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A B S T R A C T 

We present CRIPTIC , the Cosmic Ray Interstellar Propagation Tool using It ̂  o Calculus, a new open-source software package to 

simulate the propagation of cosmic rays through the interstellar medium and to calculate the resulting observable non-thermal 
emission. CRIPTIC solves the Fokker–Planck equation describing transport of cosmic rays on scales larger than that on which their 
pitch angles become approximately isotropic, and couples this to a rich and accurate treatment of the microphysical processes 
by which cosmic rays in the energy range ∼MeV to ∼PeV lose energy and produce emission. CRIPTIC is deliberately agnostic 
as to both the cosmic ray transport model and the state of the background plasma through which cosmic rays travel. It can solve 
problems where cosmic rays stream, diffuse, or perform arbitrary combinations of both, and the coefficients describing these 
transport processes can be arbitrary functions of the background plasma state, the properties of the cosmic rays themselves, and 

local integrals of the cosmic ray field itself (e.g. the local cosmic ray pressure or pressure gradient). The code is parallelized using 

a hybrid OpenMP-MPI paradigm, allowing rapid calculations exploiting multiple cores and nodes on modern supercomputers. 
Here, we describe the numerical methods used in the code, our treatment of the microphysical processes, and the set of code 
tests and validations we have performed. 

Key words: radiation mechanisms: non-thermal – methods: numerical – cosmic rays. 
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 I N T RO D U C T I O N  

he last few years have seen an explosion of interest in cosmic
ays (CRs) from two distinct angles. The star- and galaxy-formation 
ommunities have engaged in intense study of CRs as a form of
tellar feedback in star and galaxy formation (e.g. Enßlin et al. 
007 ; Socrates, Davis & Ramirez-Ruiz 2008 ; Uhlig et al. 2012 ;
alem & Bryan 2014 ; Girichidis et al. 2016 ; W iener , Pfrommer &
h 2017 ; Chan et al. 2019 ; Hopkins et al. 2020 ; Crocker, Krumholz &
hompson 2021a , b ), while the high-energy astrophysics community 
as paid increasing attention to star-forming galaxies and the CRs 
ithin them as important sources at both radio and γ -ray wavelengths 

e.g. Thompson et al. 2006 ; Lacki & Thompson 2010 ; Lacki,
hompson & Quataert 2010 ; Yoast-Hull, Gallagher & Zweibel 
016 ; Peretti et al. 2019 ; Krumholz et al. 2020 ; Roth et al. 2021 ;
 erhahn et al. 2021a ; W erhahn, Pfrommer & Girichidis 2021b ;
opkins et al. 2022 ). Ho we ver, studies in both of these areas are
ampered by our lack of understanding of the fundamental plasma 
rocesses by which CRs couple to the background gas in galaxies 
hrough which they propagate. While most plasma physics models 
redict that CRs should be self-confined at relatively low energy 
nd confined by extrinsic turbulence at high energy (e.g. Zweibel 
017 , and references therein), the energy at which this transition
ccurs, and the normalization and energy dependence of the rate 
f transport in each of these two regimes, remains fundamentally 
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ncertain (and likely dependent on the environment), and simple 
odels hav e pro v en challenging to reconcile with observational

onstraints (e.g. Hopkins et al. 2021a , b ). Until we gain a better
nderstanding of how CRs couple to the gas in galaxies, it will be
ifficult to make definitive statements about either the role of CRs
n regulating galaxy formation or the contribution of star-forming 
alaxies to the non-thermal sky. 

One promising avenue for progress in this area is making detailed
omparisons between the predictions made by different CR transport 
odels and observations of galaxies’ non-thermal emission. During 

heir transport through gas, CRs suffer repeated collisions with the 
olecules, atoms, and nuclei they encounter. Low-energy CRs ionize 

he gas, altering its chemistry. High-energy CRs collide directly 
ith gas nuclei, producing sprays of unstable secondary particles 

hat decay almost immediately into final-state particles, including γ - 
ay photons, neutrinos, and relativistic electrons and positrons. The 
-rays and neutrinos are (in principle) directly observable, while 

he electrons and positrons go on to produce their own radiative
ignatures at radio and γ -ray wavelengths. These signatures hold 
pen the possibility of distinguishing between CR transport models, 
ecause different models predict different behaviours as a function 
f CR energy and galactic environment, which in turn manifest as
hanges in galaxies’ non-thermal spectra (e.g. Krumholz et al. 2020 ;
rocker et al. 2021a ; Ambrosone et al. 2022 ). 
Our observational knowledge of these signatures will expand 

adically in the next few years as new instruments come online.
he Cherenkov Telescope Array (CTA; Cherenkov Telescope Array 
onsortium 2019 ) will be able to see γ -ray sources an order of
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1 Note that the subscript pp here indicates diffusion in momentum space, and 
should not be confused with proton–proton collisions; to a v oid confusion, 
we will generically refer to proton interactions in general as nuclear inelastic 
collisions, so that pp is used only to indicate the momentum direction in phase 
space. 
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agnitude fainter, and with an order of magnitude better resolution,
han current instruments. The radio sky, and the galaxies that populate
t, will be increasingly well revealed by the Square Kilometre Array
SKA) and its pathfinders. Finally, the upgrade of the South Polar
ceCube neutrino telescope and the commissioning of the KM3NeT
eutrino telescope will significantly impro v e our knowledge of the
eutrino sky. This overall improvement in instrumentation will grant
s the ability to directly probe the CR populations of star-forming
alaxies with unprecedented depth and precision. This will, in turn,
lluminate our understanding of CR transport. 

Ho we ver, there are a limited range of software tools capable
f predicting the diverse signals that will be observable by the
ext generation of telescopes. Until very recently, CR-hydrodyamics
imulations followed only a single CR energy bin; the most recent
eneration of simulations include a few distinct CR energies (e.g.
rmillotta, Ostriker & Jiang 2021 , 2022 ; Girichidis et al. 2022 ;
opkins et al. 2022 ), but the computational cost of following multiple

nergies in the context of a fully self-consistent CR-hydrodynamics
alculation means that these simulations achieve very limited spectral
esolution in the observable signatures they predict, and rely on
ighly simplified treatments of the microphysical interaction between
Rs and their environment (e.g. treating pp collisional losses as
ontinuous, ignoring Klein–Nishina effects when calculating inverse
ompton scattering). Fluid treatments that involv e inte gration o v er
road bins in CR energy also necessarily have difficulty in treating
harp spectral features, for example sharp changes between streaming
nd diffusion at particular CR energies. Moreo v er, all of these
ethods have thus far proven too expensive to use in carrying out

n e xtensiv e parameter study of how emission changes as one makes
iffering assumptions about the microphysics of CR interactions with
he background plasma. 

Conversely, a range of tools exist to predict CR observables
sing detailed microphysics, but generally only for highly simplified,
ime-independent background plasma states. The most prominent of
hese is GALPROP (Strong & Moskalenko 1998 ), but other examples
nclude PICARD (Kissmann 2014 ), DRAGON (Evoli et al. 2017 ), and
RPROPA (Merten et al. 2017 ). These codes generally offer a much
ore detailed treatment of microphysics than is achieved in the
R-hydrodynamics simulations, and thus a correspondingly better
rediction of observables, but at the price that they are not very
exible in terms of the assumed model of CR propagation, or in terms
f the way that the background gas is described. Thus for example it
ould not be straightforward to use one of these tools to post-process
 full 3D simulation and predict the observ able, CR-dri ven emission
rom it. Nor for example can these codes easily handle a situation
here the transport of CRs switches from primarily streaming to
rimarily diffusion as a function of CR energy. 
This situation moti v ates us to introduce Cosmic Ray Interstellar

ropagation Tool using It ̂ o Calculus ( CRIPTIC ), a new software
ool for the purpose of calculating CR transport and observable
mission. CRIPTIC attempts to balance the advantages of the dedicated
R propagation codes – high-accuracy microphysics, high spectral

esolution, accurate treatment of secondary particles, relatively high
peed – with those of the CR-hydrodynamics codes – complex,
ultiphase gas backgrounds, with CR propagation properties that

ary depending on the gas state. Of course it also has disadvantages,
n that its complexity level and computational cost are higher than
or GALPROP and similar software, and it does not achieve the full
onsistency between CR propagation and hydrodynamic evolution
hat comes from solving CRs and hydrodynamics together. None the
ess, CRIPTIC is unique in that it offers the ability to make realis-
ic predictions for CR-driven emission at high spectral resolution
NRAS 517, 1355–1380 (2022) 
nd high physical accuracy from 3D simulations of a complex,
ultiphase galactic gas ecosystem. In this regard the intended use

f CRIPTIC for CRs is analogous to that of tools such as RADMC-
D (Dullemond 2012 ) or POWDERDAY (Narayanan et al. 2021 ) for
hotons: while these tools are too e xpensiv e to use in real time as part
f a self-consistent radiation-hydrodynamics calculation, they offer
uch more realistic predictions of observable emission than would

e possible using radiation-hydrodynamics simulations alone. 
The remainder of this paper is laid out as follows. In Section 2 ,

e describe the basic system of equations that CRIPTIC solves, and
n Section 3 we describe the numerical method by which we solve
hem. We present validation tests in Section 4 , and summarize and
iscuss future prospects in Section 5 . 

 PHYSI CAL  M O D E L  

.1 Formulation of the problem 

RIPTIC is intended to simulate the transport of CRs on scales
ignificantly larger than the CR mean free path to pitch angle
cattering. It therefore solves the Fokker–Planck Equation (FPE) for
he evolution of the pitch angle-averaged CR distribution function
 ( x , p) as a function of position x and the (magnitude of the) CR
omentum p ; future extensions may also include explicit evolution

f the pitch angle distrib ution, b ut are beyond the scope of this
aper. We solve a separate FPE for each species of CR tracked in a
imulation. The equation we solve is (Skilling 1975 ; Zweibel 2017 ) 

∂f 

∂t 
= 

∂ 

∂x i 

(
K ij 

∂f 

∂x j 

)
+ 

1 

p 

2 

∂ 

∂p 

(
p 

2 K pp 
∂f 

∂p 
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− ∂ 

∂x i 

[
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(
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3 u i 

)
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]
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[
∂ 

∂x i 

(
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3 u i 

)
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]

− 1 

p 

2 

∂ 

∂p 

(
p 

2 ṗ cts f 
)− Lf + S, (1) 

here we have added extra terms describing losses to the original
ransport equation derived by Skilling ( 1975 ); note that in this
quation, although by assumption f depends only on the magnitude
f CR momentum p , it still describes the number of CRs per unit
olume in momentum space, i.e. the number of CRs with momentum
rom p to p + d p is 4 πp 

2 f d p rather than f d p. Here and throughout
ection 2 , we adopt the convention that italic indices ( i , j ) go from
 to 3 and Greek indices ( α, β) go from 1 to 4, and we make use
f the Einstein summation convention whereby repeated indicates
re understood to be summed o v er. The quantities appearing in this
quation are the spatial diffusion tensor K , the momentum diffusion
oefficient 1 K pp , the total (streaming plus adv ection) v elocity of
he CRs u , the rate at which the magnitude of the CR momentum
ecreases due to continuous processes ṗ cts (those where the change
n momentum per interaction is small), the catastrophic loss term
 (describing processes that destroy CRs completely or cause large
hanges in their momenta), and the source function S . In general
hese quantities are functions of the properties of the background
lasma at position x , the CR momentum p , and the CR distribution
 at that point in space – for example, the direction of CR streaming
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2 Note that this step is omitted in the deri v ation gi ven by Kopp et al. ( 2012 ) 
and Merten et al. ( 2017 ), and as a result their equations for the momentum 

distribution are not correct. Ho we ver, since none of the tests reported in their 
papers consider CR momentum evolution, the problem does not manifest in 
the published results. 
3 By contrast, S is the injection rate per unit volume in space per unit volume 
in momentum space. 
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ay depend on the gradient of f – in which case the problem is non-
inear. The background plasma is threaded by a large-scale magnetic 
eld B , where large scale here means that B is averaged on scales
uch larger than the CR isotropization scale. 
Before proceeding further, we pause to explain our formulation 

f the continuous and catastrophic loss terms. We approximate 
ontinuous loss processes as causing a continuous decrease in the 
omentum of each CR particle at a rate ṗ cts . This corresponds to

dvection in momentum space at a velocity −ṗ cts ̂  r p , where ˆ r p is a 
adial (in momentum space) unit vector. The term we have included in 
he equation ( 1 ) is simply the divergence of −ṗ cts f ̂  r p . By contrast,
he term −Lf we introduce for catastrophic losses corresponds to 
irect removal of CRs from the population, at a rate proportional to
he number density of CRs at a given position; in equation ( 1 ), L is the
robability per unit time of such a loss. If the loss process represents a
iscrete jump in momentum rather than complete destruction, there 
ill also be corresponding source term S ∝ − Lf . We describe in
ection 2.3 the full set of microphysical processes we include and 

heir mathematical representation in terms of continuous loss terms, 
atastrophic loss terms, and source terms. 

.2 From Fokker–Plank to stochastic differential equation 

ur basic approach to solving equation ( 1 ) is to transform it from
 PDE to a stochastic differential equation (SDE). This part of our
reatment is similar to the methods proposed by Kopp et al. ( 2012 )
nd Merten et al. ( 2017 ). To simplify the problem of transforming
he FPE into an SDE, we will al w ays w ork in a local coordinate
ystem defined relative to the magnetic field. We therefore set up a
NB coordinate frame defined by the unit vectors 

 

 = 

B 

| B | (2) 

ˆ 
 = 

(
ˆ t · ∇ 

)
ˆ t 

k 
(3) 

ˆ 
 = 

ˆ t × ˆ n . (4) 

ere, ̂  t , ˆ n , ˆ b , and k are the tangent v ector, normal v ector, binormal
ector, and curvature of the local magnetic field. We therefore adopt 
he convention in equation ( 1 ) that indices i = (1, 2, 3) correspond to
he ( ̂ t , ̂  n , ̂  b ) directions, respectively. In our chosen frame the diffusion
ensor K is diagonal, with elements 

 ij = 

⎧ ⎨ 

⎩ 

K ‖ , i = j = 1 
K ⊥ 

, i = j = 2 or i = j = 3 
0 , otherwise. 

(5) 

ote that we explicitly allow for the possibility of diffusion per- 
endicular to field lines, with diffusion coefficient K ⊥ 

, and in this
espect our equation differs from that given by Skilling ( 1975 ) or
weibel ( 2017 ). Our reason for including this term is that the scale
n which B is measured is not assumed to be smaller that the turbulent
issipation scale, and thus there may be turbulent fluctuations in the 
agnetic field on top of the large-scale guide field B ; this will often

e the case in galactic or cosmological simulations, for example, 
here the simulation resolution is insufficient to resolve the magnetic 
issipation scale. Thus we wish to leave open the possibility that, 
hile CRs do not diffuse perpendicular to magnetic field lines (to

eading order), the field lines themselves can wander perpendicular to 
he large-scale guide field, and this will induce an ef fecti ve dif fusion
n the CRs perpendicular to the large-scale guide field (Beattie et al.
022 ; Sampson et al. 2022 ). 
In order to transform equation ( 1 ) into an SDE, we must first recast
t in standard Fokker–Planck form 

∂f 

∂t 
= − ∂ 

∂q α
( A αf ) + 

1 

2 

∂ 2 

∂ q α∂ q β

(
D αβf 

)
, (6) 

here A is the drift vector, D is the diffusion tensor (which must be
ymmetric), and q is the vector of phase-space variables upon which
 depends, which we take to be q = ( x 1 , x 2 , x 3 , p). In order to do so,
e make a change of variables from f ( x , p) to 

˜ 
 ( x , p) = 4 πp 

2 f ( x , p) , (7) 

.e. ˜ f represents the probability density per radial distance in 
omentum space, while f is the probability density per unit volume

n momentum space. The advantage of this change is that, unlike f
tself, ˜ f is invariant under a steady flow of CRs in momentum space. 2 

ith this change of variables, and making some further algebraic 
implification, equation ( 1 ) becomes 

∂ ˜ f 

∂t 
= 

∂ 2 

∂ x i ∂ x j 

(
K ij 

˜ f 
)+ 

∂ 2 

∂p 

2 

(
K pp ˜ f 

)
− ∂ 

∂x i 

[(
∂K ij 

∂x j 
+ u i + 

p 

3 

∂u i 

∂p 

)
˜ f 

]

− ∂ 

∂p 

[(
∂K pp 

∂p 

+ 2 
K pp 

p 

− p 

3 

∂u i 

∂x i 
− ṗ cts 

)
˜ f 

]
− L 

˜ f + 

˜ S , (8) 

here ˜ S = 4 πp 

2 S is the rate per unit volume per unit linear
omentum at which new CRs are injected. 3 For computational 

urposes it is convenient to explicitly write out the total velocity
 = v + w ̂

 t , where v is the advection velocity of the background gas
nd w ̂

 t is the streaming velocity of the CRs along the field, in the
rame comoving with the gas. Doing so, equation ( 8 ) becomes 

∂ ˜ f 

∂t 
= 

∂ 2 

∂ x i ∂ x j 

(
K ij 

˜ f 
)+ 

∂ 2 

∂p 
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(
K pp ˜ f 
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− ∂ 

∂x i 
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∂K ij 

∂x j 
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(
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p 
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∂w 

∂p 

)
ˆ t i 

]
˜ f 

}
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∂K pp 
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+ 2 
K pp 

p 

− ṗ cts 

− p 
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(
∂v i 

∂x i 
+ 

d w 

d x i 
ˆ t i + w 

d ̂ t i 
d x i 

)]
˜ f 

}
−L 

˜ f + 

˜ S . (9) 

Ignoring the catastrophic loss and source terms for the moment, 
quation ( 9 ) corresponds to equation ( 6 ) with drift vector 

 α = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

∂K ‖ 
∂x α

+ v α + w + 

p 

3 
∂w 
∂p 

, α = 1 
∂K ⊥ 
∂x α

+ v α, α = 2 or 3 
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K pp − ṗ cts 

− p 
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∂v i 
∂x i 
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∂w 
∂x i 

ˆ t i + w 

∂ ̂ t i 
∂x i 

)
, α = 4 

(10) 
MNRAS 517, 1355–1380 (2022) 
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M

Table 1. Summary of loss processes included. Entries give the process name and the types of particles affected, followed by the equation or 
expression we use for the various terms – ṗ cts , L , ξ , φ, and d 
/d ε – that describe the rate of continuous momentum loss, the rate of catastrophic 
loss, the secondary multiplicity, the secondary momentum distribution, and the specific power radiated per CR primary , respectively . For secondary 
multiplicities and momentum distributions, we indicate the type of secondary particle in parentheses. A blank entry indicates that the process 
does not produce the indicated effect, e.g. nuclear inelastic scattering does not produce continuous momentum loss. 

