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A B S T R A C T 

We present Variable Eddington Tensor (VET)-closed Transport on Adaptive Meshes ( VETTAM ), a new algorithm to solve the 
equations of radiation hydrodynamics (RHD) with support for adaptive mesh refinement (AMR) in a frequenc y-inte grated, two- 
moment formulation. The method is based on a non-local VET closure computed with a hybrid characteristics scheme for ray 

tracing. We use a Godunov method for the hyperbolic transport of radiation with an implicit backwards-Euler temporal update 
to a v oid the explicit time-step constraint imposed by the light-crossing time, and a fixed-point Picard iteration scheme to handle 
the nonlinear gas-radiation exchange term, with the two implicit update stages jointly iterated to convergence. We also develop 

a modified wave-speed correction method for AMR, which we find to be crucial for obtaining accurate results in the diffusion 

regime. We demonstrate the robustness of our scheme with a suite of pure radiation and RHD tests, and show that it successfully 

captures the streaming, static diffusion, and dynamic diffusion regimes and the spatial transitions between them, casts sharp 

shadows, and yields accurate results for rates of momentum and energy exchange between radiation and gas. A comparison 

between different closures for the radiation moment equations, with the Eddington approximation (0th-moment closure) and 

the M 1 approximation (1st-moment closure), demonstrates the advantages of the VET method (2nd-moment closure) o v er the 
simpler closure schemes. VETTAM has been coupled to the AMR FLASH (magneto-)hydrodynamics code and we summarize 
by reporting performance features and bottlenecks of our implementation. 
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 I N T RO D U C T I O N  

adiation hydrodynamics (RHD) plays a crucial role in the evolution 
f several astrophysical systems, such as stellar atmospheres (e.g. 
ihalas 1978 ; Castor 2004 ), planetary atmospheres (e.g. Zhang 

020 ), stellar winds (e.g. Castor, Abbott & Klein 1975 ; Smith
014 ), circumstellar discs (e.g. Turner et al. 2014 ; Zhao et al.
020 ), supernovae (e.g. Janka et al. 2007 ), star-forming clouds in
he interstellar medium (e.g. Krumholz, McKee & Bland-Hawthorn 
019 ; Rosen et al. 2020 ), active galactic nuclei and their associated
ets (e.g. Davis & Tchekhovsk o y 2020 ), and in galactic outflows (e.g.
aab & Ostriker 2017 ; Zhang 2018 ). These systems span a vast range
f scales and physical conditions, which can be parametrized by the 
ptical depth across the region of interest, determining how radiation 
s transported. While there exist various numerical techniques to 
olve the RHD equations in some limiting cases (e.g. high versus low
ptical depth), a crucial requirement of flexible modern methods is 
heir ability to treat a mixture of regimes in a robust and efficient
ay. 
 E-mail: shyam.menon@anu.edu.au 

w  

w  

r

2022 The Author(s) 
ublished by Oxford University Press on behalf of Royal Astronomical Society 
There are well-known difficulties associated with numerically 
olving the RHD equations. The primary challenge has to do with
he multidimensional nature of the radiation intensity – a function 
f spatial location, time, direction, and frequency – that ef fecti vely
akes the radiative transfer (RT) equation very expensive to solve, 

specially in a dynamical system where this needs to be done
ultiple times (ho we ver, see Jiang 2021 ). A common approach to

ircumvent this is to integrate the RT equation over all frequencies
nd angles to obtain the grey radiation moment equations, reducing 
he dimensionality of the system (e.g. Pomraning 1973 ; Mihalas &

ihalas 1984 ; Castor 2004 ). Ho we ver, this introduces the need for
n extra closure equation to estimate the moments of the radiation
ntensity whose evolution is not explicitly computed. One commonly 
sed closure is the flux-limited diffusion (FLD) method (e.g. Turner 
 Stone 2001 ; Howell & Greenough 2003 ; Krumholz et al. 2007a ;
ittings et al. 2008 ; Swesty & Myra 2009 ; Kuiper et al. 2010 ;
ommer c ¸on et al. 2011 ; van der Holst et al. 2011 ; Zhang et al. 2011 ;
itsch et al. 2013 ; Flock et al. 2013 ; Klassen et al. 2014 ; Ramsey &
ullemond 2015 ; Chatzopoulos & Weide 2019 ; Moens et al. 2021 ),
hich closes the equations at the first moment (the radiation flux),
hich is assumed to be proportional to the ne gativ e of the gradient in

adiation energy density; this then implies that the Eddington tensor 
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s locally isotropic (Levermore & Pomraning 1981 ). The FLD closure
educes the radiation transport to a parabolic diffusion equation, with
 dif fusion coef ficient chosen to limit the photon speed to be smaller
han the speed of light. Ho we ver, this method often suffers from
naccuracies in the optically thin regime, or when a mixture of low-
nd high-opacity gas is present. For instance, FLD methods cannot
ast shadows (Hayes & Norman 2003 ; Kuiper & Klessen 2013 ). 

A more accurate closure scheme that has recently been adopted
idely is the M 1 closure (e.g. Gonz ́alez, Audit & Huynh 2007 ; Aubert
 Teyssier 2008 ; Rosdahl et al. 2013 ; Skinner & Ostriker 2013 ;
osdahl & Teyssier 2015 ; Kannan et al. 2019 ; Skinner et al. 2019 ;
loch et al. 2021 ; Chan et al. 2021 ; Melon Fuksman et al. 2021 ;
ibking & Krumholz 2021 ), which retains the time evolution of the

adiation flux and adopts a local closure relation for the radiation
ressure tensor, or equi v alently the Eddington tensor, in terms of
he local radiation energy density and flux; a variety of assumptions
egarding the nature of the radiation field are possible, each yielding
lightly different versions of the closure relation (Minerbo 1978 ;
evermore 1984 ). While the M 1 closure can handle transitions in
ptical depths for a single beam of radiation, it fails for other non-
rivial geometrical distributions of radiation sources. For instance,
he presence of multiple sources interacting in optically thin media
auses un-physical discontinuities between the sources’ radiation
ronts, and produces spurious fluxes in the direction perpendicular to
he line connecting the sources. 

A more accurate alternative is the so-called variable eddington
ensor (VET) scheme (e.g. Stone, Mihalas & Norman 1992 ; Gehmeyr
 Mihalas 1994 ; Sekora & Stone 2010 ; Jiang, Stone & Davis

012 ; Asahina, Takahashi & Ohsuga 2020 ), a non-local scheme
hat does not adopt a closure relation or model a priori , but rather
omputes the Eddington tensor self-consistently through a formal
olution of the time-independent RT equation, along discrete rays
sing a ray-tracing approach (e.g. Davis, Stone & Jiang 2012 ). The
elf-consistently computed closure is combined with the radiation
oment equations to solve for the radiation quantities. While more

omputationally e xpensiv e due to the required non-local ray-trace
olution and its associated communication o v erheads, the VET
pproach does not face the shortcomings of the more approximate
losure models discussed abo v e. F or e xample, the FLD and M 1 

losure schemes can produce misleading results in some semitrans-
arent problems (Krumholz & Thompson 2012 ; Kuiper & Klessen
013 ; Rosdahl & Teyssier 2015 ; Kannan et al. 2019 ), and this was
isco v ered only through a comparison of these simpler methods
ith a VET scheme (Davis et al. 2014 ) or other non-local closure

chemes, such as a Monte Carlo approach (Harries 2015 ; Tsang &
ilosavljevi ́c 2015 ; Smith et al. 2020 ). 
Another difficulty associated with RHD is the vast difference

n scale between the wave speeds associated with radiation and
ydrodynamics – the speed of light ( c ) and gas flow speed ( v) 1 in the
edium, respectiv ely. In man y non-relativistic, astrophysical prob-

ems, v/ c � 1, but stability constraints associated with explicit tem-
oral updates restrict the time-step to the stringent radiation transport
ime-scale, which renders simulations that must follow the system
or several hydrodynamical time-steps computationally infeasible. A
opular approach to alleviate this issue is to adopt a reduced speed-
f-light approximation (RSLA), wherein the speed of light is reduced
o a fraction of its true value ˆ c (e.g. Gnedin & Abel 2001 ; Skinner
 Ostriker 2013 ). This allows one to use an explicit temporal update
NRAS 512, 401–423 (2022) 

 For strongly subsonic flows, the relavant wavespeed for the timestep is the 
ound speed c s . 
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or the radiation quantities that is now limited by the much larger
atio c s / ̂ c . Explicit updates of the radiation moment equations with
he RSLA have the advantage that they can adopt widely studied
nd well-tested tools for solving hyperbolic PDEs. These schemes
re also, in general, well parallelizable and scalable, and can be
ccelerated with GPUs (Wibking & Krumholz 2021 ). Ho we ver, the
SLA is only applicable under the condition that the hierarchy of
volution time-scales – namely the light crossing, radiation diffusion,
nd hydrodynamic time-scales – remains the same even with the
educed speed of light. This places constraints on the applicability of
he RSLA in systems with high optical depth, the dynamic diffusion
egime, limiting the overall flexibility of the scheme. 

An alternative approach is to treat the transport of radiation at
he hydrodynamic time-step in a fully implicit fashion to a v oid
tability-related issues. This approach has been used in a vast variety
f implementations and has the benefit of being applicable in a
road range of systems. Ho we ver, implicit methods require the
olution of a large system of equations using sparse matrix solvers,
hose performance and scalability are limited. This is aggravated
y the presence of stiff, nonlinear terms that need to be handled
mplicitly, along with the radiation quantities, rendering the system
f equations both non-local and nonlinear. Ho we ver, implicit, non-
ocal methods remain the gold standard of accuracy, and recent
dvancements in numerical methods, and the development of freely
vailable and continually improving libraries of linear/nonlinear
parse matrix solvers using Krylov subspace methods, has accel-
rated the development of implicit RHD schemes that can be applied
n massively parallel computing architectures (Saad 2003 ). 
In this paper, we present VET-closed Transport on Adaptive
eshes ( VETTAM ), 2 the first multidimensional radiation moment

cheme closed using a VET computed through a formal solution of
he RT equation with adaptive mesh refinement (AMR) capabilities.
he formal solution is computed through a method based on the
ybrid characteristics ray-tracing implemented in Buntemeyer et al.
 2016 ). 3 We couple this with the update of the radiation moment
quations in a fully time-implicit fashion that can handle all regimes
f optical depth in radiation transport. We solve the resulting implicit
ystem of nonlinear equations with a fixed-point Picard iteration
cheme that allows us to use a variety of sparse Krylov subspace
atrix solv ers pro vided with the PETSc library 4 (Balay et al. 1997 ,

021 ). We describe our scheme, its salient features, and its integration
nto the FLASH code (Fryxell et al. 2000 ; Dubey, Reid & Fisher
008 ) in Section 2 . In Section 3 , we present a comprehensive test
uite to demonstrate the accuracy and capabilities of our algorithm.
n Section 4 , we discuss the advantages of our VET scheme o v er
ethods that adopt simpler closures, touch upon the performance

apabilities of our scheme, and list some caveats associated with
ur implementation that provide scope for future improvements. We
riefly summarize in Section 5 and mention potential applications
or which we intend to use VETTAM in the near future. 

 N U M E R I C A L  M E T H O D O L O G Y  

n this section, we describe our implementation to treat the coupled
HD set of equations, fully integrated into the FLASH code (Fryxell
VETTAM is an acronym for VET closed Transport on Adaptive Meshes. The 
cronym stands for light in the south Indian language of Malayalam – the 
rst language of SHM. 
 The module has been rewritten and impro v ed significantly by Manuel Jung. 
 https:// petsc.org/ release/ 

https://petsc.org/release/
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t al. 2000 ; Dubey et al. 2008 ). FLASH is a publicly available high-
erformance general application (astro-)physics code that includes a 
ide range of physical capabilities and is designed in an organized 
odular fashion (Dubey, Tzeferacos & Lamb 2019 ). It solves the 

ydrodynamic equations on an Eulerian mesh, with AMR (Berger & 

olella 1989 ) using the PARAMESH library (MacNeice et al. 2000 ).
y default it uses a modified second deri v ati ve normalized by the
verage gradient of a chosen variable o v er a cell as a dimensionless
riterion for refinement (Lohner 1987 ), although other refinement 
riteria are available or straightforward to implement (such as Jeans 
efinement Federrath et al. 2010 ). 

.1 Equations of radiation hydrodynamics 

n VETTAM , we solve the equations of non-relativistic grey 
frequenc y-inte grated) RHD in conserv ati ve form, written in the
ixed-frame formulation, i.e. where the moments of the radiation 

ntensity are written in the lab frame, and the opacities are written
n the comoving frame, with the transformation between the frames 
ccounted by O( v/c) terms in the resulting equations (e.g. Mihalas &
lein 1982 ; Krumholz et al. 2007a ). This approach takes advantage
f the simplicity of the hyperbolic operators in the lab frame, 
nd the simplicity of the matter emissivities and opacities in the 
omoving frame, where they are generally isotropic (see Castor 
009 , for a detailed critique of these various approaches). An 
dditional advantage is that the mixed-frame formulation permits 
onservation of total energy, whereas a comoving-frame formulation 
f the equations does not; this is especially important for AMR,
here non-conservation may be amplified by repeated refinements. 
o we v er, the O( v/c) e xpansions to transform the opacities in the
ixed-frame equations fail for emission/absorption lines as soon as 

/ c becomes comparable to �λ/ λ0 , where �λ and λ0 are the linewidth
nd line centre; this limits the use of the mixed-frame approach 
o broad lines or continuum radiation. Since we are interested in 
odelling dust continuum radiation with VETTAM on an AMR 

rid, the advantages of the mixed-frame formulation outweigh its 
isadvantages. In writing out the equations, we are careful to retain 
erms that are of leading order in all regimes of RHD, using the
calings for various terms given in table 1 of Krumholz et al.
 2007a ), to ensure that our scheme reco v ers the correct asymptotic
imits (Lowrie, Morel & Hittinger 1999 ). We neglect scattering for
implicity; ho we v er, an e xtension to include scattering would be
traightforward. Finally, we assume the matter is always in local 
hermodynamic equilibrium, though not necessarily in equilibrium 

ith the radiation field, and we treat the material property coefficients 
s isotropic in the comoving frame. 

