1 s –1 
〈 Cells 

GPU 

〉
Scaling Speedup 

efficiency 

1 4 4.95 421.8 3 100.00 1.00x 
2 8 4.30 334.8 3 86.70 1.73x 
4 16 3.26 265.7 3 65.83 2.63x 
8 32 2.61 210.9 3 52.69 4.21x 
Nodes GPUs 

〈 Cells 
GPU 

〉
l= 0 

〈 Cells 
GPU 

〉
l= 1 

〈 Cells 
GPU 

〉
l= 2 

1 4 161.3 3 259.1 3 376.7 3 

2 8 128.0 3 205.6 3 299.0 3 

4 16 101.6 3 163.2 3 237.3 3 

8 32 80.6 3 129.5 3 188.4 3 
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osts remain the same, the scaling efficiency decreases slightly as 
ell, from 83 to 76 per cent. 
We next test the scaling behaviour for full RHD solver on uniform

rids. Table 3 lists the performance per GPU and parallel efficiency 
easured with respect to single-node performance for the radiation- 

riven shell test problem run for 50 time-steps. Since we have 
any radiation substeps per hydrodynamic step (set here to 10; see 
ection 2.2.4 ), the performance metric in units of Mzones GPU 

–1 s –1 

s lower by a factor comparable to but somewhat smaller than the
umber of radiation substeps per hydro step; a single radiation update 
s slightly less costly than a single hydrodynamic update. In this case,
e observe a steeper drop in performance when going from 1 to 4
PU (approximately a factor of 2). The lower parallel efficiency is
ot surprising, since each radiation substep requires communicating 
oundary conditions between grids, so the amount of inter-GPU 

ommunication per hydro time-step increases significantly for RHD. 
one the less, as is the case for HD, there is little additional
erformance penalty when scaling from 1 to 64 node. We measure a
arallel efficiency in this case of 76 per cent. 
In Table 4 , we list the performance metrics of the code on both the

edov problem and the radiation-driven shell problem running on a 
ompute node with newer NVIDIA A100 GPUs. Since we only have 
ccess to a limited number of these GPUs, we only show performance
ata for a single GPU and a single compute node (4 GPUs). The
ingle GPU case achieves 254 million hydrodynamic zone-updates 
er second using PPM, making QUOKKA , as far as we are aware, the
astest PPM HD code that currently exists. On the radiation-driven 
hell problem, the code achieves 39 million radiation hydrodynamic 
one-updates per second. In both cases, the performance per GPU 

rops by a factor of approximately 2 when using all 4 GPU on the
ode. This is almost entirely due to the time spent communicating 
oundary conditions, as shown in the table (‘BC fill time’, which 
enotes the percentage of total wall time spent filling ghost cells for
ach local grid). If communication of boundary data and computation 
 v er the local grids could be perfectly o v erlapped, the parallel
fficiency going from 1 to 4 GPU would be > 99 per cent for HD
nd > 96 for RHD. 

Finally, we point out that absolute speed of QUOKKA is excellent. 
omparison between CPU and GPU codes is non-trivial, since it 
bviously depends on the CPU-to-GPU ratio on a particular compute 
latform. Ho we ver, it is worth pointing out that QUOKKA ’s update
ate per core (normalized by the number of CPU cores per compute
ode) for radiation -HD on GPU is comparable to or better than
THENA ++ ’s for HD on CPU. 

.2 Strong scaling with AMR 

any applications of interest will seek to minimize either the total
untime of the simulation or the total node-hours used for a simulation
or a problem of a fixed size. Additionally, most applications we
re interested in will benefit from or require the use of AMR. We
herefore test the ability of QUOKKA to scale an AMR radiation
ydrodynamic simulation of fixed size to larger numbers of GPUs in
rder to either minimize total runtime or total node-hours (referred to
s strong scaling ). For this test, we initialize the radiation-driven shell
roblem (Section 3.3.4 ) on a base grid of 256 3 cells with two levels
f mesh refinement based on the relative gradient in the gas density.
e run each simulation for 50 time-steps, with a CFL number of

.3 and PLM reconstruction for both HD and radiation. We set the
MR e X domain decomposition parameters blocking factor set 

o 32 and max grid size set to a value of 128, so that all grids
re between 32 3 and 128 3 in size, with possible non-cubic grids at
ntermediate sizes. The number of GPUs used for each simulation 
s varied, scaling from 1 node (4 GPU) to 8 node (32 GPU). This
s a particularly stringest test, since the le vel-by-le vel AMR time-
tepping requires that each level be computed separately, limiting 
he amount of parallelism that can be distributed across GPUs. There
s also additional communication o v erhead when AMR is enabled
ompared to a single-level uniform grid simulation. We show the 
caling results in Table 5 . Comparing Tables 3 and 5 , the performance
er GPU for a single node is lower than that of a uniform grid
imulation by ≈50 per cent. (A similar , although somewhat smaller ,
 v erhead when enabling AMR is also observed with CPU codes, e.g.
THENA ++ ; Stone et al. 2020 ). The scaling efficiency is reasonable
or 2 and 4 nodes (66 per cent for 4 node), but drops significantly at
 node to 53 per cent parallel efficiency. We hypothesize that this is
ue to the small number of cell-updates per GPU once 32 GPU are in
se for this problem (approximately 211 3 ≈ 9.4 × 10 6 cell GPU 