Loss process Affects ṗ cts L ξ d φ/d p d 
/d ε

Nuclear inelastic scattering p – Equation ( 17 ) 1 (p) Equation ( 18 ) (p) Equation ( 19 ) 
σπ±/σnuc (e ±) Equation ( 21 ) (e + , e −) 

Ionization p, e + , e − Equation ( 22 ) – – – –
Coulomb p, e + , e − Equation ( 33 ) – – – –
Synchrotron e + , e − Equation ( 39 ) – – – Equation ( 40 ) 
Bremsstrahlung e + , e − Equation ( 48 ) Equation ( 45 ) 1 (e + , e −) Equation ( 46 ) Equation ( 49 ) 
Inverse Compton e + , e − Equation ( 59 ) Equation ( 61 ) 1 (e + , e −) Equation ( 63 ) Equation ( 64 ) 
Positron annihilation e + – Equation ( 69 ) – – Equation ( 72 ) 
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4 That is, ξs ,s ′ ( p 

′ ) = 2 means that, on average, a loss of one particle of species 
s 
′ 

with momentum p 
′ 

leads to the production of two particles of species s . 
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nd diffusion tensor 

 αβ = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

2 K ‖ , α = β = 1 
2 K ⊥ 

, α = β = 2 or 3 
2 K pp , α = β = 4 
0 , α �= β

. (11) 

ote that, in writing out the components of the drift vector and
iffusion tensor, we have made use of the fact that K ij is diagonal in
ur chosen coordinate system. 
The It ̂ o SDE corresponding to equation ( 8 ) is (section 6.1, Gardiner

009 ) 

 q α( t) = A α( q , t) d t + d αβ ( q , t) d W β ( t) , (12) 

here 

 γαd γβ = D αβ (13) 

nd d W ( t) is a 4D Wiener process. Since D is diagonal in our chosen
oordinate frame, we trivially have d αβ = 

√ 

D αβ , so d is diagonal
s well. For notational convenience we define the vector of diffusion
oefficients κ = (2 K ‖ , 2 K ⊥ 

, 2 K ⊥ 

, 2 K pp ), i.e. κ is just the vector of
iagonal elements of d , so the SDE becomes 

 q α( t) = A α( q , t) d t + 

(√ 

κ( q , t) d W 

)
α
. (14) 

e refer to κ as the diffusion vector from this point forw ard, k eeping
n mind that it in fact just the vector of eigenvalues of a rank-2 tensor.

.3 Micr ophysical pr ocesses: losses, secondaries, and 

bser v ables 

.3.1 Formalism 

he continuous and catastrophic loss terms ṗ cts and L 

˜ f can repre-
ent a range of microphysical interactions between CRs and their
nvironment. In turn, the catastrophic loss terms generally have
orresponding source terms ˜ S that represent either new particles
roduced in the interaction, or existing CRs jumping discontinuously
rom a higher to a lower momentum; we will generically write these
ource terms in the form 

˜ 
 s ( p) = 

∑ 

s ′ 

∫ 
L s ′ ( p 

′ ) ξs ,s ′ ( p 

′ ) 
(

d φ

d p 

)
s ,s ′ 

( p 

′ ) ˜ f s ′ ( p 

′ ) d p 

′ , (15) 

here ˜ S s ( p) is the source function for members of species s with
omentum p , the sum runs o v er all species s 

′ 
, L s ′ ( p 

′ ) is the
atastrophic loss rate for members of species s 

′ 
with momentum

 

′ 
, ξs ,s ′ ( p 

′ ) is the mean multiplicity for production of species s by the
NRAS 517, 1355–1380 (2022) 
oss of members of species s 
′ 

with momentum p 
′ 
, 4 d φ/ d p s ,s ′ ( p 

′ ) is
he distribution of momenta p for members of species s produced by
he loss of a member of species s 

′ 
with momentum p 

′ 
(normalized so

 

(d φ/ d p ) s ,s ′ ( p 

′ ) d p = 1 for all p 
′ 
), and ˜ f s ′ ( p 

′ ) is the CR distribution
unction for members of species s 

′ 
e v aluated at momentum p 

′ 
. In

he discussion that follows, we will characterize the source functions
or secondaries in terms of their values for the multiplicity ξ and
he momentum redistribution function d φ/d p . We generically refer
o members of species s 

′ 
as primaries, even if they were themselves

roduced by another, earlier collision. Similarly, we refer to members
f species s – whose appearance is described by ˜ S s – as secondaries,
v en if the y are, in fact, just the initial CR particle after it has been
cattered to lower energy. 

In addition to computing the loss and source terms, it is also
f interest to predict the observable emission from CRs. We write
he rate of specific radiative emission per cosmic ray particle as
 
/d ε, where ε is the photon energy. We also calculate the CR
onization rate via an analogous expression, since this is of interest
or astrochemistry. 

Different loss processes apply to different CR species, and neither
ur species list nor the set of processes we include are e xhaustiv e;
or example, at present CRIPTIC does not treat heavy CR nuclei or
he spallation losses they suffer. Both the particle and process list
ay be expanded in future releases. At present the code tracks CR

rotons, electrons, and positrons, and it includes accurate treatments
f all significant loss processes for those species at energies from
1 MeV to ≈1 PeV propagating through typical ISM conditions; on

he low-energy end this limit is imposed by adopting the relativistic
imit when computing electron radiative losses (our treatment of
ollisional processes is valid down to ≈0.1 MeV), while on the high-
nergy side it is limited by the availability of tabulated or analytically
pproximated cross sections. Below we describe all the processes we
nclude, and the methods we use to compute them; we summarize
ur final expressions for all processes in Table 1 . Note that we do
ot require an explicit additional term to represent streaming losses,
s is required in hydrodynamic treatments of CRs, because in the
PE such losses are automatically included in the ∇ · ( w ̂

 t ) term in
he drift vector. 

The remainder of this section describes the various loss processes
e include, and how we treat them. To help provide intuition

or this discussion, we plot the various loss rates as a function
f CR proton, electron, and positron energy for three example
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Figure 1. Loss rates due to all of the processes included in CRIPTIC , as a function of CR kinetic energy T . For catastrophic losses (dashed lines) we show the 
catastrophic loss rate L , while for continuous processes (solid lines) the loss rate we how is computed as L cts = ṗ cts /p. Colours indicate different loss processes, 
as shown in the legend. The top row is for protons, the bottom for positrons; electrons are identical to positrons except that positron annihilation (brown dashed 
line) does not apply. Columns show, from left to right, loss rates in low-density ionized gas (H 

+ ), moderate density atomic gas (H I ), and dense molecular gas 
(H 2 ); see main text for exact properties of the gas in each of these regions. 
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nvironments in Fig. 1 ; here, the catastrophic loss rate is L , and
e define the equi v alent continuous loss rate as ṗ cts /p for a CR
acket of momentum p . Our example environments are representative 
f (i) a diffuse ionized region (H 

+ , first column), (ii) a medium
ensity neutral atomic region (H I , second column), and (iii) a dense
olecular region (H 2 , third column). These regions are characterized 

y , respectively , total densities of H nuclei n H = 10 −3 , 1, and 10 3 

m 

−3 , magnetic field strengths B = 1, 7, and 20 μG, and dilute
lackbody radiation fields, in addition to the cosmic microwave 
ackground, with temperature T BB = 5000, 5000, and 10 K, and 
ilution factors W BB = 10 −13 , 10 −13 , and 1; we explain T BB and
 BB in more detail below. The H 

+ region is composed of fully
onized H and singly ionized He with Asplund et al. ( 2009 ) protosolar
bundances; if we define X s as the number of members of a
articular species s per H nucleon in the background gas, the H 

+ 

egion has X H + = 1, X He + = 0 . 0955, and X e = 1.0955; the atomic
egion has X H 0 = 0 . 99, X H + = 0 . 01, X He 0 = 0 . 0955, and X e =
.01; and the molecular region has X H 2 = 0 . 5, X He 0 = 0 . 0955, and
 e = 10 −7 . 

.3.2 Nuclear inelastic scattering 

R protons with kinetic energies abo v e a threshold value T π =
2 + m π /2 m p ) m π c 2 can scatter inelastically off nuclei in the ISM,
roducing secondary particles, most commonly π mesons; here m p = 

.9383 GeV c −2 and m π = 0.2797 GeV c −2 are the rest masses of the
roton and π0 , respectively. In the process, the CR proton retains, on
verage, only a fraction ηin ≈ 1/2 of its initial energy, which makes 
his a catastrophic loss process. We approximate the total cross- 
ection for nuclear inelastic scattering using the analytical fitting 
ormula proposed by Kafexhiu et al. ( 2014 ), which is well-calibrated
gainst both collider experiments and particle physics simulations: 

nuc = εnuc σpp ≈ εnuc 

[ 
1 −
(

T 

T π

)1 . 9 
] 3 

×
[

30 . 7 − 0 . 96 log 

(
T 

T π

)
+ 0 . 18 log 2 

(
T π

T 

)]
mb , (16) 
here σ pp is the inelastic cross-section for pp collisions, T = ( γ −
) m p c 2 is the kinetic energy of the incident proton in the frame of the
SM, γ = (1 + p 

2 /m p 
2 c 4 ) 1 / 2 is the proton Lorentz factor, and εnuc is

he ‘nuclear enhancement factor’ that represents the increase in the 
ross-section relative to a pure H gas due to the presence of heavier
uclei. We compute the εnuc from Kafexhiu et al.’s equation ( 24 ),
 v aluated using the ISM elemental abundances provided by Draine
 2011 , their table 1.4), and for a beam of CR protons alone. Note that
he cross-section drops to zero nearly discontinuously near T = T π ,
s is clear from the top row of Fig. 1 . 

For protosolar abundances (Asplund et al. 2009 ), the mean gas
ass per H nucleon is μH m H , where m H is the hydrogen mass and
H = 1.4, and thus we can write the catastrophic loss rate for nuclear

nelastic collisions as 

 nuc = σnuc v 
ρ

μH m H 
, (17) 

here ρ is the total gas density, m H is the hydrogen mass, and
 = c 

√ 

1 − γ −2 is the proton velocity. Assuming each loss results
n the CR proton surviving but having its kinetic energy reduced by
 factor of ηin = 2, we can write the corresponding source function
equation 15 ) for ‘secondary’ protons as having a multiplicity ξ p, p =
 and a momentum redistribution function 

nuc ,p→ p ( p | p 

′ ) = δ
[
T ( p) − ηin T ( p 

′ ) 
]
, (18) 

here T ( p ) is the kinetic energy of a proton with momentum p . 
Inelastic collisions also produce both γ -rays (mainly via the decay 

f π0 mesons) and secondary CR positrons and electrons (mainly via 
he decays of π+ and π− mesons). We compute the γ -ray emission 
sing the parametrization provided by Kafexhiu et al. ( 2014 ), which
ives the differential cross-section for production of photons of 
nergy ε by CR protons of kinetic energy T . This yields an emitted
pecific power per CR proton 

d 
 

d ε
= 

f nuc 

ε
A max ( T ) F ( T , ε) v 

ρ

μH m H 
, (19) 
MNRAS 517, 1355–1380 (2022) 
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here ε is the photon energy, and A max ( T ) and F ( T , ε) are
arametrized functions of the CR kinetic energy T given by equa-
ions ( 11 ) and ( 12 ) of Kafexhiu et al. ( 2014 ). 

To compute the source functions for CR electrons and positrons,
e neglect the sub-dominant contribution from η and more massive
esons, and focus on that from π±. We compute the cross-

ections for production of these products following Yang, Kafexhiu &
haronian ( 2018 ); near the production threshold, and T < 2 GeV,
e use an interpolated cross-section taken from the tabulated values

hown in Yang et al.’s fig. 4, while at larger energies we follow them
n adopting 5 

π± ( p) = 〈 n π±〉 σnuc , 〈 n π±〉 = 0 . 78 w 

−1 / 4 ( w − 2) 3 / 4 − 1 

6 
± 1 

3 
. 

(20) 

ere, 〈 n π±〉 is the energy-dependent multiplicity of production of π±

nd w = 

√ 

s /m p c 
2 = [2(1 + T /m p c 

2 )] 1 / 2 is the ratio of the centre-
f-mass energy to the proton rest mass. Decays of π± then produce
nal state e ±, with the distribution of electron/positron momenta
iven by 

d φnuc ,p→ e ±

d p 

∝ 

d E e ±

d p 

∫ 
f e ( x e ± ) f π ( x π± ) d E π± . (21) 

ere, x π± = E π±/E p is the energy of the pion created in the
ollision normalized to the initial proton energy, x e ± = E e ±/E π± is
he energy of the electron or positron normalized to the pion energy,
nd f π ( x ) and f e ( x ) are the distributions of the normalized energies
iven by equations ( 6 ) and ( 36 ) of Kelner, Aharonian & Bugayov
 2006 ), respectively. Thus our final expression for the e ± source
unctions, in terms of equation ( 15 ), is that the multiplicity function
e ±,p = σπ±/σnuc , and the momentum redistribution function is given
y equation ( 21 ). Note that we do not at present follow final state
eutrinos, although it would be a straightforward extension to the
xisting code to do so. 

.3.3 Ionization 

t the energies with which we are concerned, ionization of the
ackground gas is a continuous loss mechanism for all CR particles. 6 

e can generically write the resulting rate of momentum loss for a
R of species s 

′ 
as 

˙ cts , ion = 

v 

d T / d p 

ρ

μH m H 

∑ 

s 

X s L s ′ ,s, ion , (22) 
NRAS 517, 1355–1380 (2022) 

 Note that in this expression we use σ nuc , rather that fully adopting Yang 
t al.’s approach of using σ in but then separately accounting for the 
ontribution of heavier nuclei to pion production using the approach of 
afexhiu ( 2016 ); our approach amounts to assuming that heavier nuclei 
roduce the same ratio of π+ to π− and the same pion energy distribution 
s H. The error associated with this approximation is ne gligible e xcept at 
nergies � 0.1 GeV, where other processes are generally more important in 
n y ev ent. 
 Our assertion that electron ionization losses can be treated as continuous 
iffers from the conclusions of Ivlev et al. ( 2021 ), who argue that ionization 
osses for electrons must be treated as catastrophic. The difference is the 
nergy range of interest: while their computations follow electrons down 
o ∼keV energies, we are limited to � 1 MeV by our use of relativistic 
 xpressions for radiativ e loss rates. Calculations using the cross sections given 
elo w sho w that, for a 1 MeV electron, ionising collisions that change the 
nergy of a CR electron by more than 10 per cent account for only 2.8 × 10 −5 

f all collisions, and are collectively responsible for only 8 . 9 per cent of the 
otal energy loss rate; both these figures decrease as we go to higher electron 
nergies. For this reason, we treat electron ionization losses as continuous. 
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here T and p are the kinetic energy and momentum of the CR
article undergoing loss, the sum runs o v er all species s with which
he CR can interact, X s is the abundance of that species per H nucleon,
nd L s ′ ,s is the loss function for that species, given by 

 s ′ ,s, ion = 

∫ W s ′ ,s, max 

0 
( W + I s ) 

d σs ′ ,s, ion 

d W 

d W . (23) 

ere, I s is the ionization potential of species s , W is the kinetic
nergy of the ejected electron, W s ′ ,s, max is the maximum ejected
lectron kinetic energy allowed by kinematics, and d σs ′ ,s, ion / d W is
he differential cross-section for ejection of electrons with kinetic
nergy W by collisions between CRs of species s 

′ 
and targets of

pecies s . We include H, H 2 , and He as target species, since these
 v erwhelmingly dominate the ionization losses; ho we ver, note that it
s trivial to extend the formalism we describe below to include other
argets. 

We follow Ivlev et al. ( 2021 ) in taking our differential cross-
ections for ionization by CR protons from the semi-analytical model
f Rudd et al. ( 1992 ), which gives 

d σp,s, ion 

d w 

= σ0 

(
R 

I s 

)2 
F 1 ,s ( T p ) + F 2 ,s ( T p ) w 

(1 + w) 3 
, (24) 

here w = W / I s , σ0 = 4 πa 2 0 N s , a 0 is the Bohr radius, N s is the
umber of electrons in the outer shell of the target species, R =
3.6 eV is the Rydber g ener gy, T p is the proton kinetic energy, and
 1, s and F 2, s are empirical fitting functions given by equations ( 43 )
nd ( 44 ) of Rudd et al., which depend on T p and the properties of
he target species, but not on W . The maximum energy allowed by
inematics is W p,s, max = 4( m e /m p ) T p − I s , and inserting this and
quation ( 24 ) into equation ( 23 ), the loss function is 

 p,s, ion = σ0 I s 

(
R 

I s 

)2 [
F 2 ,s ( t) log 

(
1 + w p,s, max 

)+ 

(
F 1 ,s ( t) − F 2 ,s ( t) 

) w p,s, max 

1 + w p,s, max 

]
, (25) 

here w p,s, max = 4 t − 1 and t = ( m e / m p )( T p / I s ). The total ionization
ross-section is 

p,s, ion = σ0 

(
R 

I s 

)2 [
F 2 ,s ( t) 

w p,s, max 

2(1 + w p,s, max ) 2 
+ 

F 1 ,s ( t) 
w p,s, max (2 + w p,s, max ) 

2(1 + w p,s, max ) 2 

]
. (26) 

ote from Fig. 1 that there is a clear inflection in the proton loss
unction near 1 GeV, where protons transition from sub-relativistic
o relativistic. 