We adopt the following convention to represent the RHD op- 
rations: tensor contractions o v er a single inde x with dots (e.g.
 · b ), tensor contractions o v er two indices by colons (e.g. a : b ),
nd tensor products of vectors without an operator symbol (e.g. a b ).
he equations solved by VETTAM are then 

∂ρ

∂t 
+ ∇ · ( ρv ) = 0 (1) 

∂( ρv ) 
∂t 

+ ∇ · ( ρvv ) = −∇ P − ρ∇ � + G + ṗ ∗ (2) 

∂E 

∂t 
+ ∇ · [( E + P ) v ] = −ρv · ∇� + cG 

0 + Ė ∗ (3) 

∂E r 

∂t 
+ ∇ · F r = −cG 

0 (4) 
∂ F r 

∂t 
+ ∇ · ( c 2 E r T ) = −c 2 G , (5) 

here the pressure is given by the ideal gas law, 

 = 

ρk B T 

μ
, (6) 

nd 

G 

0 = ρκE E r − ρκP a R T 
4 + ρ ( κF − 2 κE ) 

v · F r 

c 2 

+ ρ ( κE − κF ) 

[
v 2 

c 2 
E r + 

v v 
c 2 

: P r 

]
, 

(7) 

nd 

 = ρκR 

F r 

c 
− ρκR E r 

v 
c 

· ( I + T ) , (8) 

re the time-like and space-like parts of the specific radiation four-
orce density for a direction-independent flux spectrum (Mihalas & 

uer 2001 ) to leading order in all regimes. In the abo v e equations ρ
s the mass density, P the gas thermal pressure, v the gas velocity,
 the gravitational potential, T the gas temperature, I the identity 
atrix, and c the speed of light in vacuum. E is the total gas energy

ensity, given by 

 = E g + 

1 

2 
ρv 2 , (9) 

here E g is the gas internal energy density. In the ideal gas law,
quation ( 6 ), k B is the Boltzmann constant and μ the mean particle
ass. As for the radiation quantities, E r is the lab-frame radiation

nergy density, F r the lab-frame radiation momentum density, P r is 
he lab-frame radiation pressure tensor, and a R the radiation constant. 
he radiation moment quantities are related to the radiation intensity 
 r ( ̂ n k , ν) travelling in direction ˆ n k by the relations 

E r = 

∫ ∞ 

0 
d ν

∫ 
d 
I r ( ̂ n k , ν) (10) 

 r = 

∫ ∞ 

0 
d ν

∫ 
d 
 ˆ n k I r ( ̂ n k , ν) (11) 

 P r = 

∫ ∞ 

0 
d ν

∫ 
d 
 ˆ n k ̂  n k I r ( ̂ n k , ν) , (12) 

here d 
 and d ν are the infinitesimal solid angle and lab-frame
requencies, respectively. The radiation closure relation is used to 
lose the abo v e system of equations, and is of the form 

 r = T E r , (13) 

here T is the Eddington Tensor. We use an Eddington tensor di-
ectly calculated from angular quadratures of the frequenc y-av eraged 
pecific intensity I r ( ̂ n k ), using relations ( 10 ) and ( 12 ), where I r as
 function of the spatial path-length s is calculated from a formal
olution of the time-independent RT equation 

∂I r 

∂s 
= ρκ( S − I r ) , (14) 

here S is the source function, which, for the purposes of modelling
he emission from dust grains, we set equal to the frequency-
ntegrated Planck function B ( T ) = ca R T 

4 /(4 π ). The expression in
quation ( 14 ) neglects scattering, and assumes that the dust emits
nd absorbs radiation in the comoving frame with the same grey
pacity κ = 

∫ ∞ 

0 κ ( v 0 ) d ν0 , where κ( v 0 ) is the material opacity at
requency ν0 . In addition, we also ignore O( v/c) terms in this
quation, which arise from the mixed-frame formulation, since we 
xpect the contribution of these terms to the Eddington tensor to
MNRAS 512, 401–423 (2022) 
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e relati vely lo w. Ė ∗ and ṗ ∗ denote the energy and momentum
eposition rates to the gas by the direct radiation from point sources or
ink particles (Federrath et al. 2010 ). We split this direct contribution
rom the diffuse radiation modelled by the VET, and treat it directly,
sing only a ray tracer on rays originating at the sources 5 (Wolfire
 Cassinelli 1986 ; Murray et al. 1994 ; Kuiper et al. 2010 ; Bitsch

t al. 2013 ; Flock et al. 2013 ; Kolb et al. 2013 ; Klassen et al.
014 ; Ramsey & Dullemond 2015 ; Rosen et al. 2017 ; Mignon-
isse et al. 2020 ). We provide further details on these terms in
ection 2.2.6 . 
The material coefficients κP , κE , and κF are the Planck-mean,

nergy-mean, and flux-mean frequenc y-inte grated specific opacities
 v aluated in the comoving frame, and are given by, 

P ≡
∫ ∞ 

0 κ ( v 0 ) B ( v 0 , T ) dv 0 ∫ ∞ 

0 B( ν0 , T ) dν0 
, (15) 

E ≡
∫ ∞ 

0 κ ( v 0 ) E r0 ( v 0 ) dv 0 ∫ ∞ 

0 E r0 ( ν0 ) dv 0 
, (16) 

F ≡
∫ ∞ 

0 κ ( v 0 ) F r0 ( v 0 ) dv 0 ∫ ∞ 

0 F r0 ( ν0 ) dv 0 
, (17) 

here B ( v 0 , T ) is the frequency-dependent Planck function, E r 0 ( ν0 )
he radiation energy density per unit frequency, and F r0 ( ν0 ) the
adiation flux per unit frequency, all defined in the comoving frame.
he lab-frame and comoving-frame quantities are related by (e.g.
astor 2004 ) 

 r = E r0 + 2 
v · F r0 

c 2 
+ 

1 

c 2 

[
v 2 E r0 + ( v v ) : P r0 

]
, (18) 

 r = F r0 + v E 0 + v · P r0 + 

1 

2 c 2 
[
v 2 F r0 + 3 v ( v · F r0 ) 

]
, (19) 

 r = P r0 + 

v F r0 + F r0 v 
c 2 

+ 

1 

c 2 
[ v v E r0 + v ( v · P r0 ) ] . (20) 

he equations and implementation, by themselves, make no as-
umptions about the frequency dependence of κ . Ideally, the correct
pproach would be to resolve the spectrum of the radiation field,
sing for example a multigroup method (see, e.g. Vaytet et al.
011 ), and compute opacities self-consistently. Ho we ver, this would
ender the scheme significantly more computationally e xpensiv e,
nd we thus leave it for future extensions. Instead, for the purposes
f this work, we shall adopt the approximation that κE ≈ κP 

nd κF ≈ κR , where κR is the Rossseland mean opacity given
y 

−1 
R = 

∫ ∞ 

0 d ν0 κ0 ( ν0 ) 
−1 [ ∂B ( ν0 , T 0 ) /∂T 0 ] ∫ ∞ 

0 d ν0 [ ∂ B ( ν0 , T 0 ) /∂ T 0 ] 
. (21) 

he former condition is obtained by assuming the radiation has
 blackbody spectrum, and the latter yields the correct radiation
orce in optically thick media. In equation ( 14 ) we use κ =
P , which w ould mak e it consistent with the equation for E r in
teady state. We note that this choice of opacity would not be
onsistent with the steady state equation for F r . Ho we ver, it is
ot possible for equation ( 14 ) to be fully consistent with both
he moment equations regardless of the choice of grey opac-
ty κ adopted; only a frequency-dependent opacity can permit
NRAS 512, 401–423 (2022) 

his. 

 This is sometimes referred to as a hybrid radiation transfer, and we follow 

his terminology in this paper. 

o  

s  

d  

t  

s  
.2 Solution algorithm 

.2.1 Algorithm summary 

o begin with, it is useful to summarize the series of steps followed
y VETTAM in each simulation time-step. We refer the reader to
pecific subsections for details of each step in the algorithm. 

(i) Perform the explicit hydrodynamic update (equation 24 ) with
he hydrodynamic solver capabilities in FLASH . 

(ii) If point sources of radiation are present in the simulation,
ompute and add their direct contribution to the energy 

(
Ė ∗

)
and

omentum 

(
ṗ ∗
)

of the gas (Section 2.2.6 ). 
(iii) Use the gas variables to compute opacities ( κP , κR ) and

he source function ( S ) for the transfer equation. Solve the time-
ndependent transfer equation using the hybrid characteristics ray
racer and compute the Eddington Tensor from the solution T
Section 2.2.5 ). 

(iv) Perform a linearized first-order backwards Euler implicit
pdate for the equations go v erning E r and F r with the temperature
btained from step ii, keeping the hydrodynamic quantities fixed
or this update (Section 2.2.4 ). This update, converged to a relative
olerance of εR , provides a guess solution for the radiation quantities
 r , ∗ and F r, ∗. 
(v) Solve the nonlinear equation for a guess for the gas temperature

 ∗ with Newton’s method to a relative tolerance of εN (Section 2.2.4 ).
(vi) Repeat steps iv & v until the vector of quantities x P =

E r, ∗, F r, ∗, T ∗
]

converges to a relative tolerance of εP . Set the time-
pdated values for these variables to the converged guess. 
(vii) Add the explicitly handled radiation source terms cG 0, e 

equation 32 ) and G (equation 8 ) using the converged solution for
 P . 
(viii) Update the time t n + 1 = t n + � t , calculating the new

ime-step according to a modified Courant-Friedrichs-Lewy (CFL)
ondition using the adiabatic sound speed for RHD. 

The modified time-step here is essentially a modification to
he standard CFL condition (Courant, Friedrichs & Lewy 1928 ),

odified to account for the effect of radiation pressure on the
ropagation of acoustic waves (Mihalas & Mihalas 1984 ). Following
rumholz et al. ( 2007a ), we use an approximate expression for the

f fecti ve sound speed, 

 eff = 

√ 

γP + (4 / 9) E r (1 − e −ρκR �x ) 

ρ
, (22) 

here γ is the adiabatic index of the gas, and � x is the computational
ell length on the highest refined level l max , as is the convention in
LASH. The hydrodynamic time-step is then set to 

t = C 0 
�x 

max ( | v | + c eff ) 
, (23) 

here C 0 is the Courant number, and the denominator denotes the
aximum signal speed at l max . 

.2.2 Operator-splitting 

quations ( 1 )–( 5 ) are a set of coupled, nonlinear, hyperbolic conser-
ation laws plus source terms, for which various methods exist to
btain solutions. Ho we ver, the large dif ference in hydrodynamical
ound-crossing and the radiation light-crossing time-scales poses a
ifficult numerical challenge. In addition, the stiff nonlinear source
erms associated with the radiation–gas interaction could render the
ystem sensitive to perturbations and prone to ringing (LeVeque
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002 ). Thus, we must solve the radiation subsystem, along with the
oupled stiff source term update, for the hydrodynamic quantities 
n an implicit manner. For this purpose, we operator-split this 
ubset of equations from the hyperbolic hydrodynamic update that 
ontains non-stiff source terms, which is treated explicitly using 
he preexisting infrastructure available in FLASH . We also treat 
he contribution of radiation source terms in the gas momentum 

ensity equation ( G in equation 3 ) explicitly. In the gas energy
quation, we treat the update for the stiff gas–radiation interaction 
erm implicitly and by default we treat the other O( v/c) terms
xplicitly. Ho we ver, in some cases where the system is in the dynamic
iffusion regime, we found treating these terms implicitly as well 
endered the system more robust and stable at larger time-steps, and 
ur software implementation therefore provides a run-time switch to 
pecify whether to treat the non-stiff energy source terms implicitly 
r explicitly. 
Formally, we can express our operator splitting approach in terms 

f the following sub-problems: 

∂ U e 

∂t 
+ ∇ · ( F e ) = S e , (24) 

∂ U r 

∂t 
+ ∇ · ( F r ) = S r , (25) 

here 

 e = 

⎡ 

⎣ 

ρ

ρv 
E 

⎤ 

⎦ , (26) 

 e = 

⎡ 

⎣ 

ρv 
ρv v + P I 
( E + P ) v 

⎤ 

⎦ , (27) 

 e = 

⎡ 

⎣ 

0 
−ρ∇� + G 

−ρv · ∇� + cG 0 ,e 

⎤ 

⎦ , (28) 

 r = 

⎡ 

⎣ 

E 

E R 

F r 

⎤ 

⎦ , (29) 

 r = 

⎡ 

⎣ 

0 
F r 

c 2 E R T 

⎤ 

⎦ , (30) 

 r = 

⎡ 

⎣ 

−ρκP c[ a R T 4 − E R ] 
−cG 

0 

−c 2 G 

⎤ 

⎦ . (31) 

n the expressions above, 

cG 0 ,e = ρ ( κF − 2 κE ) 
v · F r 

c 2 

+ ρ ( κE − κF ) 

[
v 2 

c 2 
E r + 

v v 
c 2 

: P r 

] (32) 

s the collection of O( v/c) coupling terms that by default we treat
xplicitly; in the alternative implicit treatment we move this term 

rom the last element of S e to the first element of S r . 
We solve subsystem 24 using the pre-existing infrastructure 

vailable in FLASH , with the trivial modification of adding the 
adiation-related source terms G and cG 0, e that appear in S e . We 
iscretize these terms such that E r and F r are the values obtained 
fter the implicit update for the radiation quantities, i.e. at time t n + 1 .

