
MNRAS 511, 1431–1438 (2022) https://doi.org/10.1093/mnras/stac174 
Advance Access publication 2022 January 29 

High-precision star-formation efficiency measurements in nearby clouds 

Zipeng Hu , 1 ‹ Mark R. Krumholz , 1 , 2 Riwaj Pokhrel 3 and Robert A. Gutermuth 

4 

1 Researc h Sc hool of Astr onomy and Astr ophysics, Austr alian National University, Canberr a, ACT 2611, Austr alia 
2 ARC Centre of Excellence for Astronomy in Three Dimensions (ASTRO-3D), Canberra, ACT 2611, Australia 
3 Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA 

4 Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA 

Accepted 2022 January 19. Received 2022 January 16; in original form 2021 September 10 

A B S T R A C T 

On average molecular clouds convert only a small fraction εff of their mass into stars per free-fall time, but different star- 
formation theories make contrasting claims for how this low mean efficiency is achieved. To test these theories, we need precise 
measurements of both the mean value and the scatter of εff , but high-precision measurements have been difficult because they 

require determining cloud-volume densities, from which we can calculate free-fall times. Until recently, most density estimates 
treated clouds as uniform spheres, while their real structures are often filamentary and highly non-uniform, yielding systematic 
errors in εff estimates and smearing real cloud-to-cloud variations. We recently developed a theoretical model to reduce this 
error by using column-density distributions in clouds to produce more accurate volume-density estimates. In this work, we apply 

this model to recent observations of 12 nearby molecular clouds. Compared to earlier analyses, our method reduces the typical 
dispersion of εff within individual clouds from 0.16 to 0.12 dex, and decreases the median value of εff o v er all clouds from ≈0.02 

to ≈0.01. Ho we v er, we find no significant change in the ≈0.2 de x cloud-to-cloud dispersion of εff , suggesting the measured 

dispersions reflect real structural differences between clouds. 

Key words: ISM: structure – stars: formation. 
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 I N T RO D U C T I O N  

tar formation is inefficient. A star-forming region with little resis- 
ance to self-gravity will convert its gaseous mass to stars within a
ingle free-fall time t ff = 

√ 

3 π/ 32 Gρ, where ρ is the volume density. 
he ratio of the actual gas-depletion time t dep to t ff is called the
tar-formation efficiency per free-fall time εff (Krumholz & McKee 
005 ). Zuckerman & Evans ( 1974 ) were the first to point out that the
bserved star-formation rate of the Milky Way as a whole implies 
hat, av eraged o v er all molecular clouds, εff � 1. Krumholz & Tan
 2007 ) extended this conclusion to the denser parts of molecular
louds traced by hydrogen cyanide (HCN), and more recent work has 
btained εff ∼ 0.01 both for nearby clouds (e.g. Evans, Heiderman 
 Vutisalchavakul 2014 ; Heyer et al. 2016 ; Lee, Miville-Desch ̂ enes
 Murray 2016 ; Ochsendorf et al. 2017 ) and for ∼100 pc-scale

atches in nearby galactic discs (e.g. Krumholz, Dekel & McKee 
012 ; Utomo et al. 2018 ). The study-to-study dispersion in εff is
0.3 dex, while the dispersion within any single study is about 0.3–

.5 dex (Krumholz, McKee & Bland-Hawthorn 2019 ). 
Theoretical efforts to explain the origin of observed low εff 

alues can be categorized into two main types. Some theories 
ocus on galactic scale physical processes (e.g. Kim, Kim & 

strik er 2011 ; Ostrik er & Shetty 2011 ; Faucher-Gigu ́ere, Quataert
 Hopkins 2013 ), while others are developed from internal star-

ormation regulation processes within individual molecular clouds 
e.g. Elmegreen & Parravano 1994 ; Krumholz & McKee 2005 ; 
ennebelle & Chabrier 2011 ; Krumholz, Leroy & McKee 2011a ; 
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ederrath & Klessen 2012 ; Padoan, Haugbølle & Nordlund 2012 ).
espite predicting similarly low mean εff values, the two types of 
odels yield significantly different estimates for the dispersion of εff 

models regulated on the cloud scale generally predict much smaller 
ispersions than those regulated on the galactic scale (Lee et al. 2016 ;
rumholz & McKee 2020 ). Therefore, it is important to measure

loud-scale εff values with enough fidelity to extract both its mean 
alue and dispersion. The most accurate measurements to date are 
hose of Pokhrel et al. ( 2021 ), thanks to two advantages o v er previous
tudies: First, the y deriv ed their column-density maps from Hersc hel
ust-emission maps, which allow them to sample a substantially 
arger dynamic range of column density than previous studies using 
 xtinction maps. Second, the y use the SESNA catalogue (Gutermuth
t al., in preparation) of young stellar objects (YSOs), which is
uch more complete in dense regions than earlier catalogues, and 