Similarly, we take our differential cross sections for ejection of
lectrons of energy W by CR electrons of energy T e from the RBEQ
odel of Kim, Santos & Parente ( 2000 , their equation 19 , modified

s per the description of the BEQ approximation in their text), 

d σe ,s, ion 

d w 

= σ0 
α4 

2 i ′ s 
(
β2 

t + β2 
u s 

+ β2 
i s 

) ×
{

Q s − 2 

t + 1 

(
1 

1 + w 

+ 

1 

t − w 

)
1 + 2 t ′ 

(1 + t ′ / 2) 2 
+ 

( 2 − Q s ) 

( 

1 

(1 + w) 2 
+ 

1 

( t − w) 2 
+ 

i ′ s 
2 

(1 + t ′ / 2) 2 

) 

+ 

(
Q s 

(1 + w) 3 
+ 

Q s 

( t − w) 3 

)[
log 

β2 
t 

1 − β2 
− β2 

t − log (2 i ′ s ) 
]}

, (27) 

t 
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7 In sufficiently strong magnetic fields synchrotron losses can be significant 
for protons as well, but at present we do not include these. It would be 
straightforward to do so in the future, ho we ver. 
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here α is the fine structure constant and Q s and U s are the
imensionless dipole strength and mean outer shell electron kinetic 
nergy for the target species; we take these latter two quantities from
able 1 of Kim & Rudd ( 1994 ). In the expression above, primes
ndicate quantities normalized to the electron rest energy (i.e. t 

′ = 

 e / m e c 2 , i ′ s = I s /m e c 
2 ), lower case indicates quantities normalized

o the ionization potential (i.e. t = T e / I s ), and β’s indicate the β factor
orresponding to a particular energy (i.e. β t = [1 − 1/( t 

′ + 1) 2 ] 1/2 ).
he maximum ejected electron energy normalized to the ionization 
otential is w e ,s, max = ( t − 1) / 2, and inserting this and equation ( 27 )
nto equation ( 23 ) gives 

 e ,s, ion = I s σ0 f ion 

(
g ion , 1 + g ion , 2 

)
(28) 

here 

 ion = 

α4 

2 i ′ s 
(
β2 

t + β2 
u s 

+ β2 
i s 

) , (29) 

 ion , 1 = 

Q s − 2 

t + 1 

(
log 

2 

t + 1 
+ t log 

2 t 

t + 1 

)
1 + 2 t ′ 

(1 + t ′ / 2) 2 
+ 

( 2 − Q s ) 

[ 
log 

(1 + t) 2 

4 t 
+ 

i ′ s 
2 

(1 + t ′ / 2) 2 

(
t − 1 

2 

)] 
+ 

Q s 

( t − 1) 2 

2 t( t + 1) 

[
log 

β2 
t 

1 − β2 
t 

− β2 
t − log (2 i ′ s ) 

]
, (30) 

 ion , 2 = 

Q s 

2 

(
1 − 1 

t 2 

)[
log 

β2 
t 

1 − β2 
t 

− β2 
t − log (2 i ′ s ) 

]
+ 

(2 − Q s ) 

[ 
1 − 1 

t 
− ln t 

t + 1 

1 + 2 t ′ 

(1 + t ′ / 2) 2 
+ 

i ′ s 
2 

(1 + t ′ / 2) 2 
t − 1 

2 

] 
. (31) 

he total ionization cross-section is 

e ,s, ion = σ0 f ion g ion , 2 . (32) 

At the � 1 MeV energies with which we are concerned, positrons
ave almost exactly the same total ionization cross-sections as 
lectrons (e.g. Knudsen et al. 1990 ), and it is therefore reasonable to
ssume similarly identical dif ferential cross-sections. Ho we ver, there 
s one subtlety: for electrons the kinematic limit w e ,s, max = ( t − 1) / 2
s a result of the incident and ejected electrons being identical 
articles, so it is not possible to say which is the ‘primary’ CR electron
nd which is the ‘secondary’, ejected electron. The value of w e ,s, max 

or electrons amounts to treating whichever electron has lower energy 
s the secondary. For positrons, the incident and ejected particles 
re distinguishable, so it is not obvious what to choose for w e + ,s, max .
ortunately, this choice makes relatively little difference for � 1 MeV 

nergies, since losses are dominated by collisions that eject electrons 
ith w � w max ; we therefore adopt the same kinematic limit for
ositrons as for electrons, and thus the same loss function, but warn
hat this approach would not be valid at lower energies. 

In addition to the calculating losses, CRIPTIC reports the total 
onization rate for each target species. For a CR packet of species s 

′ 
,

he rate per primary CR at which ionizations of background species s
ccurs is ζs = σs ′ ,s, ion v CR , where v CR is the CR velocity, and σs ′ ,s, ion is
he total ionization cross-section, given by equation ( 26 ) for protons
nd equation ( 32 ) for electrons and positrons. 
.3.4 Coulomb losses 

n an ionized medium, all CRs lose energy via Coulomb interactions
ith the surrounding electrons. As with ionization, this process is 
ell-approximated as continuous at the energies with which we are 

oncerned. We take our loss rates from Gould ( 1972 ), interpolating
moothly between the expressions provided for the classical limit, β
 α (where β = v/ c is the CR velocity normalized to c and α is the
ne structure constant), the non-relativistic limit, α < β � 1, and 

he ultrarelativistic limit, 1 − β � 1; these transitions are visible in 
he loss rates plotted in Fig. 1 , at least for protons. Our expressions
re generically of the form 

˙ cts , Coul = 

(
d E CR 

d p 

)−1 e 2 ω p 
2 

v 
B stop , (33) 

here E CR is the CR energy, 

 p = 

√ 

4 πn e e 2 

m e 
(34) 

s the plasma frequency, m e is the electron mass, n e is free electron
ensity, and B stop is the stopping number, which is a function of E CR 

ith a different functional form for different CR particle types. For
rotons, interpolating between Gould’s three cases gives 

 p, stop = ln 

(
2 γm e c 

2 β2 

� ω p 

)
+ 

1 

2 
ln 

[ 
1 + 

(
� C β

α

)2 
] 

− β2 

2 
, (35) 

here � C = 0.5615 is a numerical constant. The equi v alent expres-
ion for electrons is 

 e −, stop = ln 

[√ 

2 δ( γ − 1) βm e c 
2 

� ω p 

]
+ 

1 

2 
ln 

[ 
1 + 

(
� C β

α

)2 
] 

+ 

1 

2 

[(
1 + 

2 γ − 1 

γ 2 

)
ln ( 1 − δ) + 

δ

1 − δ

]

+ 

δ2 

4 

(
γ − 1 

γ

)2 

, (36) 

nd for positrons is 

 e + , stop = ln 

[√ 

2 δ( γ − 1) βm e c 
2 

� ω p 

]
+ 

1 

2 
ln 

[ 
1 + 

(
� C β

α

)2 
] 

+ 

δ2 

4 

(
γ − 1 

γ + 1 

)2 
[ 

1 

2 
+ 

1 

γ
+ 

3 

2 γ 2 
−
(

γ − 1 

γ

)2 (2 δ

3 
− δ2 

2 

)] 

+ δ

[ 
δ

8 

(
γ − 1 

γ

)2 

− γ 2 − 1 

2 γ 2 

] 

− δ

2 

(
γ − 1 

γ + 1 

)[ 
γ + 2 

γ
− γ 2 − 1 

γ 2 
δ + 

(
γ − 1 

γ

)2 
δ2 

3 

] 
. (37) 

ere γ is the CR Lorentz factor, and δ is a fitting parameter for which
e adopt the recommended value δ = 1/2. 

.3.5 Synchr otr on radiation 

ynchrotron radiation is a continuous loss mechanism for CR 

lectrons and positrons. 7 The rate of energy loss is given by the
MNRAS 517, 1355–1380 (2022) 
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sual loss formula for an isotropic distribution of pitch angles (e.g.
lumenthal & Gould 1970 ), (
d E 

d t 

)
sync 

= −4 

3 
σT cβ

2 γ 2 U B , (38) 

here β = v/ c , σ T is the Thomson cross-section, and U B is the
agnetic energy density. We therefore have 

˙ cts , sync = 

4 

3 
σT cβ

2 γ 2 U B 

(
d E e ±

d p 

)−1 

. (39) 

he corresponding time- and direction-averaged specific power that
n observer sees per CR electron or positron is 

d 
 

d ε
= 

√ 

3 e 3 Bh 

m e c 2 

∫ π

0 
sin α

ν

νc, ⊥ 

∫ ∞ 

ν/ ( νc, ⊥ sin α) 
K 5 / 3 ( ξ ) d ξ d α, (40) 

here ν = ε/ h is the photon frequency and νc , ⊥ 

= 3 eB γ 2 /4 πm e c is
he cut-off frequency for CRs with a pitch angle α = π /2, and K 5/3 ( ξ )
s the modified Bessel function of order 5/3. Note that synchrotron
adiation is not isotropic with respect to the local magnetic field; the
uantity we compute here is the mean power radiated o v er 4 π sr.
imilarly, we do not at present compute the polarised intensity that
ould be seen by an observer in a particular direction. 

.3.6 Bremsstrahlung 

remsstrahlung is a catastrophic loss process for electrons and
ositrons, since, at least in the relativistic regime, energy loss is
ominated by photons whose energies are a significant fraction
f the CR energy. We adopt the bremsstrahlung differential cross
ections given by Blumenthal & Gould ( 1970 ), 

d σe ±,s, br 

d ε
= 

αr e 
2 

ε

{ [ 
1 + 

(
E e ± − ε

E e ±

)2 
] 

φ1 ( � ) 

−2 

3 

E e ± − ε

E e ±
φ2 ( � ) , 

}
(41) 

here ε is the energy of the photon, E e ± is the total (rest plus kinetic)
nergy of the CR electron or positron, α is the fine structure constant,
 e is the classical electron radius, 

 = 

εm e c 
2 

4 αZ E e ± ( E e ± − ε) 
, (42) 

s the screening factor, Z is the nuclear charge, and φ1 and φ2 are the
creening functions. For species s consisting of unshielded charges
free protons, electrons, and He nuclei), 

1 = φ2 = −4 Z 

2 

[
ln ( 2 αZ � ) + 

1 

2 

]
, (43) 

hile for shielded nuclei (H, He, and He + ), we use the tabulated
creening functions provided by Blumenthal and Gould. 

The functional form of the differential cross-section requires some
are in our numerical treatment; the most obvious approach is to
ntegrate the differential cross-section to compute a total cross-
ection, and set the catastrophic loss rate to be proportional to it.
he problem is that, as a result of the 1/ ε dependence, the total cross-
ection is logarithmically di vergent, e ven though the total energy loss
ate is finite. To handle this situation, we divide bremsstrahlung losses
nto a catastrophic component, representing losses due to photons
ith ener gies lar ger than f cat = 1/10 of the CR kinetic energy, and a

ontinuous part, accounting for losses due to lower energy photons.
NRAS 517, 1355–1380 (2022) 
or the catastrophic part the cross-section is 

e ±,s, br−cat = 

∫ T e ±

f cat T e ±

d σe ,s, br 

d ε
d ε, (44) 

here T e ± = E e ± − m e c 
2 is the CR kinetic energy; the corresponding

atastrophic loss rate 

 br = 

ρ

μH m H 
v 
∑ 

s 

X s σe ±,s, br−cat , (45) 

here v is the CR velocity, ρ is the gas density, and X s is again the
bundance of species s per H nucleon. The momentum distribution
unction for the scattered CRs is 

d φbr 

d p 

∝ 

d T e ±

d p 

∑ 

s 

X s 

(
d σe ±,s, br 

d ε

)
ε= T e ± ( p ′ ) −T e ± ( p) 

, (46) 

here the differential cross-section d σe ±,s, br / d ε is evaluated at a
hoton energy ε corresponding to the different between the initial,
 e ± ( p 

′ ), and final, T e ± ( p), CR kinetic energies, and, following our
atastrophic-continuous division, we set the catastrophic loss cross-
ection to zero if T e ± ( p) < f T e ± ( p 

′ ). 
For the continuous part of the losses, we define a loss function by 

 e ±,s, br = 

∫ f cat T e ±

0 
ε

d σe ±,s, br 

d ε
d ε, (47) 

nalogously to the ionization loss function introduced in Sec-
ion 2.3.3 . The corresponding loss rate is 

˙ cts , br = 

v 

d T e ±/ d p 

ρ

μH m H 

∑ 

s 

X s L s ′ ,s, br . (48) 

We show the continuous and catastrophic loss rates in Fig. 1 . Note
hat the continuous loss rate drops sharply at energies T e ± � 0 . 1 GeV
or the H I - and H 2 -dominated regions, but that a similar transition
oes not occur for the catastrophic loss rate. This is a direct result of
he behaviour of atomic shielding, which is is significant when � �
. Examining equation ( 42 ), we see that � � 1 when αE e ± � m e c 

2 

nd E e ± � ε are both satisfied. The former condition is met only
hen T e ± � 0 . 1 GeV, while the latter is met only for the continuous
art of the loss rate, which is why we see shielding effects only for
ontinuous losses at high energy. Also note that the bremsstrahlung
oss rate, while it drops at T e ± � 0 . 1 GeV, eventually stabilizes and
ecomes constant at yet higher energy. This is as direct result of the
onization fraction being non-zero even in H I - and H 2 -dominated
egions; at sufficiently high energy, the continuous loss rate becomes
ominated by the residual population of free protons and electrons,
hich are unaffected by shielding. 
Finally, the specific power radiated by bremsstrahlung photons per

R primary is 

d 
 

d ε
= 

ρ

μH m H 
vε
∑ 

s 

X s 

d σe ±,s, br 

d ε
. (49) 

ote that this includes photon emission at all energies; we separate
atastrophic and continuous losses for the purposes of calculating CR
ropagation, but there is no need to separate them when computing
hoton emission. 

.3.7 Inverse Compton scattering 

nverse Compton (IC) scattering of electrons and positrons can be
ither a continuous or catastrophic loss process depending on the
nitial CR Lorentz factor γ and initial photon energy ε

′ 
. In the
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homson limit, which applies when 

( ε′ , γ ) ≡ 4 γ ε′ 

m e c 2 
� 1 , (50) 

ontinuous loss is a good approximation, while in the Klein–
ishina regime, � � 1, the CR typically loses a substantial fraction
f its energy with each scattering (Blumenthal & Gould 1970 ). 
RIPTIC must be able to operate in both regimes, since, for example,
e wish to be able to model both ∼GeV CRs interacting with CMB
hotons ( � ∼ 10 −6 ) and ∼10 TeV CRs interacting with visible or
V photons ( � ∼ 10 3 ). We therefore make use of the general Klein-
ishina expression for the cross-section, rather than the simplified 
homson cross-section. In this general case, the differential rate at 
hich IC scattering produces photons of energy ε is (Jones 1968 ; 
lumenthal & Gould 1970 ) 

d Ṅ 

d ε
= 

2 πr e 
2 c 

γ 2 

∫ ∞ 

0 

1 

ε′ 
d N 

′ 

d ε′ S( ε, ε′ , γ ) d ε′ , (51) 

here r e is the classical electron radius, d N 

′ 
/d ε

′ 
is the specific number

ensity of the photons being scattered, and 

( ε, ε′ , γ ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 q ln q + (1 + 2 q)(1 − q) + 

1 
2 

[ �( ε′ ,γ ) q] 2 

1 + �q 
(1 − q) , 0 < q < 1 

0 , otherwise 
(52) 

here q = ε/[ �( ε
′ 
, γ )( γ m e c 2 − ε)]. Here S is a dimensionless

unction describing the shape of the Klein–Nishina cross-section. 
To proceed further, we assume that the radiation field with which 

Rs are interacting can be described as a sum of dilute blackbodies,
haracterized by a temperature T BB and a dilution factor W BB ; the
MB has W BB = 1, T BB = 2.73 K, while the starlight field of the
ilky Way is well-approximated by three components with ( W BB , 
 BB /K) = (7 × 10 −13 , 3000), (1.7 × 10 −13 , 4000), (1 × 10 −14 , 7500)
Mathis, Mezger & Panagia 1983 ; Draine 2011 ). The corresponding 
hoton number density for each component is 

d N 

′ 

d ε′ = W BB 
8 π

( hc) 3 
ε′ 2 

e ε′ /k B T BB − 1 
. (53) 

t this point it is convenient to define non-dimensional versions 
f the initial photon energy ε

′ 
, the final photon energy ε, and the

lackbody temperature; we therefore define 

 = 

ε′ 

k B T BB 
y = 

ε

γm e c 2 
� BB = 

4 γ k B T BB 

m e c 2 
. (54) 

ith these definitions, we can rewrite equation ( 51 ) for a single
omponent of the radiation field as 

d Ṅ 

d y 
= 

α3 

8 πγ 3 

(
c 

r e 

)
W BB � 

2 
BB 

d F IC 

d y 
, (55) 

here α is the fine structure constant, 

d F IC 

d y 
≡
∫ ∞ 

x min 

x 

e x − 1 
S ( y , x , γ ) d x , (56) 

escribes the differential scattering rate in normalized photon energy 
nits, x min = y /[ � BB (1 − y )] is the minimum normalized initial photon
nergy that can produce a scattered photon with normalized energy 
 (i.e. the minimum value of x for which q < 1), and S ( y , x , γ ) is
iven by equation ( 52 ), but with the substitution � ( ε

′ 
, γ ) → x � BB 

nd q → y /[ � BB x (1 − y )]. The total scattering rate and energy loss
ate due to a single radiation field component are then 

˙
 = 

α3 

8 πγ 3 

(
c 

r e 

)
W BB � 

2 
e, BB 

∫ 1 

0 

d F IC 

d y 
d y (57) 
˙
 = 

α3 

8 πγ 2 

(
c 

r e 

)
W BB m e c 

2 � 

2 
e, BB 

∫ 1 

0 
y 

d F IC 

d y 
d y. (58) 

In the integrals above, the parts of the integrands at y � 1 are
ell-approximated as continuous loss, while those from y near 
nity correspond to losses that should be treated catastrophically. 
ollowing our approach with bremmstrahlung, we handle this by 
omewhat arbitrarily placing the boundary between the continuous 
t catastrophic regimes at y = f cat = 1/10, and we therefore set the
ontinuous loss rate to 

˙ cts , IC = 

(
d T e ±

d p 

)−1 
α3 

8 πγ 2 

(
c 

r e 

)
m e c 

2 
∑ 

i 

W i, BB � 

2 
i, BB G IC ( � i, BB ) , 

(59) 

here we have defined 

 IC ( � i, BB ) ≡
∫ f cat 

0 
y 

d F IC 

d y 
d y. (60) 

he sum in equation ( 59 ) runs o v er all the components of the
adiation field, and � i, BB and W i, BB are the values that apply to
he i th component. Similarly, the catastrophic loss rate is 

 IC = 

α3 

8 πγ 3 

(
c 

r e 

)∑ 

i 

W i, BB � 

2 
i, BB F IC ( � i, BB ) , (61) 

here 

 IC ( � i, BB ) ≡
∫ 1 

f cat 

d F IC 

d y 
d y. (62) 

n the limit � BB → 0, the functions F IC and G IC have the property
hat G IC → ( π4 / 135) � 

2 
BB and F IC / G IC → 0, so the continuous loss

ate approaches the usual expression for the Thomson limit, and the
atastrophic loss rate becomes negligible in comparison. On the other 
and, in the limit � BB → ∞ , we have G IC / F IC → 0, and catastrophic
osses dominate. This behaviour is visible in Fig. 1 , where we see
ontinuous losses being dominant at low CR energy and giving way
o catastrophic losses at higher energy; also note that, in the H 

+ 

nd H I regions, there are two distinct peaks of catastrophic loss,
ne at higher energy arising from the cosmic microwave background 
hoton field with T BB = 2.73 K and one at lower energy from the
tarlight field with T BB = 5000 K. 