On the other hand, subsystem 25 represents a set of coupled 
onlinear equations that we update fully implicitly using a first- 
rder backward Euler differencing in time. We restrict the temporal 
ccuracy to first-order because higher-order implicit time integration 
chemes have been found to lead to oscillatory solutions when using
arge time-steps (Sekora & Stone 2010 ). We use a Godunov method
o discretize the vector flux ∇ · F r for the conserved quantities U r ,
sing an HLLE Riemann solver in an implicit fashion by defining
he variables in the flux expression to be at time t n + 1 . We describe
his procedure in further detail in Section 2.2.3 . During this stage,
e keep the hydrodynamical quantities ρ and v fixed to the state 
btained after the hydrodynamic update in the source terms on the
ight-hand side of equation ( 25 ). On the other hand, the radiation
uantities E r and F r are at time t n + 1 , as required for an implicit
ethod. 
The abo v e discretization approach, when written do wn for e very

ell in the domain, leads to a system of nonlinear equations that can
e represented in a matrix form, and inverted to obtain a solution.
e use a fixed-point Picard iteration scheme to treat the nonlinear

pdate of the implicit subsystem and describe the method in further
etail in Section 2.2.4 below. We also note that the Eddington Tensor
 T ), obtained with a solution to the time-independent RT equation,
s pre-computed using the physical quantities obtained after the 
ydrodynamic update, and is kept fixed for the implicit update. 
n Sections 2.2.5 and 2.2.6 , we provide further details on how T
s obtained with the hybrid characteristics ray-tracing scheme for 
iffuse sources and for point sources of radiation, respectively. 

.2.3 Implicit hyperbolic transport of radiation 

o evolve the hyperbolic transport equations for E r and F r in 25 ,
e use a first-order Godunov finite-volume method using a Harten- 
ax-van Leer (HLL)-type Riemann solver (Toro 1997 ) to compute 

he flux of the conserved variables. With this approach, similar to
he one described by Jiang et al. ( 2012 ), the discretized evolution
quation can be written as 

( U r ) 
n + 1 
i,j ,k = ( U r ) 

n 
i,j ,k −

�t 

�x 

[
F 

HLLE 
i+ 1 / 2 ,j ,k − F 

HLLE 
i−1 / 2 ,j ,k 

]
− �t 

�y 

[
F 

HLLE 
i,j+ 1 / 2 ,k − F 

HLLE 
i,j−1 / 2 ,k 

]
− �t 

�z 

[
F 

HLLE 
i,j ,k+ 1 / 2 − F 

HLLE 
i,j ,k−1 / 2 

] + �t S 

n + 1 
r , 

(33) 

here the terms F 

HLLE are the vector of fluxes for the conserved
uantities at each cell interface computed by an HLLE Riemann 
olver (equation 39 of Sekora & Stone 2010 ). The left and right
tates at the interface for the Riemann solver are obtained using a
iecewise constant (first-order) reconstruction, using the state of the 
onserved quantities U r at time t n + 1 when computing the HLLE 

uxes. The characteristic left/right going wavespeeds ( C 

L 
HLLE and 

 

R 
HLLE , respectively) are given by 

 HLLE = 

√ 

f c 

√ 

1 − e −τc 

τc 

, (34) 

here 

c ≡ ( 10 �� ρ κR ) 
2 / (2 f ) , (35) 

� is the cell thickness and f is the diagonal component of T
n the direction of the flux. We obtain this relation by using the
igenvalues of the radiation moment equations in the free streaming 
imit ( ±√ 

f c), and applying an optical depth-dependent correction 
actor following equation A3 of Jiang, Stone & Davis ( 2013 ; J13
ereafter) to circumvent the issue of the numerical dif fusi ve flux
ecoming dominant o v er the physical diffusion flux in the optically
MNRAS 512, 401–423 (2022) 
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hick regime (Audit et al. 2002 ). In Appendix A1 , we show that
his correction is required to a v oid substantial numerical diffusion in
imulations where the cell optical depth is 	1. 

Ho we ver, in our implementation, we introduce a modification to
he J13 correction factor for AMR grids. J13 e v aluate the correction
actor τ c at a cell interface using the arithmetic mean of the values
omputed using cell-centred quantities at the left ( τL ) and right ( τR )
ells of the interface. We do the same at all interfaces except at
MR level boundaries, where we use the upstream value to a v oid
iases arising from the different cell sizes on the two sides of the
nterface. We found this modification to be necessary for obtaining
ontinuous and accurate results with AMR, 6 and justify this choice
n Appendix A2 . In summary, the value of τ c at an interface for the
ight- ( C 

R 
HLLE ) and left- ( C 

L 
HLLE ) going waves is 

c ( τL , τR ) = 

⎧ ⎨ 

⎩ 

τL + τR 
2 | l R − l L | = 0 

τL | l R − l L | > 0 for C 

R 
HLLE 

τR | l R − l L | > 0 for C 

L 
HLLE 

, (36) 

here l R and l L are the numbers of the AMR levels of the cells to the
ight and left of the interface, respectively. 

We must also take steps to ensure that the hyperbolic transport
f the conserved quantities E r and F r retains conservation at cell
nterfaces where there is a jump in refinement lev el. F or instance, the
et transport of radiation energy and momentum out of a coarse
ell should be balanced by the corresponding sum of the same
ntering the finer neighbour cells. Ho we ver, this condition is not
utomatically satisfied at AMR level boundaries, since the terms
hat express the transport fluxes depend on ghost cell data at block
oundaries, which are interpolated, and are thus not identical at both
ides of the interface. In an explicit method, it is possible to perform
 correction step after the hyperbolic update is performed to ensure
ux consistency (Berger & Colella 1989 ). Ho we ver, this luxury is not
vailable to an implicit method, and flux consistency should either by
nforced by construction in the implicit set of equations solved (e.g.
ommer c ¸on et al. 2011 ; Klassen et al. 2014 ), or through a level-by-

evel approach with synchronization steps that also allows one to use
dapti ve time-stepping (e.g. Ho well & Greenough 2003 ; Zhang et al.
011 ; Commer c ¸on, Debout & Teyssier 2014 ). Since FLASH does
ot include adaptive time-stepping, we chose to adopt the former
pproach. Specifically, we enforce conservation by replacing the
oarse flux determined by the HLLE solver across any coarse-fine
nterface with the sum of the fine flux es. F or e xample, consider the
ase of a 2D coarse-fine interface, and denote the hyperbolic flux out
f the coarse cell as F 

HLLE 
c , and that entering the two fine cells to be

 

HLLE 
f1 and F 

HLLE 
f2 . Since the fine cells each have face areas equal to

alf that of the coarse cell, exact conservation requires that 

 

HLLE 
c = 

1 

2 

(
F 

HLLE 
f1 + F 

HLLE 
f2 

)
. (37) 

hile in general the HLLE solver will not enforce exact equality, we
o in our scheme by explicitly replacing F 

HLLE 
c with the right-hand

ide of equation ( 37 ) when writing out the discretized equation to
e solved. This ensures that our scheme achieves conservation by
onstruction. 

.2.4 Implicit nonlinear update 

he system of equations described by the subsystem 25 represents a
onlinear coupled set of equations, where the non-linearity arises
NRAS 512, 401–423 (2022) 

 The implementation of J13 was for uniform grids, and hence did not face 
he aforementioned issue. 

7

t

ue to the stiff gas–radiation interaction term and the nonlinear
ature of the temperature dependence of κP and κR (e.g. Semenov
t al. 2003 ). There exist numerous strategies for solving systems of
oupled nonlinear equations (see e.g. Kelley 1995 ), and our choice is
ictated by simplicity and performance. Most commonly, Newton–
aphson iteration methods are used to treat such systems; ho we ver,

hey require the computation of the Jacobian of the system, which
n our case is unavailable analytically, and would be e xpensiv e
o compute numerically. While there exist Jacobian-free Newton–
rylov methods to circumvent costs associated with constructing

he Jacobian (Knoll & Keyes 2004 ), we adopt a simpler, yet robust,
xed-point Picard iteration scheme. 7 Picard iteration is a method for
olving a system of nonlinear equations by reformulating them as
he problem of finding the fixed point of a function (Kelley 1995 ;
urden & Faires 1997 ). This is done by starting with an initial guess

or the solution to the nonlinear system, and successively improving
he guess through the solution of a simpler linearized recasting of
he nonlinear system of equations. 

We implement the Picard iteration method in our scheme in
he following fashion: we first operator-split the gas energy update
rom the radiation moment equations, and then discretize the term
roportional to T 

4 in the latter to use a provided guess temperature
 ∗, which we set to the old time value ( T n ) at the start of the update.
he first-order Euler backward update for a time-step � t = t n + 1 −
 n can be written for each computational cell as 

E r, ∗ − E r,n 

�t 
+ ∇ · F r, ∗ = cG 

0 
∗ (38) 

F r, ∗ − F r,n 

�t 
+ c 2 ∇ · T E r, ∗ = c G ∗, (39) 

here the source terms cG 

0 
∗ and G ∗ use the guess temperature T ∗,

nd corresponding opacities κP ( T ∗), κR ( T ∗) in their expressions.
he discretization described here ef fecti vely linearizes the implicit

adiation moment equation update, and we use sparse matrix solvers
ased on Krylov subspace methods (Saad 2003 ) offered by the
ETSc library to obtain the solution to E r , ∗ and F r, ∗. We use the
eneralized minimum residual (GMRES) solver (Saad & Schultz
986 ) by default, but allow users to choose other solvers and pre-
onditioners at run time. We use the default convergence criteria in
ETSc based on the 2-norm of the preconditioned residual to check

or convergence to a user-defined relative tolerance εR . The guess for
he gas temperature is then impro v ed by implicitly updating the gas
nergy as 

E ∗ − E n 

�t 
= −ρκP c 

[
a R T 

4 
∗ − E r, ∗

]
, (40) 

here κP is identical to that used in equations ( 38 ) and ( 39 ), and E ∗
E n = α( T ∗ − T n ), using the relation between internal energy and

emperature E int = αT , and the fact that the discretization we use
nsures the kinetic energies cancel out. This represents a nonlinear
quation for the new temperature guess T ∗, which is, ho we ver, local,
nd hence we can solve this independently for each cell. We use a
imple Newton’s method by analytically constructing the Jacobian of
he polynomial equation ( 40 ) to obtain T ∗, assessing convergence on
he relative tolerance of the temperature εN . The combination of the
mplicit radiation subsystem update, and the implicit gas temperature
pdate comprise one Picard iteration. At the end of each iteration,
 This iterative method is also sometimes called nonlinear Richardson itera- 
ion, or the method of successive substitution. 
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e check for the residual change in the vector 

 P = 

⎡ 

⎣ 

E r 

F r 

T 

⎤ 

⎦ , (41) 

 v er the iteration, and check for convergence within a relative
olerance εP . If convergence is satisfied, we set the new time solution
or E r , F r , and T to be equal to the guess in the last Picard iteration,
nd if not we repeat the procedure, using the values obtained at the
nd of this iteration as our new guess. 

One may notice that the radiation–gas interaction terms in equa- 
ions ( 38 ) and ( 40 ) are not the same by construction, with the former
sing a guess temperature T ∗ in cG 

0 
∗ that is lagged by one Picard

teration as compared to the T ∗ used in the latter. This, in some
ases, can lead to non-conservation of total energy in the domain. 
e thus add a correction term � E explicitly in each Picard iteration

o the right-hand side of equation ( 40 ) accounting for this variation
n discretization. This has the form 

E = ρκP ca R 
[
T 4 n, ∗ − T 4 o, ∗

]
, (42) 

here T o , ∗ is the value of T ∗ used in the last update of equation ( 38 ),
nd T n , ∗ is that used in the last update of equation ( 40 ). This
nsures that energy is conserv ed irrespectiv e of the adopted value
f εP . Ho we ver, we note that since we use implicit updates for
quations ( 38 ) and ( 40 ), we cannot ensure strict convergence of
nergy to machine precision, and are limited to the precision εN and 
R . 

.2.5 Computing the Eddington tensor 

he VET, used to close the radiation momentum equations with 
quation ( 13 ), is calculated explicitly from a formal solution of the
ime-independent RT equation (equation ( 14 )). We use a hybrid- 
haracteristics based raytracing approach to solve this equation on 
arge sets of characteristics (rays) using the implementation in 
LASH by Buntemeyer et al. ( 2016 ). We use the obtained solution for

he grey radiation intensity ( I r ) from the ray tracer, perform angular
uadratures on it to compute E r and P r , and use them to obtain
 using equation ( 13 ). To a v oid ha ving to allocate and store the

pecific intensity o v er all angles and spatial locations, we compute
he quadratures on-the-fly for the intensity along each ray in space. 
he discretized quadrature contributions are given by 

 r = 

c 

4 π

N 
−1 ∑ 

k= 0 

w k I r,k , (43) 

nd 

 r = 

c 

4 π

N 
−1 ∑ 

k= 0 

w k I r,k μik μjk , (44) 

here I r , k is the intensity along a ray in the direction ˆ n k , w k is
he quadrature weight, μik = 

ˆ n k · ˆ x i , where ˆ x i is the unit vector 
long the coordinate axis i , and the quadrature sum is performed
 v er N 
 discrete angles. We use the HEALPIX tesselation scheme to
iscretize angles on the unit sphere uniformly, which allows values 
f N 
 = 12 N 

2 
side , where N side is an integer that is a power of 2 (i.e.

 side = 1, 2, 4, 8,...). We expect the appropriate value of N 
 to use
o be problem-dependent; ho we ver, we find reasonable results for
ur tests even with moderate N 
, as shown in Appendix B . We also
andomly rotate the angles generated by the HEALPIX tesselation 
o prevent accumulation of artefacts introduced by the discretization 
see e.g. Krumholz, Stone & Gardiner 2007b ). We note that the VET
s computed at the start of the time-step, and kept fixed for the o v erall
adiation system update described in Section 2.2.4 . 