–1 ).
e find that performance on a single GPU is significantly diminished

or uniform-grid problems smaller than 256 3 , so this performance 
rop may be largely due to the inability to use all GPU hardware
hreads when the amount of work per GPU is small. Similar GPU
erformance behaviour is observed when running K-ATHENA on 
PUs for varying problem sizes per GPU (Grete et al. 2019 ). This
MNRAS 512, 1430–1449 (2022) 
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ffect is also magnified by the sequential nature of the level-by-
ev el time-stepping. F or lev el l = 1, the number of cells per GPU
rops below 256 3 for 8 GPU, and for level l = 2, it drops below
56 3 for 16 GPU. High scaling efficiency is obtained before reaching
hese thresholds, so it appears that reasonable performance on GPUs
ay be obtained with AMR when all refinement levels have at

east 256 3 cells per GPU on average. In general, obtaining the best
ossible GPU performance may require an adjustment to the mesh
efinement parameters usually used when running on CPUs. For self-
ravitating problems, scaling may be aided by the self-similar nature
f gravitational collapse, leading to an approximately equal number
f cells on each refinement level for appropriate refinement criteria
see discussion in Stone et al. 2020 ). 

 DISCUSSION  A N D  C O N C L U S I O N S  

e conclude by discussing some of the limitations of QUOKKA as it
urrently exists, and our plans for future expansions of the code that
ill address at least some of these. 

.1 Range of applicability 

ur method is limited in its range of applicability due to the use
f a reduced speed of light. In the streaming limit, ˆ c may be
hosen so that it is larger than the fastest radiation-driven fronts
e.g. ionization fronts, some Marshak waves) in order to maintain
he correct dynamics (Gnedin & Abel 2001 ). In the diffusion limit,
ˆ  may be chosen so that it is larger than the ef fecti ve dif fusion
peed ∼c / τ . In this regime, we see that energy non-conservation
ay cause the equilibrium temperature in a closed box to differ from

he physically correct equilibrium temperature (Section 3.2.3 ), but in
ost astrophysical RHD applications, the boundary conditions are

ot those of a closed system, and in this case our method reco v ers
orrect solutions without difficulty (e.g. Section 3.3.3 ). Ho we ver, as
mphasized by SO13 , there is no constant choice of ˆ c that enables
ne to preserve the ordering of the hydrodynamic signal speed c s 
 | v | , the dynamic diffusion speed ∼| v | + c / τ , and the reduced

peed of light ˆ c such that v hydro 
 v diffusion 
 ˆ c . Extensions to the
educed speed-of-light method are possible that enable qualitatively
orrect behaviour in a larger parameter space, but we leave their
mplementation to future work (Wibking et al., in preparation). 

.2 Future extensions 

here are several ways in which our code may be extended to include
ore physics or more accurate radiation transport. The easiest

dditional radiative process to include is monoenergetic, isotropic
cattering, with a straightforward extension for moment methods
e.g. Jiang et al. 2012 ). Also relatively straightforw ard w ould be an
xtension to include coarse frequency dependence of the radiation
ia a multigroup extension of our radiation-matter coupling implicit
olv er. Ev en with a relatively small number of energy groups, many
dditional applications would be possible, including observational
omparisons. 

In order to impro v e the accurac y of the solution, one might also
schew local closures entirely and substitute a non-local closure for
he Eddington tensor based on solution of the discrete ordinates
 S N ) equations (e.g. Davis et al. 2012 ; Jiang et al. 2012 ), or using our
oment method as a non-linear pre-conditioner to accelerate the con-

ergence of the thermal emission term in the S N equations themselves
Park et al. 2012 ). The latter is an attractive option especially when
NRAS 512, 1430–1449 (2022) 
sed in combination with photon-conserving spatial discretizations
f the S N equations (Adams 1997 , 2001 ). 
In the near future, we plan to add support for self-gravity with

MR e X ’s geometric multigrid solver for GPUs (Zhang et al. 2019 ),
ink and star particles for star cluster simulations (e.g. Krumholz,
cKee & Klein 2004 ; Offner et al. 2009 ), and optically thin line

ooling for the interstellar medium. These additions will enable
imulations of the interstellar medium, galactic winds, and star
lusters, among others. 

RHD codes like ours will enable the widespread use of more
ccurate radiation transport methods and an ever-greater dynamic
ange in both space and time. As we approach the era of exascale
upercomputers, we see a bright future for AMR RHD on GPU
rchitectures. 

Software: AMREX (AMReX Development Team et al. 2021 ),
ATPLOTLIB (Hunter 2007 ), NUMPY (Harris et al. 2020 ), VISIT (Childs

t al. 2012 ), and YT (Turk et al. 2011 ). 
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