For the part of IC losses that we treat as catastrophic, since
lectrons and positrons are conserved, the multiplicity ξe ±, e ± = 1. 
onsistent with our division between continuous and catastrophic 

osses, the momentum redistribution function is 

d φIC 

d p 

= 

1 

E e ±

d E e ±

d p 

∑ 

i W i, BB � 

2 
i, BB � ( y − f cat ) 

d F i, IC 
d y ∑ 

i W i, BB � 

2 
i, BB F IC ( � i, BB ) 

, (63) 

here y = 1 − E e ± ( p 

′ ) /E e ± ( p), and the purpose of the Heaviside
tep function � ( y − f cat ) is to enforce our approach that we only treat
s catastrophic interactions that cause the CR energy to change by
ore than f cat = 10 per cent at a time. Finally, the specific radiated

ower per CR primary is 

d 
 

d ε
= 

α3 

8 πγ 3 

(
c 

r e 

)
y 
∑ 

i 

W i, BB � 

2 
i, BB 

d F i, IC 

d y 
, (64) 

here in this expression we do not include the step function
ecause the observable emitted power includes both continuous and 
atastrophic losses. 
MNRAS 517, 1355–1380 (2022) 
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.3.8 Positron annihilation 

he final (catastrophic) loss process we include is positron annihila-
ion with electrons in the background gas. For the relativistic energies
ith which we are concerned, positronium formation is unimportant

ompared to direct annihilation, and Coulomb corrections to the
nnihilation cross-section are small (see the re vie w by Prantzos et al.
011 ), so the catastrophic loss rate is well-approximated by 

 annih = σd v 
ρ

μe m H 
, (65) 

here v is the CR positron velocity, μe m H is the mean mass per
lectron ( μe = 1.17 for Asplund et al. 2009 abundances), and σ d is
he Dirac ( 1930 ) cross-section, which for a CR positron with Lorentz
actor γ is given by 

d = 

πr e 
2 

γ + 1 

[ 
γ 2 + 4 γ + 1 

γ 2 − 1 
ln 
(
γ + 

√ 

γ 2 − 1 
)

− γ + 3 √ 

γ 2 − 1 

] 
. 

(66) 

he energy dependence of the cross-section is visible in Fig. 1 . 
We obtain the specific radiated power per CR positron by first

ransforming to the centre-of-mass frame of the electron–positron
ollision, which has Lorentz factor 

√ 

γ relative to the lab frame
efined by the background gas. In this frame, the electron and
ositron both have energy E CM 

= 

√ 

γm e c 
2 and momentum p CM 

=
 γ − 1) m e c , so each annihilation produces two photons with
nergy εCM 

= 

√ 

γm e c 
2 , and an angular distribution (equation 5.106,

eskin & Schroeder 1995 ) 

d p 

d μCM 

∝ 

2 + γ + ( γ − 1) μ2 
CM 

− 2 
[
γ + (1 − γ ) μ2 

CM 

]−1 

γ + (1 − γ ) μ2 
CM 

(67) 

here μCM 

is the cosine of the angle between the direction of collision
nd the direction of the emitted photons. The corresponding angle
easured in the lab frame is μ = ( μCM 

+ βCM 

)/(1 + βCM 

μCM 

),
here βCM 

= 

√ 

1 − 1 /γ is the normalized velocity of the centre-of-
ass frame, and the corresponding photon energy measured in the

ab frame is 

= 

εCM √ 

γ (1 − βCM 

μ) 
= 

[ 
γ + 

√ 

γ ( γ − 1 ) μCM 

] 
m e c 

2 (68) 

hus the energy distribution of the photons produced must be
roportional to (d μCM 

/d ε)(d p /d μCM 

). 
While this functional form describes the distribution of CR

nergies that would be measured by observers in the lab frame
sotropically distributed around the direction of the collision, we

ust of course obtain the same energy distribution for the situation
f interest to us, where a single observer at rest measures the photon
nergy distribution emitted by an isotropic collection of annihilating
ositrons av eraged o v er all 4 π sr. We can therefore write the quantity
f interest to us, the rate per unit energy per CR positron emitted by
n isotropic positron population as measured in the observer frame,
s 

d Ṅ 

d ε
= 

2 L 

m e c 2 

d F pos 

d y 
, (69) 

here we have defined y = ε/ m e c 2 as the ratio of photon energy
o electron rest energy, the function d F pos /d y describes the energy
istribution of the received photons, and we adopt the normal-
zation 

∫ 
(d F pos / d y) d y = 1, so that the total photon production

ate integrated over all energies is 2 L , i.e. every positron that
nnihilates produces two photons. Since the energy distribution
unction d F pos /d y ∝ (d μCM 

/d ε)(d p /d μCM 

), it is straightforward to
NRAS 517, 1355–1380 (2022) 
ork out its functional form: 

d F pos 

d y 
= N 

−1 

[
y 4 − 4 y 3 + 2 γ (1 + 3 γ ) y 2 − 4 γ 2 (1 + γ ) y + 2 γ 2 

y 2 ( y − 2 γ ) 2 

]
,

(70

here d F pos /d y is non-zero only for energies y ∈ ( y −, y + 

) with y ± =
± g and g ≡ √ 

γ ( γ − 1) . The normalization factor N required to
nsure unit integral over this energy range is 

 = 

2 

γ

(
3 − g 

γ
− 4 γ + 4 g 

)
·{

3 g γ − g γ 2 − 4 g γ 3 − γ
[
1 + γ

(
4 γ 2 − γ − 4 

)]+ 

[
(3 − 10 γ ) γ + g − 6 gγ + 6 gγ 2 + 8 gγ 3 

]
tanh −1 g 

γ
+ 

2 γ 3 (1 + 4 γ ) sinh −1 g √ 

γ

}
. (71) 

We can now write down our final expression for the specific power
er CR primary, 

d 
 

d ε
= 2 σd v 

(
ρ

μe m H 

)
y 

d F pos 

d y 
. (72) 

o we ver, we caution that this expression only includes emission from
ositron losses ‘in flight’, which likely represent only a minority
f total positron annihilations, with the balance occurring due to
he formation of positronium after positrons have dropped to near-
hermal energies via other loss processes (Prantzos et al. 2011 ). We
o not include a treatment of positronium formation or the resulting
mission in CRIPTIC , though it would be straightforward to apply such
 model to the output of a CRIPTIC calculation, since CRIPTIC records
he location and time at which each CR packet drops below the

inimum momentum threshold at which we cease to follow it. 

 N U M E R I C A L  M E T H O D  

e can obtain solutions to the FPE, equation ( 8 ), by solving the
orresponding SDE, equation ( 14 ), to obtain the trajectories through
hase space q ( t) for a large number of sample CR packets, including
xtra steps to account for losses and sources. The phase space
istribution of those packets at any time t then provides an estimate
f the phase space density ˜ f ( q ) at that time. Each sample packet is
haracterized by a phase-space position ( x , p), a weight ϒ indicating
he number of individual particles it represents, and the mass m and
harge Ze of the particles that comprise it; each packet represents
nly a single species, but a computation may include an arbitrary
umber of species, each with its own distribution function ˜ f and
orresponding sample packets. 

CRIPTIC advances the sample packets through a series of time-
teps � t . The procedure for updating from time t ( n ) at the end of the
 th time-step to time t ( n + 1) = t ( n ) + � t ( n ) has four parts, which we
escribe in detail in the subsequent sections: 

(i) If the diffusion vector, drift vector, or loss rate depends on
he CR distribution function ˜ f (i.e. if the problem is non-linear),
stimate the required functions of ˜ f at the position of each packet
Section 3.1 ). 

(ii) If any CR sources are present, inject new packets (Section 3.2 ).
(iii) Advance all packets to time t ( n + 1) using an Euler-Maruyama

EM) update; in the process determine the next time step � t ( n + 1) 

Section 3.3 ). 
(iv) Check for production of secondaries during the time step,

hich are treated stochastically; if any secondary packets are
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roduced during the time step, update them to time t ( n + 1) as well,
terating until no packets remain (Section 3.4 ). 

We first describe the operations of each of these steps in serial,
nd then how we modify the procedure for parallel computation in 
ection 3.5 . We describe some general features of the CRIPTIC im-
lementation in Section 3.6 . 

.1 Step 1: reconstructing the distribution function 

n a non-linear problem, the drift vector A or diffusion vector κ
epend on the CR distribution function ˜ f itself, so the first step in
n advance is to reconstruct the distribution function seen by each 
ample packet so that these non-linear dependencies can be e v alu-
ted; in a linear problem we skip this step, as it is computationally
 xpensiv e. As we discuss below, CRIPTIC is largely agnostic about
he particular form of the non-linearity, and can accommodate a wide 
ange of CR propagation models. Ho we ver, it is not computationally
ractical to allow arbitrary functional dependence on ˜ f . We therefore 
imit the type of non-linearity we allow to what is by far the

ost common case. This, namely, is that the agent responsible for
enerating the non-linearity is resonant interactions between CRs 
nd waves in the background plasma, and the waves are themselves 
enerated by the CRs via the streaming instability. This constrains 
he functional form of the non-linear dependence on ˜ f , because 
Rs with a particular momentum p can only resonantly interact 
ith waves whose wavelength is smaller than the CR gyroradius 
 g . When dealing with multiple CR species, this condition is most
onv eniently e xpressed in terms of the CR rigidity R = pc / | Z | e ,
here Z is the CR charge in units of the elementary charge e . The
yroradius r g = R / B , where B is the local magnetic field strength and,
ince this is fixed at any given position, the condition for resonant
nteraction then implies that CRs of rigidity R can experience non- 
inear interactions with other CRs whose rigidity satisfies R 

′ 
> R .

iven this consideration, we restrict CRIPTIC to computing non- 
inear effects that can be described in terms of a dependence of
he propagation or loss rates for a CR of rigidity R only on integrals
f ˜ f o v er particles with rigidities R 

′ 
> R . Other dependenies will be

onsidered in future expansions. 
With this physical picture in mind, CRIPTIC estimates the CR 

umber density n R ′ >R , pressure P R ′ >R , and (kinetic) energy density 
 R ′ >R , and the gradients of these quantities at the position of each
acket, considering only the contributions from CRs with rigidity 
reater than or equal to that of the packet being considered; we
ill drop the R 

′ 
> R subscript from this point forward for brevity.

or a packet with momentum p and charge Ze , these quantities are
Zweibel 2017 ) ⎛ 

⎝ 

n 

P 

U 

⎞ 

⎠ = 

∑ 

s 

∫ ∞ 

pZ s /Z 

⎛ 

⎝ 

1 
v s p 

′ 

T s 

⎞ 

⎠ 

˜ f s d p 

′ (73) 

here the sum runs o v er all CR species, Z s e is the charge on species
 , ˜ f s is distribution function for species s e v aluated at position x ,
nd v s and T s are the velocity and kinetic energy of a CR of species
 with momentum p 

′ 
; note that these functions depend on species s

ecause they depend on the particle mass. Thus n , P , and U are simply
ntegrals of ˜ f over momentum, e v aluated with different weights – 1 
or n , v s p for P , and T s for U . 8 The expressions for the gradients are
ompletely analogous, simply replacing ˜ f with ∇ 

˜ f in equation ( 73 ).
 Extensions of CRIPTIC to compute other quantities that are defined by similar 
eighted inte grals o v er ˜ f are trivial to implement if required, and simply 

equire supplying the weight function for that quantity. 

3

T  

s  

t  
We e v aluate these integrals by approximating them with Gaussian
ernel density estimates; for each packet we define a bandwidth 
ensor H (computed as we describe below), and approximate the 
nte grals abo v e as ⎛ 

⎝ 

n 

P 

U 

⎞ 

⎠ = 

∑ 

s,i 

K H ( x − x si ) ϒ si � si 

⎛ 

⎝ 

1 
v si p si 

T si 

⎞ 

⎠ , (74) 

here the sum runs o v er all species s and all packets i belonging
o that species, ϒ si , x si , p si , v si , and T si are the weight, position,
omentum, velocity, and kinetic energy of packet i of species s , � si 

s unity for p si > p ( Z s / Z ) and zero otherwise, and 

 H ( x ) = 

√ 

1 

8 π3 det H 

exp 

(
−1 

2 
x T H 

−1 x 
)

(75) 

s the usual 3D Gaussian kernel. The analogous expression for the
radients of these quantities are ⎛ 

⎝ 

∇n 

∇P 

∇U 

⎞ 

⎠ = −H 

−1 
∇ 
∑ 

s,i 

( x − x si ) K H ∇ ( x − x si ) ϒ si � si 

⎛ 

⎝ 

1 
v si p si 

T si 

⎞ 

⎠ . (76) 

ote that the bandwidth H ∇ used to estimate the gradient is not the
ame as that used to estimate the quantities themselves, as discussed
elow. 
We e v aluate the sums in equation ( 74 ) using an order N ln N

lgorithm based on a kd-tree decomposition. Our procedure is as 
ollows. First, we sort the packets into a balanced kd-tree, and
or each node in the tree we record the sum of the weights 

∑ 

ϒ 

nd squared weights 
∑ 

ϒ 

2 for all packets contained in that node.
nce the tree has been constructed, the next step is to determine

he bandwidth tensor H for each packet. There is a vast body
f literature on optimal methods for bandwidth selection, but the 
 v erriding constraint for us is that we require a method that operates
uickly and without requiring global communication (for distributed 
emory calculations); the latter constraint rules out methods such as 

ross-validation or multistage plug-in selectors. 
Instead, we make use of the tree structure itself to make an estimate

f the local bandwidth, by choosing the bandwidth that brings a target
umber of neighbours N ngb, target within the kernel; our default value 
or this parameter is 1024, but users can choose alternate values. We
efine the ef fecti ve neighbour number for each node of the tree as
 ngb, node = ( 

∑ 

ϒ) 2 / 
∑ 

ϒ 

2 , and for each packet we start at the leaf of
he tree that contains it, and climb the tree until we reach a node for
hich N ngb, node ≥ N ngb, target (or the root of the tree). At this point,
e set the bandwidths H and H ∇ for the packet by applying the
ptimal normal scale bandwidth selectors (equations 3.17 and 3.18, 
arc ́ıa-Portugu ́es 2022 ), 

 = 

(
4 

5 

)2 / 7 

N 

−2 / 7 
ngb , node � (77) 

 ∇ = 

(
4 

7 

)2 / 9 

N 

−2 / 9 
ngb , node �, (78) 

here � is the covariance matrix for the points in the node. 
Once we have selected a bandwidth for each packet, we use the tree

o e v aluate equations ( 74 ) and ( 76 ). We defer details of the algorithm
o Appendix A . 

.2 Step 2: injecting packets 

he second step in our algorithm is that each CR source present in the
imulation volume adds new CR packets; in terms of equation ( 8 ),
his represents the source term 

˜ S . A source is characterized by its
MNRAS 517, 1355–1380 (2022) 
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osition x s at the start of the time-step, the first two deri v ati ves of
ts position ẋ s and ẍ s , the species of CRs it produces, the total rate
˙
 at which it produces CRs (measured as particles injected per unit

ime), and the momentum distribution d f /d p of those particles, where
e normalize d f /d p to have unit integral. Our current implementation
ses sources with truncated power-law distributions in momentum
 f /d p ∝ p q o v er the interval ( p 0 , p 1 ), but extension to alternative
unctional forms of the momentum distribution is trivial. 

When we inject packets, we assign each packet an injection
ime t i drawn from a uniform distribution from t ( n ) to t ( n ) + � t ( n ) ,
nd an injection position x i = x s + ̇x s ( t i − t ( n ) ) + ̈x s ( t i − t ( n ) ) 2 / 2.
ssigning packet momenta requires some subtlety, because the naive

pproach – drawing momenta from d f /d p – is very computationally
nefficient. For most realistic sources the momentum distribution is
ery steep, d f /d p ∼ p −2.2 , and so if every injected packet represents
n equal fraction of the CR population, then a very large number of
ackets are needed to capture the behaviour at high momenta. 
For this reason, we do not draw momenta from d f /d p , but instead

rom an alternative distribution d f samp /d p that is generally flatter;
ur default choice is d f samp /d p ∝ p −1 , corresponding to a uniform
istribution in log p , but users can alter this. To compensate for
ndersampling low- p packets compared to their true numbers, we
ncrease the weight of those packets we do draw . Specifically , during
 time step in which we draw a total of N packet CR packets to represent
he CRs injected by the given source, we set the weight of each packet
e inject to 

 = 

Ṅ �t ( n ) 

N packet 

(
d f / d p 

d f samp / d p 

)
, (79) 

here d f /d p and d f samp /d p are both e v aluated at the momentum p of
he newly drawn pack et. The f actor in parentheses ensures that the

omentum distribution function of the injected packets, weighted
y the packet weights ϒ , follows d f /d p . 
The number of packets N packet injected by each source is set by

 user-specified packet injection rate Ṅ packet , which specifies the
umber of primary CR packets injected per unit time by all sources
n the calculation; this choice determines the trade-off between
omputational cost and fidelity in sampling the distribution function,
nd the optimal choice is necessarily problem-dependent. When only
 single source is present, we trivially have N packet = Ṅ d t . In the
ore general case where multiple sources are present, we assign

ach source a weight 

 s = Ṅ 

∫ 
d f samp 

d p 

d p, (80) 

nd then 

 packet ,i = 

ϒ s,i ∑ 

j ϒ s,j 

Ṅ packet �t ( n ) (81) 

ackets for source i , where the sum runs o v er all sources present.
his ensures that the total number of packets injected is Ṅ packet d t ,
nd that the total momentum distribution of all packets injected is
istributed as d f samp /d p . 
Once packets have been injected, we reconstruct the number

ensity n , pressure P , and energy density U at their phase space
ocations using the procedure described in Section 3.1 , exactly as for
he packets that already exist at the start of the time-step. 