.2.6 Point sources contribution 

ETTAM is a hybrid radiation transport scheme, i.e. it splits the
adiation field into a direct and diffuse component (Wolfire & 

assinelli 1986 ; Murray et al. 1994 ), where the direct component
ncludes the contributions from point sources implemented with sink 
articles (Federrath et al. 2010 ), and the diffuse component involves
he diffuse (re-)emission of (thermal) radiation by the dust. The latter
s handled by the radiation moment equations closed with the VET
escribed abo v e. The direct contribution is handled solely by the
ybrid-characteristics ray tracer, which solves equation ( 14 ) along 
ays that originate at point sources in the domain, with no ef fecti ve
mission, i.e. S = 0. This splitting is useful if a simulation includes
ink particles to represent stars or clusters, whose contribution to the
adiation field can be quite asymmetric depending on the matter dis-
ribution. This splitting approach also allows a frequency-dependent 
reatment of the direct radiation (e.g. Kuiper et al. 2010 ; Rosen et al.
016 ), which often has a very different colour temperature than the
eprocessed radiation, and thus experiences very different matter 
pacities (see Kuiper et al. 2012 , for a direct comparison). The ray
race is performed using the implementation originally described in 
ijkhorst et al. ( 2006 ), and impro v ed later by Peters et al. ( 2010 ) and
untemeyer et al. ( 2016 ). The ray tracer computes ef fecti ve optical
epths from a point source to each cell in the domain and used to
btain the energy ( Ė ∗) and momentum ( ̇p ∗) deposited in the gas. The
nergy deposition rate Ė ∗ absorbed by the gas in a computational 
ell at a distance r from the star is given by 

˙
 ∗ = 

L ∗e −τ∗
(
1 − e −τcell 

)
4 πr 2 �r 

, (45) 

here L ∗ is the luminosity of the point source, τ ∗ is the optical depth
o the cell for a ray originating at the point source, τ cell = ρκ∗� r
s the local optical depth of the cell, where κ∗ is the opacity to the
irect radiation, and � r is the length of the ray intersected by the
ell. For numerical stability, when τ cell is very small, Ė ∗ is estimated 
y a Taylor-expanded form of the above relation given by 

˙
 ∗ = 

τcell L ∗e −τ∗

4 πr 2 �r 
. (46) 

he momentum contribution rate ṗ ∗ is given by 

 ̇∗ = 

Ė ∗
c 

ˆ r , (47) 

here ˆ r denotes the direction of the ray to the cell from the point
ource. 

 N U M E R I C A L  TESTS  

n this section, we provide numerical tests of the scheme described in
he previous sections. We compare our numerical results ( f num 

) with
nalytic or semi-analytic solutions ( f an ) when available, using either
he L 1 relative norm or the maximum relative error L max defined by 

 1 = 

∑ 

i | f num , i − f an , i | �x i ∑ 

i f an , i �x i 

, (48) 

nd 

 max = max 
i 

[ | f num , i − f an , i | 
f an , i 

]
, (49) 
MNRAS 512, 401–423 (2022) 
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here i can denote the solution at a spatial location or time t i for
he problem. We use the following settings for our tests, unless
therwise specified: relative tolerances of εN = εR = 10 −6 and εP =
0 −3 , GMRES solver left-preconditioned with the additive Schwarz
ethod for the implicit radiation update, and a Courant number C 0 

 0.8. We also do not use gravity in any of our tests (i.e. φ = 0). 

.1 Radiating pulse 

n our first test, we evolve the propagation of a 1D Gaussian pulse of
adiation energy in a static medium ( v = 0), for three different opaci-
ies ( κ0 ), that correspond to the streaming ( τ � 1), weak equilibrium
iffusion ( τ ∼ 1), and strong equilibrium diffusion ( τ 	 1) regimes,
espectively. In the streaming regime, radiation and hydrodynamics
re decoupled and the resulting dynamics resemble an advection
rocess. In the diffusion limits, radiation and hydrodynamics are
trongly coupled, and the resulting dynamics resemble a diffusion
rocess. We perform this test to demonstrate that our scheme is
apable of reproducing the right solutions in all regimes of radiation
ransport. The test setup is a 1D domain ranging from x = −x 0 to
 = x 0 , where x 0 = 0.5 cm for the streaming test, and x 0 = 5 cm
or the diffusion tests, respectively; the domain size is larger in the
iffusion tests so that we can capture the diffusion of the pulse for
onger times without boundary effects coming into play. The density
f the gas for all cases is fixed to ρ = 10 −20 g cm 

−3 , and we disable
ydrodynamics, so ρ does not evolve and the gas velocity remains v 
 0. The initial radiation energy density is 

 r ( x, 0) = E 0 exp 
(−μ2 x 2 

)
, (50) 

here we set E 0 = 1 erg cm 

−3 and μ = 20 cm 

−1 . Since the purpose
f this test is to check whether our scheme captures the physical
ransport/dif fusi v e flux es accurately, we set κE = 0 and κF = κ0 =
, 4 × 10 21 , and 4 × 10 24 cm 

2 g −1 for the streaming, static diffusion,
nd equilibrium diffusion v ersions, respectiv ely; this has the effect
f disabling energy exchange between gas and radiation (since all
xchange terms are proportional to either κE or v, both of which are
ero), and thus mimics the effects of a purely scattering medium. For
he streaming test, we initialize the radiation flux to the streaming
olution, 

 r ( x, 0) = cE r ( x, 0) , (51) 

hereas we use the solution expected for pure diffusion for diffusion
ests, i.e. 

 r ( x , 0) = 

−c 

3 ρκ0 

∂E r ( x , 0) 

∂x 
= 

2 c μ2 x 2 

3 
E r ( x , 0) . (52) 

e do not use the ray tracer for this test as the Eddington tensor
omponent ( f xx ) is spatially and temporally uniform with a value of
 xx = 1 for the streaming test and f xx = 1/3 for the others. We evolve
he system at the light crossing time-scale across a cell, i.e. � t =
 x / c , where � x is the cell thickness. We use a resolution of 1024

ells for our tests and adopt periodic (outflow) boundary conditions
or the streaming (diffusion) tests. In the streaming limit, the exact
olution is a radiation energy density profile identical to the initial
tate, displaced by ct in the direction of the initial flux, i.e. 

 r ( x, t) = E r ( x − ct, 0) . (53) 

n the diffusion tests, one can obtain an analytic solution by the
ethod of Green’s functions, which gives 

 r ( x, t ) = 

1 (
4 Dt μ2 + 1 

)1 / 2 exp 

( −μ2 x 2 

4 Dt μ2 + 1 

)
. (54) 
NRAS 512, 401–423 (2022) 
he corresponding flux is F r ( x , t ) = −D ( ∂ E r ( x , t )/ ∂ x ), where D =
 /3 κ0 ρ is the diffusion coefficient. 

We compare the exact and numerical results we obtain for the
adiation energy ( E r ) for three times in all three cases in Fig. 1 .

e see that the agreement with the analytical solutions is good,
specially for the diffusing pulses. The L 1 relative errors for the
hree time instances shown in Fig. 1 for the static diffusion test are
 per cent, 3.7 per cent, and 3.3 per cent, and for the equilibrium
iffusion test are 2.4 per cent, 3 per cent, and 3.2 per cent. The
greement is poorer for the streaming pulse though, especially at
ater times, with L 1 relative errors of 3.7 per cent, 16 per cent, and
7 per cent, respectively. Although we capture the propagation speed
hence, position) of the pulse accurately in the streaming regime, we
nd that the pulse has diffused from its initial true state due to
umerical diffusion at later times. This is not surprising considering
hat our scheme is only first-order accurate in space and time. In
ddition, it is widely known that implicit methods perform poorly
hen trying to capture the propagation of individual wave modes

Sekora & Stone 2010 ). We keep these limitations in mind, and aim
o address this with higher-order reconstruction strategies in future
ersions of the code. 

.2 Dynamic diffusion test 

he dynamic diffusion regime ( τβ 	 1) is a regime of high optical
epth where the photons are ef fecti vely trapped in the fluid so
trongly that radiation transport is primarily by the advection of
hotons by the gas, rather than diffusion of photons through the
as. Reproducing this limit of RHDs requires accurate handling of
he O( v/c) source terms in the radiation moment equations. To test
hether our scheme can achieve this, we setup a Gaussian pulse

est with a domain and initial conditions similar to those used in
iffusion tests in the previous section, including the condition of
E = 0. Ho we ver, we increase the v alue of κF = κ0 = 4 × 10 26 

m 

2 g −1 , and initialize the gas with a velocity v = 3 km s −1 in the
ositive x direction rather than 0. The Eddington approximation is
sed to estimate the Eddington tensor. In addition, we also take care
o modify the initial values of E r and F r , which are defined in the
ab frame in our scheme, by performing the appropriate Lorentz
ransformation from the comoving frame initial conditions [given by
quations ( 50 ) and ( 52 )] to the lab frame (Mihalas & Mihalas 1984 ).
he domain is discretized with 2048 uniformly spaced cells. 
We show our numerical results in Fig. 2 for times corresponding

o 25 per cent, 50 per cent, and 100 per cent of the domain crossing
ime. We compare this solution with the expected analytical solution
or this system, which in the comoving frame should be identical to
quation ( 54 ). In the simulation frame, the corresponding solution is 

 r ( x, t ) = 

1 (
4 Dt μ2 + 1 

)1 / 2 exp 

(−( μ( x − vt )) 2 

4 Dt μ2 + 1 

)
. (55) 

e find that our numerical solution is in good agreement with the
nalytical one, with L 1 relative errors of 4.5 per cent, 5.6 per cent,
nd 5.8 per cent, respectively for the three timestamps shown in
ig. 2 . This test demonstrates the capability of our scheme to perform
orrectly in the dynamic diffusion regime. 

.3 Non-equilibrium radiation-matter coupling test 

n this problem, we test our treatment of the gas-radiation coupling
erm as implemented with a fixed-point Picard iteration scheme
escribed in Section 2.2.4 . We setup the problem in a fashion similar
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Figure 1. Radiation pulse in the streaming (left), weak equilibrium diffusion (middle), and strong equilibrium diffusion (right) regimes for three different times, 
with their corresponding analytical solutions given by equation ( 53 ; streaming) and equation ( 54 ; weak/strong diffusion) o v erplotted (dashed lines). We indicate 
the total opacity ( ρκ0 ) for each version in the top-left corner of the plot. 

Figure 2. Lab-frame radiation energy density ( E r ) for a Gaussian radiation 
pulse in the dynamic diffusion regime, with ρκ0 = 4 × 10 6 cm 

−1 and v/ c 
∼ 10 −5 , for three different times corresponding to 25 per cent, 50 per cent, 
and 100 per cent of the domain crossing time. Solid lines show the numerical 
solution we obtain, while dashed lines indicate the corresponding analytical 
solutions. 
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Figure 3. Evolution of the gas ( T g ; circles) and radiation temperatures ( T r ; 
squares) for the gas-radiation coupling test described in Section 3.3 as a 
function of time ( t ) scaled by the thermalization time-scale t therm 

= 3 . 33 ×
10 −11 s. We perform the test for values of P = a R T 

4 
g, 0 / ( ρRT g, 0 ) of 10 −9 

(red), 10 (cyan), and 10 11 (violet), denoting varying levels of gas thermal 
inertia. We o v erplot, with solid lines, the final thermal equilibrium state T eq 

for each case, obtained from the solution to the fourth-order polynomial 
equation ( 56 ). 
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o Jiang ( 2021 ), with an initial state where the gas and radiation
emperatures are out of equilibrium ( | a R T 

4 − E r | ≥ 0), to test
hether the temperatures approach the correct state corresponding 

o thermal equilibrium ( a R T 

4 = E r ). A uniform box is initialized
n the region [0,1] cm, discretized with 512 cells, with a fixed
pecific opacity ρκP = 1 cm 

−1 and an ideal gas γ = 5/3. The 
as temperature is T = T g, 0 = 100 K everywhere, and the radiation
nergy E r, 0 = 7 . 567 × 10 −13 erg cm 

−3 , which leads to a radiation
emperature T r, 0 = ( E r, 0 /a R ) 1 / 4 ≈ 3 . 16 K. The boundary conditions
re set to be zero-gradient outflow boundaries in E r and F r . We
est the setup with three different values of ρ = 10 −7 , 10 −17 , and
0 −27 g cm 

−3 , respectively. We parametrize these three setups in 
erms of the dimensionless ratio P = a R T 

4 
g, 0 / ( ρRT g, 0 ) where R is

he ideal gas constant; our three cases correspond to values of
 0 = 10 −9 , 10 , and 10 11 , respectively. The three versions represent
 arying le vels of thermal inertia of the gas, with a lower (higher)
alue of P 0 indicating a higher (lower) gas thermal inertia, which 
eans that the radiation (gas) temperature changes more significantly 

o reach the final equilibrium state. The tests are run up to a final
ime of t = 5 t therm 

, where t therm 

= 1 / ( ρκP c) = 3 . 33 × 10 −11 s is the
ypical thermalization time-scale. We show the time evolution of T 

nd T r for the three cases in Fig. 3 . We can compare the final thermal
quilibrium state we obtain T g , eq = T r , eq = T eq with that obtained
nalytically by enforcing total (gas + radiation) energy conservation 
n the initial and equilibrium states, i.e. 

ρRT g, 0 

μ( γ − 1) 
+ a R ( T r, 0 ) 

4 = 

ρRT eq 

μm H ( γ − 1) 
+ a R ( T eq ) 

4 , (56) 

here μ = 0.6 m H is the mean particle mass of the gas, and
 H the mass of the hydrogen atom. The fourth-order polynomial 

quation abo v e can be solv ed to obtain T eq , and we also show this
olution in Fig. 3 . We find that the final state obtained in our numerical
olution agrees with the analytically obtained value of T eq to within
0 −8 in all cases. In addition, we also verify that the total energy in our
cheme is conserved to the precision of the implicit radiation update
olerance and/or the nonlinear Newton–Raphson update tolerance 
whichev er is higher). Ov erall, the results of this test demonstrate
MNRAS 512, 401–423 (2022) 
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hat the Picard iteration scheme described in Section 2.2.4 captures
he nonlinear gas-radiation coupling accurately. 