.3 Step 3: advancing packets 

onsider a sample CR packet that starts a time step with phase space
osition q 

( ∗) and weight ϒ 

( ∗) , and let t ∗ be the time at which the
NRAS 517, 1355–1380 (2022) 
acket starts the step; for packets that existed at the start of the time
tep t ∗ = t ( n ) and similarly for q 

( ∗) and weight ϒ 

( ∗) , while for newly
reated packets t ( ∗) = t i , where t i is the time at which that packet was
njected, and the phase space position q and weight ϒ correspond
o those with which the packet was injected. We must advance the
acket to time t ( n + 1) through a series of sub-steps. We begin each
ub-step by computing the drift and diffusion vectors A and κ , and
he sum of the catastrophic loss rates due to all processes L , given
he current properties and phase space position of the packet; if the
istribution function ˜ f or quantities derived from it are required,
e use the reconstructed value obtained in Step 1. From these, we

ompute a series of time step constraints associated with spatial
rift, spatial diffusion, momentum drift, momentum diffusion, and
atastrophic loss: 

t x −drift = 

�x √ 

A 

2 
1 + A 

2 
2 + A 

2 
3 

(82) 

t x −diff = 

�x 2 

max ( K ‖ , K ⊥ 

) 
(83) 

t p −drift = 

p 

| A 4 | (84) 

t p −diff = 

p 

2 

K pp 
(85) 

t loss = 

1 

L 

. (86) 

ere � x is the smaller of (i) a user-specified length-scale that
escribes the structure of the background gas through which the
R packets mo v e (and thus the size scale on which A and κ might
e expected to vary) and (ii) the square root of the geometric mean
f the eigenvalues of the bandwidth tensor H , which describes the
ypical size of the kernel used to estimate ˜ f . We then set the o v erall
ime step to 

t = min 

( 

t ( n + 1) − t ( ∗) , 

C 

�t −1 
x −drift + �t −1 

x −diff + �t −1 
p −drift + �t −1 

p −diff + �t −1 
loss 

) 

, (87) 

here C is a user-specified tolerance with a default value of 0.25;
ote that the sub-step size � t ≤ � t ( n ) . 
Once the time step has been set, we first update the packet weight

ia 

 

( † ) = ϒ 

( ∗) e −L �t , (88) 

here ( † ) indicates the state after the update, and we next update the
omentum through a standard EM step (Gardiner 2009 ), 

 

( † ) = p 

( ∗) + A 4 �t + η
√ 

K pp �t , (89) 

here η is a random variable drawn from a distribution with unit
ean and zero variance. At this point we check for creation of

econdaries, a procedure we describe in Section 3.4 , and we delete
ackets for which p or ϒ / ϒ i , where ϒ i is the packet weight at
njection, fall below user-specified tolerances; this is to limit the use
f computational resources following packets that represent either a
egligible number of particles or that have fallen to energies below
hose in which we are interested. 

The final step is to compute the new spatial position, which we
lso do through an EM update, 

 

( † ) 
i = x 

( ∗) 
i + A i �t + ηi 

√ 

κi �t , (90) 

here η is a vector of three independent random variables with
nit mean and zero v ariance. Ho we ver, there is a subtle difficulty
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n implementing this expression: the positions here are written in 
he local TNB basis, which is not the same at every position in
pace. In principle we could handle this issue simply by e v aluating
he TNB basis vectors in our fixed coordinate system at the start of
very sub-step, using the equation above to compute the displacement 
f the CR packet along these basis vectors, and then transforming
hese displacements into our fixed coordinate system. Ho we ver, due 
o the first-order nature of the EM scheme, 9 this approach leads 
o considerable numerical drift of packets across field lines. We 
herefore follow Merten et al. ( 2017 ) in circumventing this problem
y dividing each EM step into a series of sub-steps during each of
hich we recompute the TNB basis vectors, carrying out those sub-

teps using an adaptive, higher order method that provides vastly 
etter field-line tracing. 
Specifically, let ξ be the position in the fixed frame of the 

imulations, and define an ef fecti v e ‘v elocity’ in the local TNB frame
y 

˙ i = A 

( v= 0) 
i �t + ηi 

√ 

κi 

�t 
, (91) 

here the superscript ( v = 0) indicates the drift vector A e v aluated
ith the advection velocity v set to zero; we separate out the advection
elocity because it is not defined relative to the TNB basis. We then
arry out a Runge–Kutta–Fehlberg 4th–5th order (RKF45; Fehlberg 
970 ) update of the position in the fixed frame ξ by setting the
eri v ati ve at each stage of the RKF45 update to 

˙ = ẋ 1 ̂ t + ẋ 2 ̂  n + ẋ 3 ̂  b + v , (92) 

here the basis vectors ˆ t , ˆ n , and ˆ b are recomputed at every stage,
aking into account how the TNB basis vectors change as the packet

o v es. If the field does not vary in space, then the basis does not
hange, and equation ( 92 ) reduces to the standard EM update. As
s usual with the RKF45 update, at the same time we compute the
pdate, we can also compute an error estimate; if that error estimate
xceeds some specified tolerance, we divide the RKF45 time step � t
nto two sub-steps of size � t /2, repeating the subdivision recursively
s necessary until the error estimate drops below a specified tolerance. 
n this way we ensure that packets follow field lines accurately. 

At this point, we have updated all packet variables for the sub-step
 t . We repeat this process until each packet is advanced to the final

ime t ( n + 1) . 

.4 Step 4: catastrophic losses and secondaries 

ne of the steps in the advance procedure described in Section 3.3 is
o create secondary packets, where secondary here is used to mean 
ny packet created from another packet, rather than from a source 
r present in the initial conditions. As described in Section 2.3 ,
he source function describing the secondaries created by some 
atastrophic loss process i can be characterized in terms of the loss
ate L i for the process, the multiplicity function ξ i , s that describes 
he multiplicity of secondaries of species s for that process, and the

omentum distribution function φi , s for those secondaries. Note that 
 i , ξ i , s , and φi , s are all functions of the momentum p 

′ 
of the CRs

ndergoing loss, but in the discussion below we do not write out this
unctional dependence explicitly for compactness. 
 Higher order schemes such as the Milstein algorithm (Gardiner 2009 ) are 
nfortunately not usable for our problem, due to the potentially complex 
ependence of the diffusion coefficients on position. 

o  

e  

c  

p  

l  

t

023
Now consider a time step of length � t during which a CR packet
f statistical weight ϒ experiences a total loss rate from all processes
 = 

∑ 

i L i . As a result, the weight of the primary packet is reduced
o ϒe −L � t . The total number of secondaries of species s created by
oss process i in the course of this evolution is 

 i ,s , sec = ξi,s 

L i 

L 

(
1 − e −L�t 

)
ϒ. (93) 

A naive implementation of secondary production would be to 
reate secondaries with this weight every time step. However, doing 
o would quickly make the calculation impossibly e xpensiv e due
o the rapid proliferation of packets. We therefore instead set a
robability p i ,s , sec ≤ 1 that each packet spawns a secondary of 
pecies s via loss process i during each sub-step of its advance
Section 3.3 ), and increase the statistical weight of the secondaries
y a factor 1 /p i ,s , sec to compensate, so that the expected statistical
eight has the correct value. To be precise, for any secondaries we
o create, we assign them a weight 

 i,s = 

ξi,s 

p i ,s , sec 

L i 

L 

(
1 − e −L�t 

)
ϒ (94) 

f a secondary is created, we assign its initial position to be the same
s that of its parent at the start of the sub-step, and we assign its initial
omentum by drawing from the momentum redistribution function 
i , s . 
We set the secondary creation probability p i ,s , sec for each process 

nd species to a value proportional to the expected secondary creation 
ate ξ i , s L i . We then normalise the probability as follows: 

 i ,s , sec = f sec 
L i ξi,s ∑ 

j L j 

∑ 

s ′ ξj,s ′ 

(
1 − e −L�t 

)
, (95) 

here the sums in the denominator run o v er all processes j and sec-
ndary species s 

′ 
, and f sec is a user-settable dimensionless parameter

hat functions analogously to Ṅ packet in that it parametrizes the trade- 
ff between fidelity and computational cost in tracking secondaries. 
ith this choice, the weight assigned to each secondary created then

educes to 

 i,s = 

∑ 

j L j 

∑ 

s ′ ξj,s ′ 

f sec L 

ϒ. (96) 

To understand the meaning of the parameter f sec , first note that the
xpected number of secondaries created during a time-step, summing 
 v er all loss processes and all species, is 

 N sec 〉 1 = 

∑ 

i,s 

p i ,s , sec = f sec 

(
1 − e −L�t 

)
. (97) 

fter N such steps the expected number of secondaries created is
 N sec 〉 = N 〈 N sec 〉 1 , and the weight of the original packet will have
een reduced by a factor e −NL � t . Thus if we let ϒ i and ϒ f be the
nitial and final weights of the packet undergoing losses, and adopt
he limit of small time steps, L � t � 1, then we can write the expected
umber of secondaries created as 

 N sec 〉 = f sec ln 
ϒ i 

ϒ f 

. (98) 

hus we see that f sec determines the mean number of secondary
ackets created per e -folding of the primary packet weight; a value
f f sec = 1 corresponds to creating an average of one secondary per
 -folding, while a value of f sec = 1/ln 10 ≈ 0.434 corresponds to
reating one secondary per factor of 10 reduction in the weight of the
rimary. We choose the latter as our default, but the optimal choice
ikely varies from problem to problem, depending on how much loss
he primary particles suffer. 
MNRAS 517, 1355–1380 (2022) 
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.5 Parallelism 

RIPTIC is parallelized using a hybrid MPI-openMP model. Within a
ingle MPI rank, it uses openMP threads to carry out the advance for
ll the packets owned by that rank. This involves two synchronization
oints: one at the end of the step when we compute the next time
tep, and one after calculating any non-linear terms in the drift and
iffusion vectors prior, since this calculation must be completed prior
o moving any packets. 

The MPI parallelism has two parts. The first is a step to distribute
he packets across ranks to maintain load balance. For this purpose
e use the PANDA algorithm described by Patwary et al. ( 2016 );
riefly summarizing here, the algorithm constructs a global kd-tree
nd uses it to partition packets between ranks based on their spatial
osition. Construction of a kd-tree requires two steps at each level of
artition: choosing a dimension along which to divide the packets,
nd then choosing a point in that dimension to partition the data.
he first step is straightforward to carry out in parallel: the ranks
ompute the variance of positions in each dimension, and since this
nvolves only summation operations, parallelizing is straightforward.

e choose to split along the dimension of maximum variance. The
econd step, choosing a partition point, requires more care, since
t is e xpensiv e to find the median point – the traditional choice
or the partition – in a distributed memory parallel calculation.
nstead, we find the median approximately by selecting a set of
ample points from all ranks to mark the edges of a histogram,
nd counting how many points on each rank fall into the various
istogram bins. The counts can then be reduced in parallel, allowing
s to approximate the value of the median. This process repeats
ecursively at each level of the tree, until the desired level of leaves
re created. Each leaf is assigned to an MPI rank, and the packets
ithin each leaf are then sent to that rank. In practice, since the

ree changes little from time step to time step, during most time
teps the boundaries of leav es mo v e little, and thus little data need
e communicated to maintain load balance. Once the leaves of the
lobal tree have been assigned to MPI ranks, we construct local
d-trees below those leav es, e xactly as we do in a non-parallel
alculation. 

The second part of MPI parallelism is to carry out kernel density
stimation in parallel when packets are distributed across ranks. As
ith the remainder of the tree algorithm we use for the kernel density

omputation, we defer details to Appendix A . 

.6 Implementation notes 

RIPTIC is written in C ++ , based on the C ++ 17 standard; we have
 v oided C ++ 20 features to ensure compatibility with somewhat
lder compilers. A key aspect of the design is to maximize user
exibility in specifying (1) the initial conditions, (2) the properties of

he background gas and radiation field through which CRs propagate,
nd (3) the underlying plasma physical model that describes CR
ropagation. While flexibility in initial conditions is standard in sim-
lation codes, flexibility in the background gas state and propagation
odel is more challenging. 
In CRIPTIC , we achieve this using C ++ classes. The state of the

ackground gas is defined by a pure virtual interface class, which
an be specialized by a user to describe an arbitrary gas distribution.
e provide specializations for some standard cases, for example
here the gas distribution is specified in terms of an analytical

unction, a static Cartesian grid, or a series of snapshots in time
hat are each stored on Cartesian grids but, given this flexibility,
sers can implement their own classes to describe arbitrary time- and
NRAS 517, 1355–1380 (2022) 
osition-dependent magnetic fields, gas densities, ionization states,
ompositions, and background radiation fields. 

We take a similar approach to CR propagation. In practice, CR
ropagation in CRIPTIC is defined using a pure virtual interface
lass Propagation , which defines the call operator Propaga-
ion::() as a pure virtual function that takes as input the spatial
osition x , the time t , the properties of the CR packet (type of particle,
omentum, etc.), the properties of the background gas (total density,

on density, composition, magnetic field, etc.), and the CR field
uantities n , P , and U and their gradients. This function must return all
f the quantities that appear in the drift vector A (equation 10 ) and the
iffusion tensor D (equation 11 ): the parallel diffusion coefficient K � 

nd its spatial gradient ∇K � , the perpendicular diffusion coefficient
 ⊥ 

and its spatial gradient ∇K ⊥ 

, the momentum diffusion coefficient
 pp and its deri v ati ve with respect to momentum ∂ K pp / ∂ p , and the

treaming speed w and its spatial gradient ∇w and deri v ati ve with
espect to momentum ∂ w/ ∂ p . 

To define a CR propagation model, the user defines a class derived
rom Propagation that provides an implementation of the call
perator and computes the required outputs from the provided inputs;
he implementation of this function is entirely up to the user, and thus,
or example, CR propagation can include arbitrary combinations of
treaming and diffusion, which can depend in arbitrary ways on
osition, time, CR properties, gas properties, and the field quantities
 , P , and U and their gradients. As with the gas properties, we provide
mplementations for some standard cases – for example, a model
here the CR diffusion coefficient is a power-law function of CR
omentum, and where CRs stream down field lines at the ion Alfv ́en

peed – but users are not limited to these choices. The only restrictions
re that, in its current form, CRIPTIC cannot capture CR propagation
oefficients that depend on something other than the provided inputs
isted abo v e, or where CR propagation is not describable by the pitch
ngle-av eraged F okker–Planck equation (e.g. because the pitch angle
istribution is not close to isotropic). 
One implication of this flexibility is that CRIPTIC can be run using

xactly the same interstellar gas and radiation field distributions, and
R propagation models, as standard CR propagation codes such as
ALPROP (Strong, Moskalenko & Ptuskin 2007 ). 

 C O D E  TESTS  

ere, we describe the various validation tests to which we have
ubjected CRIPTIC . 

.1 Transport tests 

ur first batch of tests e v aluates CRIPTIC ’s performance in simulating
R transport, including the step of reconstructing the CR field where
ecessary because transport rates depend non-linearly on it. For all
he tests in this section, we disable all catastrophic and continuous
oss terms, so we are testing the transport parts of the code only.
n these tests we will characterize the performance of the code in
erms of its L 

1 error; we do not experiment with varying the number
f packets explicitly, but below we show that the errors we obtain
re generally consistent with Poisson noise, and thus in general we
xpect the error to depend on number of packets used in a given
imulation as L 

1 
err ∝ N 

−1 / 2 
packet . 

.1.1 Anisotropic diffusion 

ur first test is to validate CRIPTIC ’s treatment of diffusion, including
nistropy and momentum-dependence of the diffusion coefficients.
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( T = 1, 10, and 100 GeV; blue, orange, and green), while circles show the 
CRIPTIC result; for clarity we plot only every other bin. Error bars indicate the 
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Figure 3. Projected energy density 
∫ 

U CR d z in the anisotropic diffusion test 
(Section 4.1.1 ), where energy density is computed only for CRs with energies 
T = 1 GeV. Colour shows the projected energy density from 10 −1 –10 2 eV 

cm 

−3 pc, and white points show the positions of individual CR packets in 
regions where the CR energy density falls below this level. 
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e consider a uniform region containing gas at rest, threaded by 
 uniform magnetic field in the ˆ x direction. The CR diffusion 
oefficients parallel and perpendicular to the field have a fixed ratio 
and vary as power laws in the CR momentum, i.e. 

 ( ‖ , ⊥ ) = ( χ, 1) · K 0 

(
p 

p 0 

)q 

, (99) 

here χ , K 0 , p 0 , and q are constants. There is no momentum diffusion
r streaming. The domain is initially empty of CRs, but at t = 0 a
oint source of CR protons turns on at the origin. The source is
onochromatic, and is characterized by its luminosity L and by the 
omentum p 0 of the protons it injects. For this problem setup, the
okker–Planck equation reduces to 

∂ ˜ f 

∂t 
= K 

(
χ

∂ 2 ˜ f 

∂x 2 
+ 

∂ 2 ˜ f 

∂y 2 
+ 

∂ 2 ˜ f 

∂z 2 

)
+ 

L 

T 
δ ( r ) δ ( p − p 0 ) � ( t) , 

(100) 

here r = ( x , y , z), K ≡ K 0 ( p / m p c ) q , � ( x ) is the Heaviside step
unction, and 

 = m p c 
2 

⎡ 
⎣ 
√ 

1 + 

(
p 0 

m p c 

)2 

− 1 

⎤ 
⎦ (101) 

s the kinetic energy of the injected protons. 
Making the change of variable x = 

√ 

χx ′ reduces this problem to
 constant-coefficient diffusion equation 

∂ ˜ f 

∂t 
= K 

(
∂ 2 ˜ f 

∂x ′ 2 
+ 

∂ 2 ˜ f 

∂y 2 
+ 

∂ 2 ˜ f 

∂z 2 

)
+ 

1 √ 

χ

L 

T 
δ
(
r ′ 
)
δ( p − p 0 ) � ( t) , 

(102) 

here r ′ = ( x ′ , y, z); note the extra factor of 1 / 
√ 

χ in the final term,
hich arises from the change of variable. The Green’s function for

he spatial distribution of the CRs is then 

 ( r ′ , t ) = 

1 

( 4 πKt ) 3 / 2 
e −r ′ 2 / 4 Kt , (103) 

here r ′ = | r ′ | , so for the case our case of a source that turns on at
 = 0, the solution for the spatial distribution for t > 0 is 

˜ 
 ( r ′ , t) = 

∫ t 

0 

1 √ 

χ

L 

T 
δ( p − p 0 ) G ( r ′ , t ′ ) d t ′ 

= 

1 √ 

χ

L 

T 

1 

4 πK r ′ 
erfc 

(
r ′ 

2 
√ 

Kt 

)
δ ( p − p 0 ) . (104) 

he corresponding CR energy density is simply U CR = 

 

∫ 
f ( r ′ , t) d p. 