.4 Non-equilibrium Marshak wave 

he Marshak wave is a standard 1D non-equilibrium diffusion test
riginally proposed by Marshak ( 1958 ), for which a semi-analytic
olution has been provided by Su & Olson ( 1996 ). The domain is
nitially setup as a cold uniform medium ( T = 0) with a constant
bsorption opacity σ = ρκP , and at t = 0 a constant radiation
ux F 

inc 
r is applied at the x = 0 boundary. The propagation of the

adiation front heats the gas, and the time evolution is go v erned by the
onlinear equations of radiation diffusion and radiation-gas energy
xchange. This is not a dynamical test, so the hydrodynamic evolution
s switched off, with the exception of the thermal energy evolution
ue to radiation-gas energy exchange as described in Section 2.2.4 .
n addition, following Su & Olson ( 1996 ), we simplify the problem
riginally proposed by Marshak ( 1958 ), in tw o w ays. First, we adopt
he Eddington approximation ( f xx = 1/3). Second, we adopt a specific
eat capacity at constant volume for the fluid C v = ∂ E int / ∂ T = αT 

3 ,
here E int is the gas internal energy and α is a fixed constant. The

ombination of these conditions allows a similarity transformation
hat converts the partial differential equations for the evolution of
 r and T into a system of Ordinary Differential Equations (ODE’s),

or which Su & Olson ( 1996 ) provide a solution in terms of the
imensionless position χ = σx , and time ˜ t = εcσ t , where ε =
 a R / α is a fixed parameter. This solution is expressed in terms of the
imensionless radiation energy density U( χ, τ ) = cE r ( x, t) / (4 F 

inc 
r )

nd gas temperature V( χ, τ ) = ca R T 
4 ( x, t) / (4 F 

inc 
r ). 

We simulate the problem on a 1D grid of resolution N x = 1024,
n the domain x ∈ [0 , 0 . 5] cm , with a uniform background density
= 10 −20 g cm 

−3 , and opacities κP = κR = 4 × 10 21 cm 

2 g −1 , lead-
ng to a value of σ = 40 cm 

−1 . The gas and radiation temperature
re initialized to zero, and we use a value of ε = 4 a R / α = 0.1.
he condition of a constant, half-isotropic incoming flux at the x
 0 boundary is imposed through the so-called Marshak boundary

ondition, given by the constraint 

E r (0 , t) + 2 F (0 , t) = 4 F inc (57) 

here E r (0, t ) and F (0, t ) are the values of the radiation energy
nd flux at the boundary w all/interf ace. We setup the boundary to
imic a source of radiation temperature k B T inc = 4 . 68 × 10 −13 eV ,

orresponding to F inc = a R cT 
4 

inc / 4 = 7 . 49 × 10 49 erg cm 

−2 s −1 . The
ther boundary ( x = 0.5) is set to be reflective, though this choice
oes not matter since we halt the test before the advancing Marshak
ave reaches it. We evolve the system at the light crossing time-scale

cross a cell, up to a time corresponding to ˜ t = 100, corresponding
o a physical time t = 8 . 33 × 10 −10 s. 

We plot our simulation results for E r ( x , t ) and a R T ( x , t ) 4 at
˜ 
 = [0 . 1 , 1 , 10 , 100] in Fig. 4 . We compare this to the Su & Olson
 1996 ) solution for the dimensionless quantities U( χ, τ ) and V( χ, τ ),
hich we compute using a publicly available code 8 to numerically

ntegrate their semi-analytic expressions with the parameters of our
roblem setup. We then rewrite these dimensionless quantities in
erms of their dimensional counterparts. We find that our numerical
olution reproduces the analytical quite accurately, especially at
ater times. At earlier times, the agreement is poor, as expected
or a scheme that solves the full hyperbolic two-moment system of
quations (see Gonz ́alez et al. 2007 ; Skinner & Ostriker 2013 ; Tsang
NRAS 512, 401–423 (2022) 

 http:// cococubed.asu.edu/ research pages/su olson.shtml 

(  

a  

a  
 Milosavljevi ́c 2015 , for other two-moment schemes that report
imilar disagreements), since the Su & Olson ( 1996 ) solution uses
he diffusion approximation, which is inaccurate at early times when
he wave has traversed an optical depth �1; the error is that the
iffusion approximation allows an infinite signal speed, while our
wo-moment scheme correctly captures the finite speed of light. This
xplains why our solution at early times lags the Su & Olson ( 1996 )
olution; ho we ver, at these times our numerical solution is almost
ertainly more accurate. In any event, the very good agreement we
btain at late times, when Su & Olson’s diffusion approximation is
ccurate, shows that our scheme correctly reproduces the diffusion
imit. 

.5 Non-equilibrium radiation shock 

he non-equilibrium radiation shock problem is a test of the non-
quilibrium, fully coupled, RHDs system in the presence of shocks
n an optically thick medium. This problem has been discussed
n classical tests of RHDs (Zel’dovich & Raizer 1967 ; Mihalas
 Mihalas 1984 ), with analytical solutions available under some

hysical conditions, namely cases where the material energy dom-
nates the radiation energy, and/or under equilibrium conditions.

ore recently, ho we ver, Lo wrie & Edwards ( 2008 ) consider the non-
quilibrium, high radiation energy density regime – where radiation
omentum/energy contributions are significant – and provide a semi-

nalytic procedure to compute solutions for them. They show that
he shock structure is fully determined by five parameters: (i) the
imensionless pressure ratio P 0 = a R T 

4 / ( ρa 2 ) where T , ρ, and
 are the temperature, gas density, and adiabatic sound speed in
he upstream regions, (ii) the dimensionless specific opacity σ 0 =

a Lc / a , where σ a ≡ σ a ( ρ, T ) is the absorption-specific opacity,
nd L is the reference length scale, (iii) the dimensionless diffusion
oefficient D 0 = c /(3 σ t La ) where σ t ≡ σ t ( ρ, T ) is the total specific
pacity, (iv) the adiabatic index γ , and (v) the upstream Mach number
 0 = v/a, where v is the velocity of the shock in the upstream

egion. 
In our test, we use the parameters γ = 5/3, a spatially uniform

0 = 10 6 , D 0 = 1, P 0 = 10 −4 , and M 0 = 3 for the upstream state,
rom which we derive the corresponding physical conditions in cgs
nits, in which our code works. This set of parameters corresponds
o a subcritical shock in which the pre-shock matter is preheated
y the radiation to a temperature lower than the temperature in
he downstream relaxation region. We initialize the problem in a
omain x ∈ [ −0 . 0132 , 0 . 00255] cm , with the shock initially placed
t x = 0. The upstream state of the gas ( x < 0) is set to be
= 5 . 69 g cm 

−3 , T = 2 . 18 × 10 6 K, and v = 5 . 19 × 10 7 cm s −1 ,
nd, by using the Rankine–Hugoniot jump conditions [by solv-
ng equations 12 and 13 of Lowrie & Rauenzahn ( 2007 )], we
btain the downstream state ρ = 17 . 1 g cm 

−3 , T = 7 . 98 × 10 6 K,
nd v = 1 . 73 × 10 7 cm s −1 . The absorption-specific opacity is fixed
t ρκP = ρκR = 577 cm 

−1 everywhere in the domain, enforced by
etting κP = κR = 577 /ρ cm 

2 g −1 . This condition on the opacity,
lthough unphysical, is enforced to mimic the solutions provided in
owrie & Edwards ( 2008 ). The gas and radiation are initialized to
e in equilibrium at t = 0, and we use an ideal monoatomic gas
OS ( γ = 5/3) with a mean particle mass μ = m H . We evolve the
ystem to a time t = 10 −9 s, corresponding to about three crossing
imes of the computational domain. The boundary conditions at the
ower (higher) x boundary is fixed to the asymptotic downstream
upstream) state of the shock provided in the initial conditions. We
lso use the Eddington approximation ( f xx = 1/3) for this problem to
llow comparison with the semi-analytical solution derived under the

http://cococubed.asu.edu/research_pages/su_olson.shtml
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Figure 4. Results for the non-equilibrium Marshak wave test described in Section 3.4 . Solid lines indicate the simulation results for E r (left) and a R T 4 (right) 
for dimensionless times ˜ t = 0 . 1 , 1 , 10, and 100. Dashed lines indicate the corresponding solutions at these times obtained by numerically integrating the 
semi-analytic expressions of Su & Olson ( 1996 ). 

Figure 5. Gas ( T g ; red crosses) and radiation ( T r ; green plus signs) tem- 
peratures for a subcritical non-equilibrium radiative shock; the inset shows 
the Zel’Dovich spike in detail. The semi-analytical solution of Lowrie & 

Edwards ( 2008 ) is o v erplotted with black dashed lines. 
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ame assumption. The grid is discretized with a base grid resolution 
f 640 cells, and adaptively refined on the gas temperature, using the
efault refinement condition in FLASH based on a modified second 
eri v ati ve of a variable (Fryxell et al. 2000 ), to a maximum refinement
evel of l max = 3, corresponding to a maximum resolution of 2560
ells. We use the modified CFL time-step criterion (equation ( 23 ))
or this problem, with a CFL number C 0 = 0.5. 

In Fig. 5 , we plot the numerical solution we obtain for the gas
 T g ) and radiation ( T r ) temperatures, with the inset showing the so-
alled Zel’Dovich spike – an inherently non-equilibrium feature – in 
urther detail. We o v erplot the solution obtained with the Lowrie &
dwards ( 2008 ) semi-analytical procedure as well for comparison. 
e find very good agreement between the two solutions, with a 

elative error in the L 1 norm of ∼ 0 . 6 per cent in T and T r , and
nd that the sharp temperature spike is well-captured by our refined 
omain. This test demonstrates that our scheme is able to accurately 
apture fully coupled radiation-gas dynamics in the presence of 
trong discontinuities. 

.6 Advecting radiation pulse 

o test the accuracy of our implementation of the O( βτ ) relativistic
orrection source terms that arise from the mixed frame formulation 
f the RHD moment equations, in a fully-coupled RHD problem, 
e simulate the test described by Krumholz et al. ( 2007a ). The

est involves the advection of a pulse of radiation energy in an
ptically thick gas, with a uniform background flow velocity. The 
nitial condition is such that the system is in both pressure and
adiati ve equilibrium e verywhere, but with a Gaussian-shaped pulse 
entred at x = 0 within which there is a local increase in the
emperature and radiation pressure, and a corresponding decrease 
n the gas pressure and density. At times t > 0, radiation diffuses
ut of the pulse, leading to the loss of pressure balance, and the
as starts to mo v e into the region occupied by the pulse. While a
ime-dependent solution is not known analytically, the problem is 
one the less a useful test if we perform two cases of the setup:
ne where the gas is initially at rest ( v = 0), and another where the
as is provided an initial uniform velocity ( v = v 0 ). If the velocity-
ependent terms are included correctly, the solutions for the two 
ases should be identical to each other except for displacement by a
istance v 0 t . 
To setup this problem, we initialize the temperature as a function

f position to 

T 

T 0 
= 1 + exp 

(
− x 2 

2 w 

2 

)
, (58) 

here w = 24 cm is the pulse width and T 0 = 10 7 K is the background
emperature. Imposing the conditions of radiative and pressure 
quilibrium everywhere immediately gives the corresponding gas 
ensity, 

= ρ0 
T 0 

T 
+ 

a R μ

3 k B 

(
T 4 0 

T 
− T 3 

)
, (59) 

here ρ0 = 1 . 2 g cm 

−3 is the background gas density, and μ =
.33 m H is the mean particle mass. We use a spatially uniform
MNRAS 512, 401–423 (2022) 
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M

Figure 6. Plot comparing the density ρ (top) and the gas/radiation temper- 
ature T (middle panel) profiles we obtain with our scheme for an initially 
unadvected (red) and advected (cyan) gas with the radiating pulse advection 
test of Krumholz et al. ( 2007a ). The bottom panel shows the relative error 
between the two cases for ρ (red) and T (cyan), which we find to be bounded 
by 0.7 per cent o v er the domain. 
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rey opacity of κP = κR = κ0 = 100 cm 

2 g −1 , and use a value of
 0 = 10 km s −1 for the moving pulse case. The simulation domain
oes from −512 to 512 cm and is resolved by 1024 uniformly spaced
ells. The Eddington tensor is assumed to be spatially and temporally
niform with a value f xx = 1/3. Periodic boundary conditions are
sed on the radiation and gas, and the system is evolved to a
nal time of t = 2 w/v 0 = 4 . 8 × 10 −5 s, so the pulse is advected by

wice its initial width. We use the modified CFL time-step criterion
equation ( 23 )] for this problem, with a CFL number C 0 = 0.4. 

In Fig. 6 , we compare the results of the two runs; for the
dvected case we have shifted the solution by a distance v 0 t
 48 cm in the −x direction, so that it should lie on top

f the unadvected case. We see that the agreement between
he advected and unadvected solutions is very good. The max-
mum relative errors are bounded by 0.7 per cent o v er the do-

ain, and we obtain a relative L 1 norm error of 0.1 per cent.
his demonstrates that our scheme is handling the advection
f radiation by gas in the diffusion regime appropriately, and
rovides evidence for the correct modelling of the velocity-
ependent radiative work and advection terms in the moment
quations. 
NRAS 512, 401–423 (2022) 
.7 Spherical expansion of radiation-pr essur e dominated H i i 
egion 

n our next test, we simulate the radiation pressure-driven expansion
f a thin, dusty, spherical shell as given in Skinner & Ostriker
 2013 ) (SO13 hereafter). The problem considers an idealized central
ource of photons – for example a massive star or star cluster –
mpinging on a surrounding dusty cloud that absorbs the photons,
ransferring momentum to the gas. This is a fully coupled radiation-
ydrodynamic problem that tests gas-radiation momentum exchange
n three dimensions. The central source function for the radiation field
s given by 

 ∗( r ) = 

L ∗(
2 πR 

2 ∗
)3 / 2 exp 

(
− r 2 

2 R 

2 ∗

)
, (60) 

here L ∗ is the luminosity of the cluster and R ∗ the size of the source.
e add j ∗ as a source term on the right-hand side of our equation for
 r . In addition, we add the corresponding term j ∗( r )/(4 πρκP ) to the
ource function of the ray tracer, taking into account the contribution
f the central source in the computation of the Eddington tensor T .
he test assumes that at t = 0, a shell of thickness H and zero velocity

s present at a radius r = r 0 , and monitors the evolution of the shell
adius and velocity with time. The radial density profile at t = 0 is
iven by 

sh ( r ) = 

M sh 

4 πr 2 
√ 

2 πR 

2 
sh 

exp 

(
− ( r − r 0 ) 

2 

2 R 

2 
sh 

)
, (61) 

here M sh is the gas mass in the thin shell, and R sh ≡ H / (2 
√ 

2 ln 2 )
s the half-width of the shell. The dust opacity κ0 is set to be constant
n space and time for simplicity. Following SO13, we define the
ollowing quantities to non-dimensionalize the problem setup: a
ength unit of r 0 , density unit ρ0 = 3 M sh / (4 πr 3 0 ), velocity unit a 0 
orresponding to the isothermal sound speed, and time unit t 0 =
 0 / a 0 . Under the thin-shell approximation, and assuming reprocessed
adiation pressure in the dusty shell to be the only source of radial
ressure, it is possible to express the time evolution of the radius of
he shell as an analytic parametric equation in these dimensionless
nits (equation 106 of SO13), given by 

˜ 
 = 

1 

M 0 

√ 

2 

[ √ 

˜ r 
√ 

˜ r − 1 + ln 
(√ 

˜ r + 

√ 

˜ r − 1 
)] 

, (62) 

here ˜ t = t/t 0 , ˜ r = r/r 0 , and M 0 = 

√ 

L ∗κ0 / (4 πr 0 ca 
2 
0 ) is the ref-

rence dynamical Mach number. Similarly the shell velocity is given
y (equation 105 of SO13) 

d ̃ r 

d ̃ t 
= M 0 

√ 

2 

(
1 − 1 

˜ r 

)1 / 2 

. (63) 

e use these relations to compare with the shell radius and velocity in
ur simulations below. SO13 simulate the problem with an isothermal
quation of state, and under the conditions of radiative equilibrium
 | a R T 

4 − E r | = 0) for simplicity, which we also adopt here. 
We setup the problem with parameters identical to those specified

n SO13: initial shell radius r 0 = 5 pc , thickness H = 0 . 3 r 0 = 1 . 5 pc ,
entral source luminosity L ∗ = 1 . 989 × 10 42 erg s −1 , central source
ize R ∗ = r 0 / 8 = 0 . 625 pc , and dust opacity of κP = κR = κ0 =
0 cm 

2 g −1 . The isothermal sound speed is set to a 0 = 2 km s −1 ,
hich corresponds to a gas temperature T ∼ 481 K, assuming a
ean particle mass μ = m H . The simulation is performed on the

omain ( x , y , z) ∈ [ −10 , 10] 3 pc , with the source at x = y = z =
, with outflow boundary conditions on the gas and radiation. We
ote that SO13 simulate only a quadrant of the sphere with reflecting
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Figure 7. Steady state radial profiles of the radiation energy density E r 

(top panel; black), gas mass density ρ (top panel; red), radiation flux F r 

(bottom panel; black), and the divergence of the radiation flux ∇ · F r (bottom 

panel; red) for the radiation-driven thin shell test without hydrodynamical 
evolution. The quantities are expressed in the dimensionless units of the 
problem described in the text. We overplot the analytically derived profiles 
of ∇ · F r and F r given in equations ( 64 ) and ( 65 ) in the bottom panel with 
dot–dashed lines, and verify that our solutions are in agreement with them. 
These profiles represent the initial conditions for the subsequent dynamical 
evolution of the shell (see text for details). 
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oundary conditions at the x = 0 boundary, which we did not repeat
ere to a v oid ha ving to implement reflecting boundary conditions in
he RT solver used to compute T . We use AMR for this test, with
 base resolution of 32 3 , and allow up to four levels of refinement,
orresponding to an ef fecti ve resolution of 256 3 . We refine blocks
here a 0 / 

√ 

Gρ > 16 �x. We note that this is identical to the standard
eans refinement criteria, but we remind the reader that we do not
a ve self-gra vity in this simulation. We also perform simulations
n uniform grids of resolution 64 3 , 128 3 , and 256 3 9 to study the
ependence of shell evolution on resolution. 
While we initialize the density distribution following SO13, we 
ust use a different method to initialize the radiation energy density 

nd flux, due to the difference in closures between VETTAM and 
O13’s M 1 approach. SO13 initialize the problem with a quasi- 
tatic steady state radiation energy density ( E 

∗
r ( r)) and flux ( F 

∗
r ( r)),

erived under the condition of radiative equilibrium. Specifically, 
hey estimate F 

∗
r ( r) by setting ∂E r / ∂t = 0, which gives 

 · F 

∗
r = j ∗( r) , (64) 

hich can be inverted to obtain 

 ∗( r ) = 

L ∗
4 πr 2 

[
erf 

(
r √ 

2 R ∗

)
− 2 r √ 

2 πR ∗2 
exp 

(
− r 2 

2 R 

2 ∗

)]
. (65) 

imilarly, they obtain the solution for E 

∗
r ( r) by setting ∂F r / ∂t = 0,

hich gives ∇ · P = −ρκ0 F /c, and then invoking the M 1 closure to
elate P to E r . Since we do not have an analytic closure relation, our
lternative approach is to set E r = F r = 0 as the initial condition,
nd evolve the system without hydrodynamics for a transient period 
ntil the radial profiles of E r and F r reach a steady state. We plot the
adial profiles of E r , F r , and ∇ · F r obtained at the steady state in
ur simulation in Fig. 7 ; we also show the profile of density ρ for
eference. We find that ∇ · F r and F r are very close to the results
iven by equations ( 64 ) and ( 65 ), respectively, indicating that the M 1 

pproximation is close to our full VET result for this problem. We
lso verified that the solution converges to this steady state solution 
rom other initial conditions as well. 

Once the radiation field has reached steady state, we turn hy- 
rodynamics back on, and allow the system to evolve. We use the
nmodified CFL condition to determine the time-step, enforcing a 
ensity floor of ρmin = 10 −8 ρ0 to prevent very small time-steps, and 
un the simulation to a final time of t final = 0 . 5 Myr . We show slice
lots following the evolution of the expanding thin shell for three 
ifferent times in Fig. 8 , with the AMR block structure o v erplotted.
e then estimate the radius of the shell at a given time t by calculating

he mass-weighted average radius in our computational domain, 
iven by 

 r 〉 ≡
∫ 

ρr d V ∫ 
ρd V 

, (66) 

here r = 

√ 

x 2 + y 2 + z 2 is the radius of a grid point in the domain,
the local density, and d V the volume of the cell. In addition, we

an also compute the mass-weighted radial velocity as 

〈 v r 〉 ≡
∫ 

ρ( v · ˆ r )d V ∫ 
ρd V 

, (67) 

here v · ˆ r denotes the Cartesian velocities projected in the radial 
irection. We show the time evolution of our computed values of
 r 〉 and 〈 v r 〉 in Fig. 9 for our fiducial AMR simulation, and the
niform grid versions at different resolutions. These are compared 
 SO13 perform their simulations at this resolution 

S  

w
r  
ith the analytical relations for the shell radius and velocity evolution
iven by equations ( 62 ) and ( 63 ), respectively. We find excellent
greement at all resolutions, although, as expected, better agreement 
t higher resolutions. The maximum error in the solutions for the
adius (velocity) are bounded by 3.7 per cent (5 per cent), 2.1 per cent
2.2 per cent), and 1.4 per cent (1.9 per cent) for the uniform grid
4 3 , 128 3 , and 256 3 v ersions, respectiv ely. The maximum errors
n the 256 3 ef fecti ve resolution AMR version are 1.3 per cent
nd 1.8 per cent for the radius and v elocity respectiv ely, which is
omparable to the errors obtained by the 256 3 uniform run. Ho we ver,
e find that the AMR run uses about 30 per cent less CPU time than

he uniform grid run, and is thus more efficient. 

.8 Shadow tests 

hadow tests in various forms are commonly used to investigate how
ell RHD schemes reproduce and preserve angular variations in the 

adiation field in the presence of a mixture of optically thin and thick
MNRAS 512, 401–423 (2022) 
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Figure 8. Slice plots of the gas density ρ at times t = 0, 0.17 and 0 . 29 Myr for the radiation-driven shell evolution test simulation, with the block structure of 
the AMR domain o v erplotted. 

Figure 9. Evolution of the mass-weighted average radius 〈 r 〉 (equation ( 66 ); 
top) and radial velocity 〈 v r 〉 (equation ( 67 ); bottom) obtained for the radiation- 
driven thin shell expansion test at regular time intervals, and compared at 
different resolutions. In addition, we plot the analytical solutions for 〈 r 〉 and 
〈 v r 〉 from the ODE model of Skinner & Ostriker ( 2013 ) for comparison. 
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as, and to illustrate the v arying le vels of directional accuracy that
ifferent closure methods achiev e. F or instance, it is well known that
ethods based on the diffusion approximation ( P = (1 / 3) E r I ) fail

o cast shadows. Local closures such as the M 1 approximation fail
NRAS 512, 401–423 (2022) 
o propagate the radiation field correctly in the presence of multiple
ources of radiation (or ef fecti v ely, conv ergent rays) in an optically
hin medium (as demonstrated in tests by Rosdahl et al. 2013 ;
annan et al. 2019 ). We perform three forms of shadow test below to
emonstrate that our nonlocal VET-closed scheme can cast shadows
orrectly, even in situations where other methods fail. Hydrodynamic
volution is switched off in all three shadow tests (i.e. v = 0). 

In our first version, we perform a test similar to that first presented
n Rijkhorst et al. ( 2006 ), and recently shown by Klassen et al.
 2014 ) and Rosen et al. ( 2017 ), to demonstrate the shadow cast
y an optically thick cloud in an optically thin medium when
rradiated by two point sources of radiation, where the point source
ontributions are handled by a ray tracer, and the subsequent
iffuse re-emission with the moment method. We show this as a
emonstration of the workings of our hybrid radiation algorithm
escribed in Section 2.2.6 . While this is a useful problem for
esting the coupling between the point and diffuse sources of
adiations, the setup of the test is such that the direct irradiation
n the clump is the agent that casts the shadow, whereas the
oment method is only used for the diffuse re-emission that is

argely isotropic. In other words, the presence of the shadow in
his case is largely insensitive to the closure for the moment method
dopted. 

With this in mind, in the next two versions, we instead model
etups with solely diffuse sources of radiation that are handled
y the moment method only. This is important to test, because in
 dynamical simulation, there can self-consistently arise sources
f radiation that cannot be reduced to a point source (or sink
article) – for instance, heated o v erdensities in a clumpy, dusty
edium – and whose contribution to the energy budget of the gas

ould be significant. While the geometric distributions of diffuse
ources could be quite general in a dynamical simulation, we
onsider only simple cases here. For our first test with diffuse
ources, we use a modified version of the hybrid radiation test
etup, but with the point sources replaced by diffuse spherical
ources of radiation modelled by a Gaussian source term. This
hould, qualitatively, cast a shadow similar to the hybrid radiation
est, if the moment method used can handle the propagation of
adiation in such a setup correctly. We show that our method passes
his test in Section 3.8.2 . Following that, in Section 3.8.3 , we
resent a test where we replace the point sources with an extended,
on-spherical source of radiation that might be representative, for
xample, of emission from a hot, clumpy, filament in an otherwise
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Figure 10. Slice plot of the heating rate per unit volume ∇ · F ∗ (left) from two-point sources of luminosity L ∗ = 1 L � irradiating an optically thick clump, 
and the resulting gas temperature T (right) obtained through absorption and subsequent re-emission of this energy. This test demonstrates the working of our 
hybrid RT scheme (see Section 3.8.1 ). 
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ptically thin medium, or from a geometrically thin accretion disc in 
n optically thin atmosphere. We again show that a qualitatively 
orrect shadow is obtained with our scheme for this setup. We 
laborate on the test setups, and show the results we obtain, 
elow. 

.8.1 Hybrid radiation with point sources 

irst, we perform a test with the hybrid radiation algorithm to 
emonstrate that the coupling between the direct radiation field 
odelled with the ray tracer, and the reprocessed radiation that 
e handle using the VET closure is implemented correctly. To 

etup this test, we place a dense clump of material at the cen-
re of a (2000 AU ) 3 computational domain, with radius 267 AU 

nd density ρc = 3 . 89 × 10 −17 g cm 

−3 . The clump is surrounded
y an optically thin ambient medium with density ρa = 3 . 89 ×
0 −20 g cm 

−3 . The gas temperature is taken to be spatially uni-
orm with a value of 20 K. The clump is irradiated by two
oint sources of solar luminosity (i.e. 1 L �) placed 368 AU from
he edges of the clump at ( x , y , z) = ( ±635 , −635 , 0) AU . The
pacity for the direct stellar radiation is set to κ∗ = 64 cm 

2 g −1 ,
hereas the moment method uses the grey opacities from Semenov 

t al. ( 2003 ). We use AMR for this test, discretizing the grid
ith a base resolution of 128 3 , and refine the grid based on the
odified second deri v ati ve condition in FLASH (Fryxell et al.

000 ) on the variables E r and ρ, up to a maximum resolution
f 512 3 . In addition, we ensure that the dense clump is al w ays
efined to the maximum resolution. We use 48 angles for the ray
racer, although we found that our results were insensitive to this
hoice. 