We test CRIPTIC by simulating this problem using K ⊥ 

= 

0 28 ( p / m p c ) 1/2 cm 

2 s −1 and χ = 4, with three sources producing
Rs with kinetic energy T = 1, 10, and 100 GeV; each source has

uminosity L = 10 38 erg s −1 ; since the CRs from the different sources
o not interact, the solution equation ( 104 ) applies independently to
he CRs produced by each source. We run the simulation for t =
 × 10 9 s using a packet injection rate 10 −3 s −1 , so that there are
 × 10 6 CR packets at the end of the simulation. We show the results
n Figs 2 and 3 . 

As the plots show, CRIPTIC reco v ers the exact solution to very high
recision, co v ering ≈8 orders of magnitude in CR energy density;
rrors in the solution are consistent with expectations from Poisson 
tatistics given the finite number of CR packets used in the simulation.
he L 

1 error, defined by 

 

1 
err = 

4 π

Lt 

∫ 
| U CR , exact − U CR , sim 

| r ′ 2 d r ′ , (105) 
here U CR, exact and U CR, sim 

correspond to the exact and simulation 
olutions shown in Fig. 2 (using the bins shown to compute U CR, sim 

),
s below 1 per cent for all three sources. Visual inspection of the
rojected CR distribution also demonstrates that it is anistropic by a
:1 ratio, exactly as expected. 

.1.2 Variable diffusion 

ur next test investigates CRIPTIC ’s performance when the diffusion 
oefficient is non-constant. We simulate the transport of CRs with an
sotropic diffusion coefficient, but one that varies as a power law in
oth space and time: 

 = K ‖ = K ⊥ 

= K 0 

(
r 

r 0 

)q r 
(

t 

t 0 

)q t 

. (106) 
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Figure 4. Results of the variable diffusion coefficient test described in 
Section 4.1.2 . We show the CR energy density U CR in the initial condition 
(blue) at t = t 0 and in the final simulation snapshots at t = 2 t 0 (orange). Solid 
lines show the exact solution given by equation ( 108 ), while circles show the 
CRIPTIC results, with error bars to indicate the 90 per cent confidence interval 
assuming the number of CR packets in each radial bin is Poisson-distributed. 
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here is no streaming in this test, and the background gas is at rest.
o sources are present, and all CRs have momentum p 0 . For this

etup the FPE is 

∂ ˜ f 

∂t 
= K 

(
∂ 2 f 

∂x 2 
+ 

∂ 2 ˜ f 

∂y 2 
+ 

∂ 2 ˜ f 

∂z 2 

)
, (107) 

nd one can verify by substitution that the system admits a similarity
olution for the spatial distribution 

˜ 
 ( r, t) = N CR δ( p − p 0 ) 

3(2 − q r ) 
6 

q r −2 

4 πr 3 0 � 

(
q r −5 
q r −2 

) [ ( q t + 1) η] 3 / (2 −q r ) 

(
t 

t 0 

)3 q t + 1 
q r −2 

exp 

[ 
− ( q t + 1) η

( q r − 2) 2 

(
r 

r 0 

)2 −q r 
(

t 

t 0 

)−q t −1 
] 

, (108) 

here �( x ) is the � function, η ≡ r 2 0 /K 0 t 0 , and N CR is the total
umber of CRs. The energy density U CR = T 

∫ 
˜ f d p, where T is the

inetic energy corresponding to CR momentum p 0 . 
For our test we set K 0 = 4 × 10 28 cm 

2 s −1 , r 0 = 10 18 cm, t 0 =
0 8 s, q r = −1/2, and q t = 1. We initialize the simulation with
.5 × 10 5 CR packets with a total energy of E 0 = N CR T = 10 48 erg;
he initial radial distribution of the packets follow the exact solution,
quation ( 108 ), e v aluated at t = t 0 . We then use CRIPTIC to advance
he system to time t = 2 t 0 . 

We show the results in Fig. 4 . The figure shows that CRIPTIC re-
o v ers the e xact solution to v ery high accurac y; errors are consistent
ith Poisson sampling, and are no larger in the final time step than

n the initial setup. The L 

1 error at the final time, defined by 

 

1 
err = 

4 π

E 0 

∫ 
| U CR , exact − U CR , sim 

| r 2 d r, (109) 

s below 1 per cent. 

.1.3 Oscillating field loop 

ur next test checks the ability of the code to trace diffusion along
urv ed, mo ving field lines. In this test, we place a single CR source
ith CR luminosity L = 10 38 s −1 at x = r 0 = 1 pc, y = z = 0 at

ime t = 0. The magnetic field consists of loops around the z-axis,
NRAS 517, 1355–1380 (2022) 
o B = B 0 ̂  φ, where ˆ φ is the φ unit vector in an ( r , φ, θ ) cylindrical
oordinate system. CRs diffuse with zero perpendicular diffusion,
nd parallel diffusion described by a coefficient K � = 10 28 cm 

2 s −1 .
he FPE go v erning the system then reduces to 

∂ ˜ f 

∂t 
= 

K ‖ 
r 2 0 

∂ 2 f 

∂s 2 
+ 

L 

T 
δ( s) δ( p − p 0 ) , (110) 

here T = 1 GeV is the energy of a single CR, p 0 is the corresponding
R momentum, and s = 2 πr 0 φ is the position along the current loop,
ith the source located at s = φ = 0. 
The FPE in this case is equi v alent to 1D diffusion in a periodic

omain ( −πr 0 , πr 0 ). This problem may be solved by standard Fourier
ethods, and the exact solution for a point source located at φ = 0

hat begins injecting CRs at t = 0 is that the CR energy per unit angle
long the loop is 

d E CR 

d φ
= 

L t 

2 π

[ 
1 − 2 

t diff 

t 

∞ ∑ 

n = 1 

cos ( nφ) 

n 2 

(
e −n 2 t/t diff − 1 

)] 
, (111) 

here t diff = r 2 0 /K ‖ = 9 . 55 × 10 8 s is the characteristic diffusion
ime-scale. To add a complication to this test, both the source and
he background gas perform simple harmonic oscillation in the x
irection, with amplitude r 0 and angular frequency � = 4 π / t diff ; this
llows us to test how well CRs follow field lines when the field lines
re attached to a fluid that is accelerating, and where the direction of
he acceleration can be both perpendicular and parallel to the field
ine. The exact solution is still given by equation ( 111 ), provided that
e define φ relative to the time-dependent centre of the loop, since

dvection should move all the CR packets together. 
We simulate the system for a time t = 4 t diff using a packet injection

ate 3 × 10 −4 s −1 , so o v er the course of the simulation 3.81 × 10 5 

ackets are injected into the domain, and the loop performs eight full
eriods of oscillation. This test therefore e v aluates not only how well
Rs follow curved field lines, but how well they do so when the field

ines and the gas to which they are anchored are moving at arbitrary,
ime-variable angles relative to the field direction. 

Fig. 5 shows the comparison between the CRIPTIC numerical
olution and the exact solution given by equation ( 111 ). Clearly
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he agreement is very good. Defining the L 

1 error by 

 

1 
err = 

1 

L t 

∫ ∣∣∣∣d E CR , exact 

d φ
− d E CR , sim 

d φ

∣∣∣∣ d φ, (112) 

e find that the error is < 1 per cent . We also check quantitatively
ow well the CR packets remain confined to the field line to which
hey are attached, by examining the standard deviation of CR packet 
adial coordinates at the end of the simulation, σ r . We find that σ r / r 0 

5.7 × 10 −6 , so o v er 4 diffusion times and 8 oscillations periods,
umerical diffusion causes CR packets to drift across field lines by 
ess than 1 part in 10 5 . 

.1.4 Momentum diffusion 

ur next test e v aluates the ability of the code to handle momentum
iffusion, or, equivalently, second-order Fermi acceleration. For this 
est we turn on a single source of CRs at t = 0 at the origin, which
njects CRs with luminosity L = 10 38 erg s −1 . All injected CRs
ave a momentum of exactly p 0 = 1 GeV/ c . There is no spatial
iffusion or streaming, but CRs diffuse in momentum with a diffusion
oefficient K pp , which we set implicitly by setting the diffusion
ime at momentum p 0 to t diff = 1 Myr. The corresponding diffusion
oefficient is K pp = p 

2 
0 /t diff , and the corresponding FPE is 

∂ ˜ f 

∂t 
= K pp 

[
∂ 2 ˜ f 

∂p 

2 
− ∂ 

∂p 

(
2 

p 

˜ f 

)]
+ 

L 

T 
δ( r ) δ( p − p 0 ) , (113) 

here T is the kinetic energy corresponding to momentum p 0 . Using
he change of variables ˜ f ′ = p 

˜ f reduces the problem to a 1D
iffusion equation, subject to the boundary condition ˜ f ′ = 0 at p =
, which can be solved by standard Green’s function methods. The 
xact solution for the CR momentum distribution is 

d n CR 

d p 

= 

L 

T 

t 

σ p 

p 

p 0 [ √ 

2 

π

(
e 

−
(

p−p 0 
2 σp 

)2 

− e 
−
(

p+ p 0 
2 σp 

)2 )
+ 

p + p 0 

σ p 
erfc 

( 

p + p 0 √ 

2 σ p 

) 

+ 

| p − p 0 | 
σ p 

erfc 

( 

| p − p 0 | √ 

2 σ p 

) 

− 1 

] 
, (114) 

here σ p 
2 = 2 K pp t . 

We simulate this problem with CRIPTIC using a packet injection rate
f 10 −7 s −1 , running to time t = t diff = 1 Myr, so there are 3.16 × 10 6 

R packets present at the end of the simulation. We compare the
xact and numerical solutions in Fig. 6 . The figure shows very good
greement between the exact and numerical results. Quantitatively, 
he L 

1 error, defined for this problem as 

 

1 
err = 

1 

( L /T ) t 

∫ ∣∣∣∣d n CR , exact 

d p 

− d n CR , sim 

d p 

∣∣∣∣ d p, (115) 

s < 1 per cent . 

.1.5 Non-linear diffusion 

ll of our tests thus far have been for problems where the diffusion
oefficient does not depend on the CR field, and thus which can
e solved without the reconstruction step in our algorithm. We now 

onsider a problem where reconstruction is required. We consider a 
ystem where diffusion is isotropic, and the diffusion coefficient is a 
ower-law function of the CR energy density: 

 ‖ = K ⊥ 

= K = K 0 

(
U CR 

U CR , 0 

)q 

. (116) 
o sources are present. Such a system admits a similarity solution
Pattle 1959 ) 

 CR = 

E CR , tot √ 

πr 3 0 

� 

(
1 
q 

+ 

5 
2 

)
� 

(
1 
q 

+ 1 
)
[ 

1 −
(

r 

r out 

)2 
] (

t 

t 0 

)−3 / (3 q+ 2) 

, (117) 

here E CR, tot is the total CR energy in the system, 

 out = r 0 

(
t 

t 0 

)1 / (3 q+ 2) 

, (118) 

nd r 0 and t 0 are given by 

 

3 
0 = 

E CR , tot 

U CR , 0 
π−3 / 2 

� 

(
1 
q 

+ 

5 
2 

)
� 

(
1 
q 

+ 1 
) (119) 

 0 = 

qr 2 0 

2(3 q + 2) K 0 
. (120) 

ote that the system has the property that U CR = 0 exactly at r ≥
 out , so this problem represents a severe test of our method, since the
xact solution has a sharp cutoff in the CR energy density. 

For our test with CRIPTIC , we set the total CR energy to E CR, tot =
0 46 erg, adopt index q = 1, and specify U CR, 0 and K 0 implicitly
y setting r 0 = 1 pc and t 0 = 10 7 s. We initialize the distribution of
R packets to the analytic solution at t = t 0 , using a total of 10 5 CR
ackets, and evolve the system to t = 3 t 0 . We show the results of
his test in Fig. 7 . We find that the agreement between the numerical
nd exact solutions is very good. At smaller radii the match is almost
erfect, and CRIPTIC reco v ers the location of the sharp edge of the
xact solution with only a very small amount of numerical blurring.
efining the L 

1 error for this test as 

 

1 
err = 

4 π

E CR , tot 

∫ 
| U CR , exact − U CR , sim 

| r ′ 2 d r ′ , (121) 

e find L 

1 
err = 2 . 4 per cent . 

To understand the quality of the solution, it is helpful to examine
he reconstructed CR energy density and its deri v ati ve, which are
sed to construct the dif fusion coef ficient and its spatial deri v ati ve.
e show these reconstructions for the initial time in Fig. 8 ; results

re qualitatively similar at later times. We see that our kernel density
MNRAS 517, 1355–1380 (2022) 

art/stac2712_f6.eps


1372 M. R. Krumholz, R. M. Crocker and M. L. Sampson 

M

Figure 7. Results for the non-linear diffusion test (Section 4.1.5 ). The plot 
shows the CR energy density U CR at times t = t 0 (‘Initial’, blue) and t = 

3 t 0 (‘Final’, orange). Lines show the exact solution given by equation ( 117 ), 
while circles with error bars show the solution computed by CRIPTIC ; errors 
indicate the 90 per cent confidence interval derived by assuming the number 
of CR packets in each bin is drawn from a Poisson distribution. 

Figure 8. Reconstruction of the CR energy density U CR (top) and its radial 
deri v ati ve d U CR /d r (bottom) at the initial time in the non-linear diffusion test 
(Section 4.1.5 ). Black lines show the exact solution as a function of radius r , 
solid blue lines show the median value of the CRIPTIC CR packets, computed 
in 30 radial radial bins, and blue and orange bands show the 25th–75th 
percentile range (50 per cent confidence interval) and 5th–95th percentile 
range (90 per cent CI), respectively, in the same bins. 
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10 To a v oid CRs near the origin requiring infinitely small time steps, we 
flatten the density and magnetic field profiles at very small radii, and make 
the CR source slightly extended. Specifically, we adopt a flattening radius 
r flat = 10 −3 r 0 and e v aluate the density and magnetic field using max ( r , r flat ) 
rather than simply r ; we likewise inject CRs at a random radius uniformly 
distributed from 0 to r flat , rather than exactly at r = 0. 
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stimation algorithm reconstructs the CR energy density with very
igh accuracy; the median is so close to the exact solution that the
ine showing it is nearly invisible in the figure, hidden behind the
xact solution, and the 50th and 90th percentile ranges lie within

10 per cent and ≈ 20 per cent of the exact solution except at large
adii. 

The deri v ati ve, which is inherently harder to reconstruct, shows a
arger range, and deviates from the exact solution at both small radii,
here the number of CR packets is small due to the small volume,

nd at the edge of the distribution; none the less, the median agrees
ery well with the exact value over most of the radial range. Errors
NRAS 517, 1355–1380 (2022) 
re most significant at the largest radii, where the exact solution
oes to zero exactly, a feature that is necessarily blurred somewhat
n CRIPTIC ’s reconstruction due to the finite size of the kernel. It is
his effect that is responsible for the sharp edge of the exact solution
 xpanding v ery slightly too quickly in the CRIPTIC simulation. None
he less, the o v erall error is very small. 

.1.6 Streaming and streaming losses 

ur next test checks the ability of the code to handle streaming down
R pressure gradients, together with the associated adiabatic changes

n CR momentum when the divergence of the streaming velocity is
on-zero. For this test we consider a fully ionized medium at rest with
 power-law distribution of density and a ‘split monopole’ magnetic
eld. The density and magnetic field as a function of position are 

= ρ0 

(
r 

r 0 

)k ρ

(122) 

 = B 0 

( r 0 

r 

)2 
sgn ( z) ̂ r , (123) 

here r is the distance from the origin. For this test we use r 0 =
 pc, ρ0 = 2.34 × 10 −24 g cm 

−3 , k ρ = −2, and B 0 = 10 μG. The
imulation begins with no CRs, but we place a point source of CRs
ith luminosity L = 10 38 erg s −1 at the origin, where it injects CRs
ith initial energy T = 1 GeV. 10 For the CR transport model in this

et, we let CRs stream down the CR pressure gradient at the ion
lfv ́en velocity, 

 = 

B √ 

4 πρ
sgn ( −∇P CR · B ) . (124) 

In this test the CR pressure gradient al w ays points to the origin,
nd thus CRs should al w ays stream away from the origin at the
treaming speed 

 = v A 0 

(
r 

r 0 

)−2 −k ρ/ 2 

, (125) 

here v A 0 = B 0 / 
√ 

4 πρ0 . Individual CRs therefore obey an equa-
ion of motion d r /d t = w which, for a CR injected at t = t inj , has the
olution 

( t − t inj ) = r 0 

[(
3 + 

k ρ

2 

)
v A 0 t 

r 0 

]1 / (3 + k ρ/ 2) 

(126) 

or times t � t inj . Moreo v er, the momentum of individual CRs evolves
ith radius due to adiabatic cooling as 

d p 

d r 
= 

(
d r 

d t 

)−1 d p 

d t 
= − p 

3 w 

∇ · w , (127) 

hich has the solution that a CR injected with momentum p inj at
adius r inj has momentum 

 = p inj 

(
r 

r inj 

)−k ρ/ 6 

(128) 
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Figure 9. Solutions for the streaming problem (Section 4.1.6 ). In the top 
panel, we show CR packet radial position r versus packet age t packet = t −
t inj , and in the bottom we show CR packet momentum p as a function of radius. 
In both panels, solid lines are the exact solutions given by equations ( 126 ) 
and ( 128 ), respectively, and circles with error bars are the numerical solutions 
computed by CRIPTIC , averaged over bins in age (top) and radius (bottom). 
Error bars show the 5th to 95th percentile range in each bin. 
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We simulate the system for 10 9 s using a packet injection rate of
0 −4 s −1 , so that by the end of the simulation there are 10 5 packets.
e show the CRIPTIC results in comparison to the exact solutions

or CR packet position versus age and momentum versus radius 
n Fig. 9 . We again see excellent agreement between CRIPTIC and
he exact solution, indicating the code successfully reconstructs the 
irection of the CR pressure gradient and correctly computes the rate 
f adiabatic cooling caused by the non-uniform streaming speed. 
uantitatively, we define the radial position and momentum error for 

ach CR packet by 

 r = 

r 

r exact 
− 1 e p = 

p 

p exact 
− 1 , (129) 

here r exact and p exact are the exact solutions given by equations ( 126 )
nd 128 ). We find that the mean values of e r and e p are 0 . 37
nd 0 . 40 per cent , respectively, with variances 1 . 5 and 4 . 6 per cent ;
he errors are therefore small, and in fact the variance in e p is an
 v erestimate of the true error because it is mostly a result of the
ependence of p on the initial injection radius r inj , which is randomly
aried by a small amount for numerical reasons as discussed abo v e. 
.1.7 Number density computation 

ur final transport test e v aluates CRIPTIC ’s ability to reconstruct the
R field in a more realistic problem where there is a continuous
istribution of CR positions and momenta. In this problem we place a
ource of CR protons at the origin, which injects CRs at a specific rate
 ̇n src / d p ∝ p 

q o v er a momentum range from p 0 to p 1 . The CRs then
iffuse isotropically away from the source with a constant diffusion 
oefficient K . The exact solution for the CR distribution is then
ust given by equation ( 104 ) with the ( L /T ) δ( p − p 0 ) replaced by
 ̇n src / d p, and we can immediately write down the expected number
ensity of CRs at any given radius r and time t with momentum > p
or any p ∈ ( p 0 , p 1 ), 

 CR ( > p) = 

1 

4 πKr 
erfc 

(
r 

2 
√ 

Kt 

)
ṅ src 

1 − ( p/p 1 ) q+ 1 

1 − ( p 0 /p 1 ) q+ 1 
, (130) 

here ṅ src is the total CR injection rate integrated over all momenta.
he test is to compare this exact value for the CR number density to

he value reconstructed by CRIPTIC , given by equation ( 74 ). We run
he test using a dif fusion coef ficient K = 10 28 cm 

2 s −1 and a source
ith total energy injection rate L = 10 38 erg s −1 , with p 0 = 1 GeV/ c ,
 1 = 10 3 GeV/ c , and q = −2.2, for a time, t = 10 9 s. We use a packet
njection rate 10 −4 s −1 for the test. 