In Fig. 10 , we show the irradiation from the direct field from point
ources (left), and the subsequent gas temperature obtained after this 
s reprocessed by the gas and it cools. As we can see, our point-source
rradiation produces a clear shadow, whereas the diffuse re-emission 
orks to smoothen the temperature field. This test shows that our 
ybrid approach of coupling the contribution of radiation from point 
ources and the diffuse emission works correctly. 
.8.2 Spherical diffuse sources 

o demonstrate that our VET method is capable of capturing shadows 
ven in the presence of purely diffuse sources of radiation, we setup
 modified version of the test described in the previous section.
he primary modification we make is to replace the point sources
f radiation with diffuse sources, modelled with a Gaussian source 
unction j ∗( r ) with a profile identical to that given in equation ( 60 ).

e add this as a source term for our equation of E r in our VET
cheme. We use a value of L ∗ = 10 L � and R ∗ = 54 AU for both the
ources. We also change the positions of the sources with respect to
he previous test such that they are 90 deg apart with respect to each
ther, at (635 , 0 , 0) AU and (0 , 635 , 0) AU , respectively. We make
his change simply to prevent confusion with the test described in
he previous version. In addition, for simplicity, we set the diffuse
adiation opacities to be independent of the gas state with a constant
alue of κP = κR = 100 cm 

2 g −1 . This constant value ensures that the
lump is optically thick to the diffuse radiation, whereas the ambient
edium is optically thin to it. We use a base grid resolution of

28 3 for this test, and refine based on the modified second deri v ati ve
ondition in FLASH (Fryxell et al. 2000 ) on the variables ρ and j ∗,
p to a maximum resolution of 512 3 , which ensures that the sources
nd the edges of the clump are well resolved. In addition, we use a
otal of 192 angles for the ray tracer while calculating the VET. In
ig. 11 , we show a slice plot of the temperature structure obtained
ith our scheme at a time corresponding to a light crossing time of

he box. We can see that a clear shadow is cast by the optically thick
lump. We point out that this is a challenging test due to the presence
f converging rays of radiation, and local closure methods would 
ail to propagate the radiation correctly in such a setup, as we shall
emonstrate in Section 4.1 . 

.8.3 Extended diffuse source 

n our final version of the shadow test, we introduce an extended
ource of diffuse radiation, geometrically represented by a cylinder 
nclosed by half-spheres at both ends of its axis. We represent this
MNRAS 512, 401–423 (2022) 
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Figure 11. Slice plot of the gas temperature T at a time corresponding to 
one crossing time of the computational box, demonstrating the shadow cast 
by two diffuse spherical sources of radiation impinging on an opaque clump 
of gas, lying in an optically thin ambient medium (see Section 3.8.2 ). 
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ource by the function 

 ∗ = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

j 0 exp 
[ 
−
(

y 2 c + z 2 c 
2 R 2 ∗

)] 
| x c | ≤ l cyl , 

√ 

y 2 c + z 2 c ≤ 4 R ∗

j 0 exp 
[ 
−
(

x 2 c + y 2 c + z 2 c 
2 R 2 ∗

)] 
| x c | > l cyl , 

√ 

x 2 c + y 2 c + z 2 c ≤4 R ∗
0 All other ( x , y , z) 

, 

(68) 

here ( x c , y c , z c ) are the coordinates with respect to the centre of
he source at (0 , −1000 , 0) AU , R ∗ = 27 AU is the characteristic
ize of the source, and j 0 = L ∗/ (2 πR 

2 
∗) 3 / 2 where we pick a value

f L ∗ = 10 L �. The initial conditions for the opaque clump and
mbient medium, and the fixed opacity value, are identical to those
n the previous test. However, compared to this test, we double the
ize of the computational volume to 4000 AU in the x and y directions,
n order to follow the shadow for longer times; we leave the domain
ize in the z direction unchanged, at 2000 AU . We use AMR for this
est, discretizing the grid with a base resolution of 128 × 128 × 64,
nd refining up to a maximum resolution of 1024 × 1024 × 512. We
se a refinement condition wherein blocks are tagged for refinement
f a cell in the block has a relative change � f ≥ 0.8, where � f =
ax ( � f x , � f y , � f z ), and - 

f i = 

| f ( i + 1) − f ( i − 1) | 
| f ( i + 1) + f ( i − 1) | , (69) 

here f is the variable used for refinement, for which we use ρ
nd j ∗, and i is the discretized cell index in the i ’th direction
here i ∈ ( x , y , z). We use 192 rays in the ray tracer, though we
btain qualitatively identical results with 48 rays. We show the gas
emperature evolution for this test in Fig. 12 , at times corresponding
o 25 per cent, 50 per cent, and 100 per cent of the light crossing
ime of the computational volume. We can see that the optically
hick clump casts a shadow when irradiated by the extended source,
nd our scheme is able to capture this challenging configuration of
ultiple converging rays quite well. We also note that subtle shadow

eatures, such as the umbra, penumbra, and antumbra, are noticeable,
nd is a testament to the ability of our scheme to handle nontrivial
eometrical distributions of radiation sources. 
NRAS 512, 401–423 (2022) 
 DI SCUSSI ON  

.1 Comparison to FLD and M 1 schemes 

he primary advantage that the scheme described in this paper
ffers o v er man y other moment method-based schemes is that we
se a non-local closure based on the VET obtained with a global
ay-trace solution of the time-independent RT equation. The VET
losure, in principle, can handle any geometrical arrangements of
ources whereas local closure methods fail to propagate radiation
orrectly in certain situations. It is therefore interesting to compare
he performance of our VET scheme to two local closures commonly
sed in astrophysical codes: the FLD (also known as the Eddington
pproximation) and Moment-1 ( M 1 ) closures. 

To demonstrate the advantage of the VET o v er these local closures
n complex radiation field geometries, we repeat the shadow test with
pherical diffuse sources described in Section 3.8.2 , with the FLD and
 1 closures, and compare the results to those obtained with the VET.
his setup contains multiple sources interacting in an optically thin
edium, and subsequently casting a shadow, and hence represents
 geometrical setup where local closures are expected to fail. To
imic the Eddington approximation, we set T = (1 / 3) I , where I

s the identity tensor. This is technically not identical to the FLD
ethod, since we are still solving the equation for F r , rather than

etermining it from the instantaneous distribution of E r ; ho we ver the
esults are expected to be qualitatively identical. To mimic the M 1 

losure, we set 

 = 

1 − χ

2 
I + 

3 χ − 1 

2 
ˆ n ̂

 n , (70) 

here ̂  n = F r / ‖ F r ‖ is the unit vector in the direction of the radiation
ux and χ is the Eddington factor given by 

( f ) = 

3 + 4 f 2 

5 + 2 
√ 

4 − 3 f 2 
, (71) 

here f = F r / ( cE r ). We compute the components of T with the
elations abo v e using the value of E r and F r at the be ginning of
he time-step (i.e. time-lagged). We show the comparison of the
emperature structure after one light crossing time obtained with the
hree closures in Fig. 13 . We can see that the Eddington and M 1 

losure versions do not cast qualitatively correct shadows, whereas
he VET version does. This demonstrates that the VET is the only
losure relation that ensures the consistent propagation of radiation
n non-trivial geometrical distributions of diffuse radiation sources
n the presence of optically thin media. 

This leads to the important question of whether such differences
ould be dynamically rele v ant in a scientific application. This would
learly depend on the problem simulated and the potential presence
f a mixture of transparent and opaque media, keeping in mind
hat a formal comparison of different closure methods for a realistic
umerical setup has not been performed to our knowledge. That
aid, the well-studied problem of a wind by trapped infrared radia-
ion, in a gaseous atmosphere confined by a constant gravitational
cceleration, could serve as a qualitative tool of comparison. 

First investigated by Krumholz & Thompson ( 2012 ) with the
LD closure, this setup has been reattempted with the M 1 (Rosdahl
 Teyssier 2015 ) and VET (Davis et al. 2014 ) closures, and also
ith methods that do not rely on angular moments of the transfer

quation, such as Monte Carlo Radiation Transport (MCRT; Tsang
 Milosavljevi ́c 2015 ; Smith et al. 2020 ) and implicit solutions

f the time-dependent RT equation (Jiang 2021 ). While there are
road similarities in the gas evolution with various closures, in
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Figure 12. Time evolution of the gas temperature T of an optically thick clump placed in a transparent medium, irradiated by an extended source of radiation 
(equation ( 68 )). Times correspond to 25 per cent, 50 per cent, and 100 per cent of the light crossing time of the computational volume. Our scheme is able to 
capture the shadow cast by the clump very well, including subtle features such as the umbra, penumbra, and antumbra. 

Figure 13. The numerical solution to the shadow test obtained by adopting different closures. All panels show gas temperature as a function of position at a 
time corresponding to one light crossing time of the computational box. The left-most panel shows the solution obtained using the FLD (or Eddington) closure, 
the middle panel shows the M 1 closure, and the right-hand panel shows our VET result. 
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hat all schemes find that the system rearranges itself to reduce 
omentum transfer between radiation and gas such that the ef fecti ve
ddington ratio drops from its initial value of ∼50 to very close

o unity, the FLD and M 1 closure simulations find that the steady-
tate Eddington ratio is slightly below unity, such that in steady state
he gas remains gravitationally confined without driving a wind. 
n the other hand, the VET and non-moment based methods 10 

which are expected to be at least as accurate as the VET) find
hat the asymptotic Eddington ratio is slightly larger than unity, 
eading to a slowly accelerated wind. This suggests that, in certain 
roblems, adopting a non-local closure and/or accurate model of 
adiation propagation leads to qualitati vely dif ferent outcomes for the 
ynamical evolution of gas. There is a significant scope for further
ork to identify, compare, and quantify differences in astrophysically 

ele v ant simulation setups with the adopted treatment of radiation 
ransport. 
0 We note that Smith et al. ( 2020 ) compare their MCRT result with an 
 1 closure relation version that shares the same hydrodynamics solver, and 

nd similar discrepancies, suggesting that the adopted model for radiation 
ransport is probably what drives the differences between these studies. 

t  

t

t  

R  

m  
.2 Performance 

he computational cost of VETTAM is very problem dependent, 
ecause the convergence of the sparse matrix solvers and the fixed-
oint iterations depend on the physical state of the system ( κ and T
istributions), which determines the stiffness of the matrix, and on 
he distribution of adaptive grids to MPI ranks, which determines the
mount of non-local communication required. In addition, the o v erall
erformance of our scheme is highly dependent on the performance 
f the (i) hybrid characteristics ray tracer, for which performance 
nd scaling capabilities are provided in Buntemeyer et al. ( 2016 ),
nd (ii) solvers in the external PETSc library, whose performance is
ot directly under the control of VETTAM , apart from the choice of
olver , pre-conditioner , and solver tolerance set by the user, which
n certain problems can be very important. Due to these external
ependencies, we do not elaborate on formal performance or scaling 
ests for our scheme, but rather, briefly discuss certain points rele v ant
o performance in our scheme. 

In an RHD simulation, we have found that VETTAM occupies 
he largest share of computational cost. For instance, in the full
HD simulation setup of Section 3.7 , VETTAM was ∼10 times
ore e xpensiv e than the hydrodynamics update per evolution step.
MNRAS 512, 401–423 (2022) 
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M

Figure 14. Breakdown of wallclock times used in the three most time- 
consuming units for the shadow test of Section 3.8.2 , as a function of the 
number of angles N 
 used in the ray trace. We can see that the ray tracer 
occupies the largest fraction of the cost, and increasingly so at higher angular 
resolution. 
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Figure 15. Strong scaling performance for the ray tracing and implicit 
radiation updates performed by VETTAM in each simulation time-step for 
the shadow test of Section 3.8.2 , with N 
 = 192. We find reasonable strong 
scaling for the radiation update, but relatively poor scaling for the ray-trace 
step due to associated communication o v erheads (see Bunteme yer et al. 2016 ). 
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o we ver, this is again very problem dependent and this value can be
igher or lower for a different problem. In general we have found the
ay tracer to be the primary bottleneck to performance, though the
xtent to which it dominates the cost depends on the choice of angular
esolution. We quantify this by running the shadow test described in
ection 3.8.2 on 144 cores, which corresponds to three compute
odes. 11 In Fig. 14 , we show the breakdown of time spent by the
hree most time-consuming units in the simulation – compared for
ifferent angular resolutions for the ray tracer (see Appendix B for a
omparison of results obtained for them). Since hydrodynamics was
witched off for this test, it does not enter the cost breakdown. We see
hat even with modest angular resolutions of 48 rays, the ray tracer
onstitutes ∼ 60 per cent of the computing cost, whereas the implicit
adiation update represents only ∼ 30 per cent ; the dominance of the
ay tracing step rises sharply at higher angular resolution. Thus, for
cience applications with VETTAM , we expect the ray tracer to be
he most e xpensiv e part of the simulation. F or certain problems, we
peculate that it might be possible to consider updating the Eddington
ensor every few simulation time-steps, rather than at the beginning
f every timestep, without it affecting the solution significantly. This
s a potential approach to alleviate the o v erall computational cost of
he scheme in an application. 

Another difficulty associated with the ray tracer has to do with
ts limited parallel efficiency due to inherent communication needs.
his limits the strong scaling efficiency of the scheme, as the
ommunication o v erheads quickly result in lower parallel efficiency,
f the problem size remains fixed (see, Buntemeyer et al. 2016 , for
NRAS 512, 401–423 (2022) 

1 All tests rele v ant to this section were performed on the Gadi supercomputer 
t the National Computational Infrastructure (NCI), Australia. Each node 
ontains 2 x 24-core Intel Xeon Platinum 8274 (Cascade Lake) processors 
ith 3.2 GHz CPUs per node and 192 GB of RAM, interconnected with HDR 

nfiniband technology in a Dragonfly + topology. 
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w  

s  

c  

a  

b  
 discussion on this). To quantify the scaling behaviour, we repeat
he shadow test of Section 3.8.2 with varying number of processors,
eeping the AMR block structure – and hence the total computational
oad – fixed. We found in our tests that the implicit radiation moment
quations update performs reasonably in strong scaling out to 768
ores, especially considering that the sparse matrix solvers have
ommunication o v erheads as well. The times per evolution step in
he strong scaling test for the ray trace and the radiation update are
hown in Fig. 15 . This indicates that there is a careful choice to be
ade by the user to ensure that the number of blocks occupied by each

rocessor in a parallel simulation is high enough for communication
 v erheads not to dominate the total cost, and at the same time low
nough that it satisfies the memory requirements of the ray tracer.
e aim to test, monitor, and impro v e the performance characteristics

f the scheme in the future. 

.3 Caveats 

n this section, we briefly mention some caveats associated with
ur implementation, and provide moti v ation for future work when
pplicable. 

(i) Our scheme is limited to the grey approximation, and this limits
he usage of the scheme to problems where the spectral dependence
f the radiation field is not expected to be crucial. It is, ho we ver,
ossible to extend our scheme with a multigroup moment method
Vaytet et al. 2011 ), and this a direction for future work. 

(ii) The VET is computed only once at the beginning of the time-
tep with the ray-trace solution of the time-independent transfer
quation. Ho we ver, this would not be appropriate for systems
here the radiation field changes substantially on time-scales much

maller than a hydrodynamic time step, so that the Eddington tensor
omputed at the beginning of a time-step is a poor guess for its value
t the end of the step. In principle, one could handle such systems
y iterating the Eddington tensor to convergence, along with the
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ther radiation quantities. Ho we ver, this is likely computationally 
ntractable, and it is unclear whether it would be accurate in any
vent – an accurate solution would likely require choosing a time- 
tep small enough to capture the time evolution of the radiation field.

(iii) The Picard iteration scheme achieves only linear convergence, 
nd thus the number of iterations required can be very dependent on
he initial starting guess. An extension would be to implement a 

ethod to accelerate convergence, such as Anderson acceleration, or 
o solve the nonlinear system with a Jacobian-free Newton Krylov 
ethod; both achieve up to quadratic rates of convergence. That being 

aid, Picard iteration generally has a greater radius of convergence 
ompared to Newton methods. At present, there is little reason to 
ptimize the iterative solve, since the total cost is dominated by the
ay trace, but as we impro v e the ray trace and relieve this constraint,
e also intend to impro v e the iterative scheme. 
(iv) VETTAM solves the equations of RHD in the mixed frame 

ormulation by expanding the lab frame opacities in terms of the 
omoving frame opacities to O( v/c) (Mihalas & Klein 1982 ). This
ormulation is poorly suited to line radiation transport, and hence we 
re limited to continuum radiation. 

(v) Our scheme is first order in space and time, and while this
aintains stability and simplicity, it can be dif fusi ve in certain

roblems due to the associated truncation errors (for instance in 
ection 3.1 for the streaming regime). A direction for future work 
ould be the development of higher-order implicit Godunov methods 

o treat the RHD equations that resolves the associated difficulties of
aintaining monotonicity in an implicit higher-order method (for a 

iscussion, see Section 4.2 , Sekora & Stone 2010 ). 

 SUMMARY  

n this paper we describe VETTAM , a multidimensional RHD algo- 
ithm that solves the mixed-frame radiation moment equations closed 
ith a non-local VET computed through a formal solution of the 

ime-independent RT equation. VETTAM is, to our knowledge, the 
rst ever implementation of a VET closure scheme that can handle 
MR. We have coupled our implementation to our own private 
ersion of the FLASH hydrodynamics code (Fryxell et al. 2000 ), 
hich uses the PARAMESH library for AMR (MacNeice et al. 
000 ). Our scheme has been designed to handle continuum radiation 
ransport mediated by dust, although other radiative mechanisms, 
uch as photoionization (e.g. Aubert & Teyssier 2008 ; Kuiper, Yorke 
 Mignone 2020 ), or alternative transport phenomena such as cosmic 

ay or neutrino transport, can be performed with slight modifications 
e.g. Jiang & Oh 2018 ). We use a finite-volume Godunov method with
n HLLE Riemann solver for the radiation moment equations with 
n implicit backwards-Euler time update that allows us to evolve 
he system at the hydrodynamic time-scale. In addition, we treat the 
oupled nonlinear radiation-matter energy exchange term through 
 fixed-point Picard iteration method, whicgh ef fecti vely linearizes 
he backwards-Euler update, for which we use the sparse matrix 
olving capability provided by the PETSc library. The formal 
olution to the time-independent transfer equation for computing 
he VET is performed through the hybrid characteristics ray-tracing 
cheme implemented by Buntemeyer et al. ( 2016 ). We carry out a
omprehensive suite of tests to demonstrate that our scheme works 
orrectly in different regimes of radiation transport, and can handle 
he coupling between radiation and hydrodynamics correctly. We also 
emonstrate through a test that other commonly used local closure 
ethods such as FLD or M 1 yield unphysical radiation fields in 

ertain physical scenarios, the dynamical effects of which are difficult 
o predict and poorly explored (e.g. Davis et al. 2014 ). Ho we ver,
mplicit VET methods are computationally more e xpensiv e than 
ther closures due to the inherent communication needs of the ray-
racing scheme and matrix inversion algorithms. We argue, ho we ver,
hat the computational cost benefits offered by AMR in our scheme
ill be crucial in applications that require both spatial accuracy and

omputational efficiency . Currently , we are using VETTAM to study
he effects of reprocessed infrared radiation pressure on super-star 
luster formation in dense molecular clouds (e.g. Skinner & Ostriker 
015 ; Tsang & Milosavljevi ́c 2018 ), and intend to explore other
ele v ant applications in the near future. 

Software : PETSC (Balay et al. 1997 , 2021 ), NUMPY (Harris et al.
020 ), SCIPY (Virtanen et al. 2020 ), MATPLOTLIB (Hunter 2007 ),
nd YT (Turk et al. 2010 ). This research has made use of NASA’s
strophysics Data System (ADS) Bibliographic Services. 
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PPENDIX  A :  HYPERBOLIC  WAVESPEEDS  

O R  R A D I AT I O N  SUBSYSTEM  

1 HLLE wavespeed correction 

n this section, we demonstrate that our approach to estimating 
avespeeds for describing the HLLE Riemann fluxes at cell in- 

erfaces produces the correct solution in the diffusion limit, and 
how why the wavespeed correction as described in Section 2.2.3 is
ecessary, especially with AMR. The fundamental issue is that using 
 maximum/minimum wavespeed ( λmax , λmin ) for the Riemann flux 
ased on the characteristic speed obtained from the eigenvalues of 
he streaming limit radiation moment equation leads to a scheme 
hat is too dif fusi ve when the optical depth across a cell τ � 1. This
s because the numerical dif fusi ve flux due to the HLLE Riemann
olver can be much larger than the physical radiative flux (Audit et al.
002 ). To circumvent this issue, one can modify the wavespeed in a
anner described in Section 2.2.3 . We demonstrate below that this

mpro v es the solution considerably, even when the optical depth per
ell is close to unity. 

To demonstrate why wavespeed correction is necessary, we set up 
 problem identical to the weak equilibrium pulse test described in 
ection 3.1 , without performing the wavespeed correction, for three 
ifferent uniform grids of 256, 1024, and 4096 cells. For comparison, 
e also perform a version of the test at a resolution of 256 cells with

he wavespeed correction enabled. Using the parameters of the test, 
he optical depths per cell with this setup are τ ≈ 1.5, 0.4, and
.1, respectively for the three resolutions, making the cells only 
arginally optically thick. Ho we ver, e ven in this case, we show

n Fig. A1 that the solution without the wavespeed correction is
ignificantly more dif fusi ve, and only converges to the analytical 
olution when the photon mean free path is well resolved. On the
ther hand, we find that we can obtain similar accuracy at a resolution
f 256 cells with the wavespeed correction. We note that the setup
s only marginally optically thick, and the effect of the correction 
ould be even larger at higher cell optical depths. The test abo v e
erifies that the wavespeed correction is a robust approach to obtain 
he right solution in the diffusion limit. 
igure A1. The numerical solution for the radiation energy ( E r ) and flux ( F r ) of 
UG) with resolutions N x (optical depth/cell τ ) of 256 ( τ ∼ 1.5), 1024 ( τ ∼ 0.4), an
ection 2.2.3 (solid coloured lines), and that for a resolution of 256 cells with the w
olution provided in Section 3.1 . We see that the numerical solution is too dif fusi ve
o the right solution, whereas the version with wavespeed correction remains close 
2 Wavespeed correction at AMR level boundaries 

e next demonstrate the generalization of our wavespeed correction 
o interfaces where the left and right cells have different widths
i.e. at level interfaces). As described in Section 2.2.3 , for interfaces
etween cells at the same AMR level, we use the arithmetic average
f the optical depth of the cells sharing the interface to compute
he correction factor. On the other hand, for an interface at an
MR level boundary, where one neighbouring cell is finer than 

he other, we use the upstream value of the optical depth for the
orrection factor. To show why this change is necessary, we repeat
he weak equilibrium diffusion pulse test of Section 3.1 with a base
rid resolution of 1024 cells. We enforce a simple fixed refinement
ondition, refining the region x < 0.5 by a factor 2 in cell width,
eaving the region x > 0.5 at the base resolution, which leads to a
ingle level boundary in the domain. We perform four variations of
he test for comparison – (i) without the HLLE wavespeed correction, 
ii) using wavespeeds corrected with a correction factor computed 
rom the arithmetic average optical depth at the interface, (iii) using
avespeeds corrected with a correction factor computed from the 
ptical depth of the cell upstream to the wave propagation direction,
nd (iv) a uniform grid (UG) version of the problem where the entire
omain is resolved by 2048 cells, corresponding to the resolution of
he finer level of the AMR domain. We show the numerical solution
e obtain for the radiation flux F r for these four cases in Fig. A2 ,

hading the region of the domain that is refined to a higher AMR
e vel. We sho w only F r as we found E r to be relatively smooth
or this test even with AMR, though in some other tests we found
iscontinuities at AMR levels in E r as well. 
We can clearly see from Fig. A2 that there is a sharp discontinuity

t the level interface for the version without the wavespeed fix (AM-
NoCorr). This discontinuity can be explained by the fact that the
umerical dif fusi vity, which dominates o v er the physical dif fusi vity
ithout the wavespeed correction, changes discontinuously across 

he coarse-fine interface, and this leads to a mismatch in the solution
t the interface. The wavespeed correction using the average optical 
epth at the interface (AMRAverage) alleviates this discontinuity, 
ut instead produces spurious oscillations near the interface. On 
MNRAS 512, 401–423 (2022) 

the diffusing radiating pulse test of Section 3.1 obtained for a uniform grid 
d 4096 cells ( τ ∼ 0.1) without the HLLE wavespeed correction described in 
avespeed correction (solid black line). The dashed pink line shows the exact 
 without the wavespeed correction, and requires high resolution to converge 
to the right solution even at lower resolutions. 
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igure A2. The numerical solution for the radiation flux ( F r ) for the weak
quilibrium diffusion test of Section 3.1 in a domain with a fine (shaded) to
oarse (unshaded) AMR level boundary, with the fine cells at a resolution
f �x ∼ 0 . 0048 cm and the coarse cells at �x ∼ 0 . 0097 cm . We show
our variations of the test – (i) without the HLLE wavespeed correction
escribed in Section 2.2.3 (AMRNoCorr), (ii) corrected wavespeeds using
n arithmetic average optical depth at the interface for the correction factor
AMRAv erage), (iii) corrected wav espeeds using the optical depth of the
ell upstream to the wave propagation direction (AMRUpstream), and (iv)
 uniform grid version with wavespeed correction at the resolution of
he finer level of the AMR domain (UG2048). The inset zooms in the
ells near the level interface to demonstrate the presence of discontinuities
oscillations) in the AMRNoCorr (AMRAverage) version. We can see that
MRUpstream version provides a smooth and accurate solution throughout

he domain. 
NRAS 512, 401–423 (2022) 
he other hand, using the optical depth of the upstream cell for the
orrection factor (AMRUpstream) leads to a smooth solution, and
atches the solution obtained by the uniform grid at the finer AMR

evel grid resolution (UG2048). We also experimented with several
ther possible methods of choosing the optical depth at the interface
f AMR level transitions, and found that the upstream version led to
he best results. 

PPENDI X  B:  D E P E N D E N C E  O N  A N G U L A R  

ESOLUTI ON  O F  R AY  TRAC ER  

e derive the VET in our scheme from a ray-trace-based solution
o the time-independent RT equation, and the accuracy of the
ET depends on the accuracy of our ray-tracing method. The
ost important parameter that controls this accuracy is the angular

esolution N 
, i.e. the number of discrete angles o v er which the
ransfer equation is solved. As outlined in Section 2.2.5 , we use
he HEALPix scheme to discretize the unit sphere into equal-area
ixels, with a base resolution of 12 angular pixels, and further levels
iffering by a factor of 4 in the number of angles (i.e. N 
 = 48,
92, 768, . . . ). To e v aluate the ef fects of v arying N 
, we repeat the
hadow test described in Section 3.8.2 with four different angular
esolutions: 12, 48, 192, and 768 angles. We show the resulting
emperature structures after a light crossing time of the computational
ox in Fig. B1 . We find that all four angular resolutions produce
easonable temperature structures, but, as expected, the shadow
ecomes increasingly sharp with larger N 
; ho we ver, e ven for
 
 = 48 a clear umbra is visible. While the dependence on angular

esolution will in general be problem-dependent, this comparison
rovides confidence that reasonable results can be obtained even
ith relatively modest angular resolutions. 
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Figure B1. Comparison of the temperature structure obtained in the test described in Section 3.8.2 for varying numbers of angles ( N 
) used in the ray tracer 
to compute the VET. 
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