We compare the exact and reconstructed CR number densities 
n Fig. 10 , which shows n CR ( > p ) computed in 25 logarithmically
paced bins in p , e v aluated at radii r / r diff = 0.2, 0.5, 1.0, 2.0, and 3.5,
here r diff = 

√ 

Kt , and for each radial bin we consider CR packets
hose radii are within 5 per cent of the target value. Solid lines show

he median reconstructed value of n CR ( > p ) for packets in that bin,
nd shaded bands show the ranges within which 50 and 90 per cent
f the packet values fall. We see that the median reconstructed value
f n CR ( > p ) is in almost perfect agreement with the exact result
xcept at the highest values of p , where the finite number of sample
ackets causes deviation, and at r / r diff = 0.2, where the simulation
edian is ∼ 10 per cent below the true value due to the finite size

f the smoothing kernel, which blurs out the sharp peak at small
adii visible in, e.g. Fig. 2 . The other clear trend is that the 50 and
0 per cent ranges expand at larger radii, simply because our finite
umber of packets leads to larger Poisson errors. 
MNRAS 517, 1355–1380 (2022) 
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Figure 11. Distribution of exact (horizontal axis) and CRIPTIC -computed 
(vertical axis) values of n CR ( > p ), the number density of CRs with momentum 

> p . The blue solid line shows the median, while shaded regions indicate the 
range into which 50 and 90 per cent of the reconstructed values fall; the black 
dashed line is the 1:1 line, corresponding to perfect agreement. 
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To make a quantitative analysis of the error, for each CR packet
e e v aluate the exact v alue of n CR, exact ( > p ) at its position from

quation ( 130 ), and we place the packets in 40 bins of n CR, exact ( > p ).
or each bin, we examine the distribution of CRIPTIC -reconstructed
umber densities, n CR, sim 

( > p ), in that bin, and compute the median
nd the 50 and 90 per cent confidence intervals of this distribution.
e plot the median and confidence intervals as a function of
 CR, exact ( > p ) in Fig. 11 . We see the same patterns that were visible
n Fig. 10 , i.e. agreement is e xcellent o v er most of the range of
 CR, exact ( > p ), but there are deviations at both the highest values,
here the smoothing kernel blurs out the very sharp peak around

he source, and the lowest values, where the finite number of CR
ackets in the simulation leads to errors in reconstructing very low
ensity regions. Ho we ver, over 5 decades in n CR ( > p ), from 10 −13 

o 10 −8 cm 

−3 , the error is very small: averaged over this range, the
edian v alue dif fers from the exact one by only 0.005 dex, and the

0 per cent range is only 0.16 dex wide. 

.2 Microphysics tests 

ur second set of tests e v aluates the performance of our code in
imulating the microphysical processes that go v ern CR loss and
econdary production, and the radiation spectra produced thereby.
n only some of these cases is an exact analytical solution available,
nd, where it is not, we compare to expected physical behaviour and
imiting cases. 

.2.1 Proton diffusion with collisional loss 

ur first test of microphysics e v aluates our treatment of proton
atastrophic losses, and the coupling between them and transport. To
his end, we repeat the anisotropic diffusion experiment described
n Section 4.1.1 , but including losses due to CR proton inelastic
cattering due to a background gas of constant density ρ, and using
 source that injects a continuous momentum distribution of CR
rotons at a rate per unit momentum d ̇n src / d p; we disable all other
oss mechanisms for the purposes of this test. Considering only
rimary protons (i.e. those that have not yet been scattered), the
NRAS 517, 1355–1380 (2022) 
PE that go v erns this system is 

∂ ˜ f 

∂t 
= K 

(
χ

∂ 2 ˜ f 

∂x 2 
+ 

∂ 2 ˜ f 

∂y 2 
+ 

∂ 2 ˜ f 

∂z 2 

)
+ 

d ̇n src 

d p 

δ( r ) − σnuc v 
ρ

μH m H 
, 

(131) 

here K is the perpendicular diffusion coefficient, χ is the ratio
f parallel and perpendicular coefficients (with the magnetic field
riented in the ˆ x direction), and σ nuc and v are the nuclear inelastic
ross-section and particle velocity as a function of particle momen-
um p . The system can be solved exactly by making the same change
f variable x = 

√ 

χx ′ and r 
′ 2 = x 

′ 2 + y 2 + z 2 as in Section 4.1.1 to
ransform the problem to a standard diffusion equation with a loss
erm, and then writing down the Green’s function including the loss
erm. Since the loss rate is independent of position and time, this is
imply 

 ( r ′ , t ) = 

1 

(4 πKt ) 3 / 2 
exp 

(
− r ′ 2 

4 Kt 
− t 

t loss 

)
, (132) 

here t loss = μH m H / σ nuc vρ is the loss time-scale. The exact solution
again, considering only the primary proton population), is 

˜ 
 ( r ′ , p, t) = 

∫ t 

0 

√ 

χ
d ̇n src 

d p 

G ( r ′ , t ′ ) d t ′ 

= 

d ̇n src 

d p 

1 

8 π
√ 

χK r ′ 

[
e −r ′ /r loss erfc 

(
r ′ 

2 r diff 
− r diff 

r loss 

)
+ 

e r 
′ /r loss erfc 

(
r ′ 

2 r diff 
+ 

r diff 

r loss 

)]
, (133) 

here we have defined r 2 loss = Kt loss and r 2 diff = Kt . 
We run the test using a momentum-dependent diffusion coefficient
 = 10 28 ( p / m p c ) 1/2 cm 

2 s −1 and anisotropy parameter χ = 4.
he central CR source produces CR protons with a momentum
istribution d ̇n src / d p ∝ p 

q with q = −2.2 o v er a momentum range
rom p 0 = 0.1 GeV/ c to p 1 = 10 5 GeV/ c , with a total luminosity L =
0 38 erg s −1 . The CRs propagate through a uniform background gas
f density ρ = 2.34 × 10 −21 g cm 

−3 , and we run the simulation for
 = 2 × 10 12 s, using a packet injection rate � = 10 −6 s −1 , so there are
 × 10 6 packets present at the end of the simulation. Given this setup,
e have r diff = 45.8( p / m p c ) 1/2 pc, and r loss / r diff ≈ 0.5 at momenta far

bo v e the pion production threshold, p th = 0.78 GeV/ c ; thus we have
elected parameters so that losses are relatively important o v er most
f the momentum range of the test, but become unimportant ( r loss →
 ) at the lowest CR momenta. 
We show the radial distribution of CR number density for a range

f sample momenta in Fig. 12 , comparing the simulation results to
he exact solution given by equation ( 133 ); for comparison we also
how the solution that would be expected in the absence of losses, i.e.
etting r loss = ∞ in equation ( 133 ). We find that CRIPTIC reco v ers the
orrect exact solution, including momentum-dependent loss rates,
o the level expected from Poisson statistics. We define the L 

1 error
orm for this problem by 

 

1 
err = 

∫ ∞ 

0 

∫ p 1 
p 0 

| ˜ f sim 

− ˜ f exact | 4 πr ′ 2 p 

q d p d r ′ 

t 
∫ p 1 

p 0 

d ̇n src 
d p p 

q d p 

, (134) 

here ˜ f sim 

are the simulation results and ˜ f exact is the exact solution.
ote the weight factor of p q in this integral is included to ensure that

ll momenta are weighted equally in computing the error estimate,
o the integrand in the denominator is independent of p . Defined this
ay, we find that the L 

1 error in our CRIPTIC solution is 2 . 0 per cent .
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Figure 12. CR proton number density per unit momentum, d n CR /d p , as 
a function of ef fecti ve radius r 

′ 
in the anisotropic diffusion with loss 

test problem (Section 4.2.1 ). We show d n CR /d p evaluated in five sample 
momentum bins, each 0.2 dex wide, spanning from the minimum to the 
maximum momenta present in the problem; note that our plotted values 
of d n CR /d p have been scaled by p 3 in order to make it easier to display 
such a wide range of momenta on the same plot. Points with error bars 
show CRIPTIC simulation results, with the error bar indicating the Poisson 
uncertainty on the mean value in each bin due to the finite number of packets. 
Solid lines show the exact solutions given by equation ( 133 ), while dashed 
lines show the solutions we would expect to find if we were to disable losses 
(equation 133 with r loss → ∞ ). 
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.2.2 Electron streaming with synchrotron and inverse Compton 
oss 

ur second test e v aluates our implementation of synchrotron and 
nverse Compton losses for electrons. We place a point source of
R electrons with a powerlaw momentum distribution d ̇n src / d p =
 ̇n 0 /p 0 )( p/m e c) q o v er the range ( p 0 , p 1 ) in a medium with a uniform
agnetic field B = B ̂  x and a uniform radiation field with dilution

actor W BB and blackbody temperature T BB . The electrons stream in 
he + x direction at constant speed w, while suffering synchrotron 
nd inverse Compton losses. All other loss processes are disabled, as
s diffusion. The Fokker–Planck equation for this system is 

∂ ˜ f 

∂t 
= − ∂ 

∂x 

(
w 

˜ f 
)+ 

∂ 

∂p 

(
ṗ cts ˜ f 

)+ 

d ̇n src 

d p 

, (135) 

here ṗ cts is the rate of momentum loss due to synchrotron and 
nverse Compton radiation. Since the loss rate is independent of 
osition, the spatial and momentum parts of the system are separable, 
nd there is a one-to-one relationship between the position x and the
ime t = x / w for which CRs have been subject to loss processes.
ver this time, a CR injected with momentum p i will have been

educed to momentum p given implicitly by t = − ∫ p 
p i 

d p 

′ / ̇p cts ( p 

′ ).
f we further adopt the ultrarelativistic limit γ � 1 and p ≈ γ m e c and
ssume that we are far from the Klein-Nishina regime, then ṗ cts ∝ p 

2 ,
nd we can e v aluate the integral analytically; from equation ( 39 ) and
quation ( 59 ), we have 

= 

γi 

1 + γi ( t/t loss ) 
, (136) 

here for convenience we have expressed the momentum in terms 
f the Lorentz factor γ , and 

 loss = 

3 m e c 

4 σT ( U B + U R ) 
, (137) 
here U B and U R are the energy densities of the magnetic field and
adiation field, respectively. This in turn allows us to write down the
olution to the Fokker–Planck equation, 

˜ 
 ( x, γ, t) = 

ṅ 0 

γ0 

(
1 

1 − ξγ

)2 (
γ

1 − ξγ

)q 

(138) 

or ξ < t / t loss and γ ∈ [ γ 0 /(1 + ξγ 0 ), γ 1 /(1 + ξγ 1 )], and 0 otherwise,
here here γ = p / m e c is the Lorentz factor in the ultrarelativistic

imit and ξ ≡ x / wt loss is the dimensionless distance. Integrating over
 , the momentum distribution of all electrons with γ > γ 0 is 

d n CR 

d γ
= 

ṅ 0 t loss 

γ0 

(
γ q−1 

q + 1 

)[
( 1 − ξmax γ ) −q−1 − 1 

]
, (139) 

here ξmax = min ( t/t loss , γ
−1 − γ −1 

1 ); for 1 � γ � γ 1 and t → ∞ ,
his gives the classical ‘cooled synchrotron’ d n /d p ∝ p q − 1 , i.e. the
pectral index is the injection index minus one. 

We carry out this test with a source with total luminosity 10 38 

rg s −1 , which injects CR electrons with a power-law momentum
istribution characterized by q = −2.2 at momenta from p 0 = 10 −2 

eV/ c to p 1 = 10 3 GeV/ c . The electrons stream at w = 100 km s −1 ,
nd we set the energy densities in the background magnetic field
nd radiation field to U B = U R = 50 eV cm 

−3 ; this corresponds to
 magnetic field B = 44 . 87 μG, a blackbody radiation temperature
 BB = 10.144 K (for dilution factor W BB = 1), and a loss time
 loss = 6.09 Gyr. We run the simulation for 10 −3 t loss , using a packet
njection rate 10 −8 s −1 . We show the results in Fig. 13 ; the upper
anel shows the CR spectrum integrated over all positions compared 
o the analytical solution given by equation ( 139 ), while the lower
anel shows the distribution function e v aluated at selected positions,
ompared to the analytical solution given by equation ( 138 ). 

As Fig. 13 shows, CRIPTIC reproduces the exact solutions very well.
uantitatively, we define the L 

1 error for the integrated spectrum for
his problem by 

 

1 
err = 

1 

ln ( γ1 /γ0 ) 

∫ ln γ1 

ln γ0 

∣∣∣∣log 10 

( d n CR / d γ ) sim 

( d n CR / d γ ) exact 

∣∣∣∣ d ln γ, (140) 

o the error is the mean logarithmic deviation between the exact
nd simulated spectra; note that we use this definition because the
teep nature of the spectrum means that, if we do not measure
he deviation logarithmically, the error norm is dominated by the 
arts of the spectrum at low γ , where we simply have the original
pectrum. Using this definition, we find L 

1 
err = 0 . 012 dex for the

olution shown in Fig. 13 . We can also define the L 

1 error at a given
imensionless position ξ analogously, simply by replacing d n CR /d γ
y ˜ f , and replacing γ 1 with γ 1 /(1 + ξγ 1 ) in the upper integration
imit; doing so we find L 

1 
err = 0 . 026 dex at ξ = 10 −5 to 0.01 dex

t ξ = 10 −3 ; the error is largest at 10 −5 because this is sampled by
he fe west packets. Nonetheless, e ven at this small value of ξ , the
greement with the exact solution is clearly very good. 

Although we do not have exact solution for it, we can also
lightly modify this test to verify that CRIPTIC behaves as expected 
ualitatively in the Klein–Nishina regime. To do so, we change 
he background magnetic field to B = 4 . 487 × 10 −9 μG and the
adiation field to T BB = 1.0144 × 10 5 K with W BB = 2 × 10 −16 ; this
as the effect of setting U R = 100 and U B = 5 × 10 −19 eV cm 

−3 ≈ 0.
hus the total magnetic plus radiation energy density is unchanged 

rom the original version of the test, and in the Thomson limit we
hould reco v er e xactly the same solution. Ho we ver, while for our
re vious v alue of T BB the momentum range ( p 0 , p 1 ) for the injected
Rs corresponded to log � BB = −6.9 to −1.9, with the higher value
f T BB we now have log � BB = −2.9 to 2.1. Consequently � BB =
 occurs in the middle of the injected momentum range, at p = 7.5
MNRAS 517, 1355–1380 (2022) 
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Figure 13. Results of the electron streaming with losses test. In the top 
panel, we show the compensated CR spectrum inte grated o v er all space, 
γ 2 (d n CR /d γ ) at the end of the simulation. Filled circles show the numerical 
results e v aluated in 30 logarithmically spaced bins of Lorentz factor γ , the 
solid line shows the exact solution (equation 139 ), the dashed grey line shows 
the distribution of CRs injected by the source, and the open circles are the 
results of our test in the Klein–Nishina regime (see main text). In the lower 
panel, we show momentum distributions evaluated at five sample positions 
given by the dimensionless position variable ξ indicated in the legend. As in 
the top panel, filled circles are the CRIPTIC numerical solution, solid lines are 
exact solutions (equation 138 ), the grey dashed line is the injected spectrum, 
and the open circles are the results of running the simulation in the Klein–
Nishina regime rather than the Thomson regime. 
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Figure 14. Steady-state CR spectra in the thick target problem. For each 
species we plot T 2 d n CR / d T , where d n CR /d T is the number of individual 
CR particles in a particular energy bin. Different colours indicate primary 
protons, primary electrons, secondary electrons, and (secondary) positrons, 
as indicated in the legend. The dashed black line labelled T −2.2 shows the 
shape of the injection spectrum. 
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not track electrons with energies � 1 MeV, which o v erwhelmingly dominate 
secondary ionizations. 
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eV/ c ( γ = 1.5 × 10 4 ), and we therefore expect Klein–Nishina
ffects to become significant at momenta approaching this value. 

The open circles in Fig. 13 show the results of the test in the
lein–Nishina regime. The qualitative result is as expected: for γ �
.5 × 10 4 , we are in the limit � BB � 1, and the solution matches
he Thomson case. For γ � 1.5 × 10 4 , on the other hand, the rate of
nergy loss scales as d E /d t ∝ ln γ (Blumenthal & Gould 1970 ), so
he loss time-scale obeys t loss ∝ γ /ln γ , rather than t loss ∝ 1/ γ as in
he Thomson regime. Thus losses become increasingly unimportant
t high γ , and the spectrum approaches the injected spectrum rather
han the Thomson limit solution. 

.2.3 A thick target 

ur final microphysical test is to simulate a thick target with all
icrophysical processes enabled, and with a source injecting both

rimary protons and electrons. In this test CRIPTIC is performing a
alculation similar to that carried out by other authors who treat
R microphysics but do not include transport, or include it only in
 simplified parametrized way such as by analytically specifying a
oss time or calorimetry fraction (e.g. Yoast-Hull et al. 2014 ; Peretti
t al. 2019 ; Roth et al. 2021 ). Our goal is to show that CRIPTIC ,
hough not optimized for this type of calculation (since it is possible
o obtain the answer much more efficiently if one is uninterested in
NRAS 517, 1355–1380 (2022) 
 detailed treatment of spatial transport), none the less reco v ers CR
nd emitted γ -ray spectra similar to those that have been reported in
he literature. 

For this test we disable spatial transport and momentum diffusion,
nd we consider an environment such as might be found in a starburst
alaxy: a uniform medium of molecular hydrogen characterized by
umber density n H = 10 3 H nuclei cm 

−3 , an ionization fraction by
ass χ = 10 −4 , a magnetic field strength B = 0.3 mG, and two

adiation fields both with W BB = 1, one with T BB = 2.73 K (the
MB) and one with T BB = 20 K (representing a reprocessed dust

adiation field). We place two sources in the medium. One injects
rotons with a momentum distribution d n /d p ∝ p −2.2 o v er a range in
inetic energy T = [10 −3 , 10 6 ] GeV, and has total luminosity L =
 × 10 42 erg s −1 , corresponding roughly to the luminosity expected
or a galaxy with a star formation rate of ≈100 M � yr −1 , assuming
 SN per 100 M � of stars formed, a total energy of 10 51 erg per SN,
ith ≈ 10 per cent of that taking the form of CRs. The other source

njects electrons with the same spectrum, but a total luminosity a
actor of 10 smaller. We run the simulation for 0.5 Myr using a
rimary packet injection rate � inj = 2 × 10 −7 s −1 ; this is longer
han the loss time at all energies for the background environment,
o by this time the system settles to steady state. At the end of the
imulation, there are approximately 4.3 × 10 6 CR packets present. 

We show the resulting steady-state CR spectra in Fig. 14 . The
esult is in accord with what we would expect: the proton spectrum
as a slope that is very slightly shallower than the injection spectrum
t high energies, reflecting the slight increase in pp cross-section with
nergy. This continues to ≈1 GeV, and below this energy the
pectrum dies off quickly, reflecting the strong ionization losses that
ow-energy CRs suffer in a starburst environment (c.f. Fig. 1 ); indeed,
ach second the CR protons ionize a total of 6.0 × 10 50 H 2 molecules
nd 7.2 × 10 49 He atoms. 11 The primary electron spectrum is both
ower in absolute value and substantially steeper, with a slope closer
o −3.2 at high energy, as a result of the quadratic dependence of
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Figure 15. Emitted γ -ray spectra produced in the thick target test. The black solid line shows the total spectrum produced by all particles and processes, and 
the blue solid line shows the contribution from nuclear inelastic scattering. Dashed and dot–dashed lines in different colours show emission by primary and 
secondary electrons and positrons, respectively, with the colour indicating the emission process – bremsstrahlung, inverse Compton, and synchrotron. 
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ynchrotron and inverse Compton losses on CR energy. It too falls
f f belo w ≈1 GeV due to ionization losses – the total ionization rate
roduced by electrons and positrons is 6.8 × 10 50 and 8.7 × 10 49 

 

−1 for H 2 and He, respectively . Finally , the secondary electron and
ositron spectra are nearly identical, and are lower still, reflecting the 
elati vely large v alue we have chosen for the primary electron/proton
atio in this test. 

We show the γ -ray emission that CRIPTIC predicts for this system
n Fig. 15 . We find that nuclear inelastic scattering dominates at
igh energies, with a sharp cutoff just below 10 6 GeV reflecting the
utoff in the injection spectrum that we apply there. This gives rise
o the usual bump at ≈1 GeV in the spectral energy distribution.
remsstrahlung and inverse Compton emission from primary elec- 

rons significantly contribute to the total emission at energies below 

1 GeV. In the radio, we see a dominant contribution from primary
lectron synchrotron, with a ≈ 10 per cent additional contribution 
rom secondary electrons. All other processes are subdominant. Note 
hat the wavy structure in the inverse Compton and bremmstrahlung 
pectra at high energy is real, and reflects the modulation imposed 
y the fact that we have two blackbody radiation fields at different
emperatures present. On the other hand, the somewhat spiky contri- 
ution from positron annihilation (which includes only the Doppler- 
oosted 511 keV photons, not the inverse Compton, bremmstrahlung, 
r synchrotron contributions from positrons) is a result of the 
elatively small number of positron packets present in the calculation, 
hich causes some numerical noise. Ho we ver, since this component 

s subdominant by ≈2 dex, this has no noticeable effect on the total
pectrum. In general, our result is qualitatively consistent with the 
esults of other thick target calculations of starburst γ -ray and radio 
pectra. 

 DISCUSSION  A N D  C O N C L U S I O N  

e conclude by discussing applications of CRIPTIC , as well as the
imitations of the current code and our plans for future expansions. 
.1 Applications 

RIPTIC can be used to solve a wide range of problems in CR trans-
ort. In Sampson et al. ( 2022 ), we have already applied it to the prob-
em of determining an ef fecti ve transport theory for CRs that stream
hrough a turbulent plasma. This application exploits CRIPTIC ’s ability 
o model transport through an arbitrary, time-dependent background 
in this case the output of an MHD turbulence simulation. 
In future work we intend to use CRIPTIC to post-process MHD

imulations of Milky Way-like galactic discs (e.g. Wibking & 

rumholz 2022 ), in order to compare the results produced by
ifferent CR transport models with observable quantities such as 
he γ -ray spectral index as a function of height abo v e the galactic
lane. We also intend to post-process CR hydrodynamics simulations 
n order to predict detailed observables from them. 

Astrochemistry and the link between it and high-energy phe- 
omena represents another immediate application. There has been 
onsiderable debate about the CR ionization rate in starburst galax- 
es (e.g. P apadopoulos 2010 ; Bisbas, P apadopoulos & Viti 2015 ;
arayanan & Krumholz 2017 ) and in the Milky Way Central
olecular Zone (Ginsburg et al. 2016 ; Oka et al. 2019 ; Tanaka,
ag ai & Kameg ai 2021 ), but thus far this discussion has focused
n molecular indicators, and has not taken advantage of constraints 
ffered by high-energy tracers such as γ -ray emission. However, the 
Rs that drive ionization and those that produce γ -rays are ultimately 
art of the same population, albeit at somewhat different energies. 
fforts to combine constraints on the low-energy population that 
rives ionization and the high-energy population that drives γ -ray 
mission have thus far been very limited (e.g. Armillotta et al. 2022 ),
ut CRIPTIC ’s ability to simulate the full CR energy range should
reatly facilitate these efforts. 

.2 Limitations and expansion plans 

o simulation code can ever capture all of physics, and that is
ertainly true of CRIPTIC . It is therefore worth concluding pointing
MNRAS 517, 1355–1380 (2022) 
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ut some limitations of the current code, and some plans for future
xpansion to remedy at least some of these limitations. One limitation
s that CRIPTIC is a post-processing code, and therefore does not allow
or calculation of the backreaction on the flow due to CR pressure
orces or heating. In this regard, it is analogous to Monte Carlo post-
rocessing radiative transfer codes, which can be used to predict
etailed spectra, but do not allow self-consistent calculation of how
 flow reacts to radiation forces. To the extent that a calculation
sing criptic predicts a CR field where CR forces are important
or, analogously, a Monte Carlo calculation predicts a dynamically
mportant radiation pressure force), the correct way to proceed is to
volve the system with a code that self-consistently includes those
orces, and then use a post-processing tool like CRIPTIC to calculate
he observable emission at much higher resolution that would be
ossible from the self-consistent calculation alone. Beyond this limit
o the o v erall CRIPTIC methodology, though, we here identify three
ther limitations that are ripe for impro v ement in future releases. 
First, CRIPTIC does not yet include all of the CR species or loss

rocesses for which observational constraints exist. Since we have
ocused on radiative and astrochemical signatures from galaxies,
nd particularly radiative signatures that are observable from beyond
he Milky way, in this first release we have included the species
hat dominate these. Ho we ver, direct in situ measurements exist
or a range of heavier CR nuclei, most prominently He, B, and
. We intend to include these species in a future release. We will
lso add antiprotons and the process of positron annihilation via
ositronium formation, which do produce radiative signatures that
re observable in the Galaxy, if not from external galaxies. Finally, we
ave focused on CRs in the ∼1 MeV − 1 PeV range in typical galactic
nvironments, and have not included loss processes that become
ominant outside this range or in highly magnetized environments
uch as around active galactic nuclei. At low energies the main
mitted process is charge exchange (e.g. Schultz et al. 2008 ), while at
he high energy end it is photohadronic interactions (e.g. M ̈ucke et al.
999 ); photon–photon scattering can also become a significant loss
rocess for high-energy photons in strong radiation environments,
nd is not yet included. In highly magnetized environment, we should
lso include synchrotron losses for protons. The modular nature of
he code makes addition of such processes straightforward, and these
oo may be included in future releases. 

Secondly, at present CRIPTIC solv es the F okker–Planck equation in
he spatial and momentum directions, but not in pitch angle; it
s therefore valid only on scales large enough that the local CR
itch angle distribution has become approximately isotropic. This
imits applications to ultrahigh energy CRs, and potentially to
nvironments where CR scattering is very strongly suppressed since,
n both these regimes, the mean free path that CRs travel before
ecoming isotropised can be large. Fortunately our It ̂ o calculus-
ased formulation of the problem is readily extensible to include the
itch angle dimension as well, and we intend to include an option to
olve problems in the anisotropic regime in future releases. 

Third, CRIPTIC does not yet predict neutrino emission. This is
 straightforward extension to the existing code, since the main
rocess responsible for producing neutrinos – nuclear inelastic
ollisions leading to charged pion production – is already included
ia calculation of secondary electrons and positrons. The limitation
s rather that existing neutrino observatories are limited to very high
nergy neutrinos, where the point raised abo v e applies, i.e. it is
nclear that one can assume pitch angle isotropisation for the CRs
hat drive the observable neutrino emission. Extension to neutrinos
s therefore likely to wait until after the extension to follow diffusion
n pitch angle is complete. 
NRAS 517, 1355–1380 (2022) 
Finally, we note that CRIPTIC is released under an open source
icense. Users are encouraged to contribute their own expansions,
hich can be incorporated into future releases. 
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PPENDI X  A :  DETA I LS  O F  T H E  TREE  

L G O R I T H M  

ere, we describe the algorithm we use to e v aluate equation ( 74 )
o reconstruct integrals over the CR distribution function and their 
radients. For convenience, we rewrite this equation here as 

 = 

∑ 

s,i 

g( x si ) � si ϒ si w si , (A1) 

here q is one of the quantities – n , P , or U – on the left-hand
ide of equation ( 74 ), w is a corresponding quantity computed from
he properties of each CR packet – 1, v si p si , and T si , and g( x si ) =
 H ( x − x si ) . We shall refer to the quantities q appearing on the

eft hand as field quantities, and the quantities w appearing on the
ight-hand side as field weights. Note that the contribution from 

ach packet is therefore the product of a purely geometric term
 ( x si ) that depends only on packet position, a step indicator � si that
epends only on the relative rigidities of the packet for which the field
uantity is being computed and the packets contributing to it, and a
erm ϒ si w si that depends only on other properties of the contributing
acket. Our algorithm is based on this decomposition. Further note 
hat equation ( 76 ), describing the gradients of field quantities, can be
ritten in a completely analogous fashion, simply by changing the 
eometric term to g( x si ) = −H 

−1 
∇ ( x − x si ) K H � ( x − x si ) . We can

herefore apply the same algorithm to gradients of field quantities, 
ith only very minor modifications that we discuss below. 
Given this discussion, we first describe how we construct the kd-

ree in Appendix A1 , the algorithm we use to e v aluate equation ( 74 )
n non-distributed memory calculations in Appendix A2 , and then 
he extension to the distributed memory case in Appendix A3 . 

1 Building the kd-tree 

e construct a balanced kd-tree by standard methods, and assign 
ach leaf a bandwidth tensor H as described in Section 3.1 . We
hen carry out an additional step: for each leaf L in the tree, we
ompute q R n = 

∑ 

s ,i ∈ L � ( R s,i − R n ) ϒ si w si for a series of rigidities
 n uniformly spaced in logarithm from the largest to the smallest
acket rigidity present in the volume. In words, this sum represents
he total maximum possible contribution that the packets in the leaf
ould make to a field quantity q for a CR with rigidity R n . 

Once we have e v aluated these sums for every leaf, we recursively
ompute the corresponding sums for every other node in the tree, by
imply summing the results from that node’s two children. In this
ay, for every node in the tree we record the maximum possible

ontribution q R n that packets contained in that node could make to
he field quantities of packets with rigidities > R n . 
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2 Shared memory 

e e v aluate equation ( A1 ) for all packets in the tree by processing
ne leaf at a time, using a separate OpenMP thread for each leaf. For
ach CR packet in the leaf, we compute its rigidity R and find the
orresponding rigidities R n that bracket it, i.e. we find n such that
 n < R < R n + 1 . The algorithm we apply relies on the nodeList :
 list of all the non-leaf nodes of the tree we hav e e xamined so far,
long with, for each node a central estimate q node and an error e node 

or the contribution that packets contained in that node make to the
eld quantities. The central estimates and errors have the property

hat the true contribution of the packets in each tree node, defined by
quation ( A1 ) e v aluated for the packets within the node, lies strictly
n the range ( q node − e node , q node + e node ). 

(1) Start the algorithm by adding the root node of the tree to
odeList . For each CR packet in the leaf whose field quantities
re being computed, e v aluate the minimum and maximum possible
ontributions q min and q max to the field quantities made by packets
ontained within the root node; the minimum is simply given by
 min = min ( g( x )) q R n + 1 , and the maximum by q max = max ( g( x )) q R n ,
here here the minimum and maximum of g are e v aluated o v er the
ounding box of the node. In words, we find the minimum possible
ontribution q min by assuming that all the packets in the node are
t the location x that makes the geometric factor g( x ) as small as
ossible, and that the target packet is at the largest possible rigidity,
 n + 1 ; similarly, the maximum possible contribution arises if all the
ackets in the node are at the location where g( x ) has its maximum,
nd the target packet is at its smallest possible rigidity, R n . We can
hen take q node = ( q min + q max )/2 and e node = ( q max − q min )/2. We
dd these quantities to nodeList . 

(2) Evaluate the sum of q node and e node o v er all the nodes in
odeList and all packets in the leaf we are processing. Define

he maximum possible relative error for each packet in the leaf by
E = 

∑ 

e node /( 
∑ 

q node −
∑ 

e node ), where the maximum is o v er all
ackets; the true value of q is guaranteed to differ from 

∑ 

q node by
t most a factor of RE for the packet with the largest error. If RE is
elow a user-specified tolerance for all packets in the leaf, terminate
teration and set q = 

∑ 

q node . 
(3) If the RE exceeds the tolerance for any packet in the leaf,

earch through nodeList and find the node that makes the largest
ontribution to RE for the packet with the largest total RE. We then
open’ this node by removing it from nodeList , and replacing it
ith its two children. If those children are not leaves, we compute
 node and e node for them exactly as for the root node in step 1. If
he y are leav es, we compute q node for them by e v aluating the sum
NRAS 517, 1355–1380 (2022) 
n equation ( A1 ) directly for the packets those leaves contain, and
etting the corresponding error e node to zero. 

(4) Go back to step 2, and repeat until RE is below the tolerance
or all packets. 

When applying this algorithm to the gradients of field quantities,
n nodeList we have not only estimates of field quantities q node ,
ut estimates of their gradients ∇q node , and the corresponding
ncertainties e node and ∇e node . Since ∇q is a vector quantity, we
efine the relative error as RE = | ∑ ∇e node | h max /( 

∑ 

q node −
∑ 

e node ),
here h max is the largest eigenvalue of the bandwidth tensor H . 

3 Distributed memory 

s described in Section 3.5 , in a distributed memory parallel
alculation, on each rank we have a tree, some of whose nodes
ay have children that reside on a different MPI rank. It is therefore

ossible that, finding the node that makes the largest contribution
o the relative errors (step 3 in Appendix A2 ), we will find that
ode cannot be opened because its children are only available on
nother MPI rank. If this occurs, we remo v e the node from the node
ist and do not add any children, but we record the MPI rank on
hich those children live, and we keep track of the total central

stimate q ext and uncertainty e ext contributed by such ‘external’
odes, and we define the relative error to include their contributions:
E = ( 

∑ 

e node + e ext )/( 
∑ 

q node −
∑ 

e node − e ext ), and similarly for
radients. We distinguish this from the ‘local’ relative error RE loc =
 

e node /( 
∑ 

q node −
∑ 

e node ). 
If at any point while iterating, we reach a state where RE loc 

s below our target tolerance for all packets, but RE exceeds our
olerance for at least some of them, we conclude that we cannot
omplete those packets without access to the information contained
n other MPI ranks. We therefore send an MPI request to all the
anks that contribute to e ext , and request that they e v aluate their
ontribution to the target packets; they do so using the same algorithm
s given in Appendix A2 , but rather than starting from the root node
f the tree, they start from the roots of their own local trees, i.e.
 v aluating only their own contributions. Once they have computed
hese contributions with sufficient accuracy that the total estimate will
e below the tolerance, they send these estimates back to the rank
hat made the request. This rank then sums the contributions from all
xternal ranks to arrive at a final estimate for the field quantities. 
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