or the first time includes accurate corrections for contamination 
y extragalactic interlopers and edge-on discs (Gutermuth et al. 
008 , 2009 ). They determine a median value log εff = −1.59 with a
ispersion of 0.18 dex in a sample of 12 nearby molecular clouds. 
Ho we ver, most pre vious εff measurements, including those of 

okhrel et al. ( 2021 ), incur a substantial error when calculating
he volume density, which is required for the free-fall time. The
undamental challenge is that the volume density is a 3D quantity,
hich is not directly accessible in a 2D observation. The most

ommon practice in literature is to estimate the density by assuming
hat the area of interest is the projection of a uniform sphere, whose
adius is equal to the mean radius of the projected shape. For a cloud
ith a total projected area A and a total mass M , this approximation
ives a density estimate ρsph = 3 M/ 4 

√ 

A 

3 / π. This method has been
sed by a number of studies in the Milky Way (e.g. Krumholz,
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ekel & McKee 2011b ; Lada et al. 2013 ; Evans et al. 2014 ; Pokhrel
t al. 2021 ) and in the Large Magellanic Cloud (Ochsendorf et al.
017 ). While simple, this procedure likely introduces significant
ystematic errors, coming from two primary sources. One is that in
he past decades, it has become clear that the interstellar medium
s characterized mainly by filamentary structures (e.g. Schneider
 Elmegreen 1979 ; Dobashi et al. 2005 ; Arzoumanian et al. 2011 ;
ndr ́e et al. 2014 ; Kainulainen et al. 2016 ), which results in elongated

ontours identified from column-density maps. The mean density of
uch structure is likely to be different from that calculated with
pherical assumption. Second, for fixed εff , the star-formation rate in
 given volume of gas will be εff 

∫ 
( ρ/t ff ) d V , and thus the quantity

f interest for measuring εff is the mass-weighted mean of t −1 
ff . Since

he relationship between free-fall time and density is non-linear, t ff ∝
−1/2 , this is not identical to the free-fall time computed from the
ean volume density, which is what the spherical assumption mea-

ures. In a medium containing significant density structure, the two
an differ substantially (e.g. Hennebelle & Chabrier 2011 ; Federrath
 Klessen 2012 ; Federrath 2013 ; Salim, Federrath & K e wley 2015 ).
Hu et al. ( 2021 , hereafter H21 ) recently proposed an alternative

pproach to estimate the free-fall time-weighted mean density ρeff ,
hich is defined as 

eff = 

(∫ 
ρ3 / 2 d V ∫ 
ρ d V 

)2 

, (1) 

here ρ is the local volume density and the integral is o v er the
loud volume. This method immediately yields the correct free-fall
ime for the purposes of estimating εff . H21 analyse star-formation
imulations from Cunningham et al. ( 2018 ), and show that one can
stimate ρeff with higher accuracy than is obtained from the simple
pherical assumption by making use of the full 2D column-density
istribution, rather than simply its mean. Applied to simulations,
heir method corrects a ≈0.13 dex overestimation and removes a

0.25 dex scatter in εff caused by spherical assumption. In this
aper, we apply this model to the observations of Pokhrel et al.
 2020 , 2021 ) in order to derive higher accuracy εff measurements
han have previously been possible. We summarize the observations
n Section 2, introduce the Hu et al. model in Section 3.1, describe
ts application to the data in Section 3.2, present the results of the
nalysis in Section 4, and draw conclusions in Section 5. 

 OBSERVATION S  

ur data-reduction and analysis method is described in Pokhrel
t al. ( 2020 ), and full details are provided there. Here, we simply
ummarize for convenience. This study analyses 12 nearby star-
orming regions: Ophiuchus, Perseus, Orion-A, Orion-B, Aquila-
orth, Aquila-South, NGC 2264, S140, AFGL 490, Cep OB3, Mon
2, and Cygnus-X. For each region we have a matched protostellar
atalogue and cloud column-density map. The latter are derived from
er schel /PACS and Her schel /SPIRE imaging at 160, 250, 350, and
00 μm, convolved to a common resolution (Andr ́e et al. 2010 ).
o obtain the column density in each pixel, we fit the spectral-
nergy distribution with a dust-emission model where the only two
ree parameters are the temperature and the column density. The
est-fitting column density can be equi v alently expressed in column
f H 2 molecules, N (H 2 ), or column of gas mass � gas , which are
elated by � gas = 2 m H /XN (H 2 ), where m H = 1.67 × 10 24 g is the
ydrogen atom mass and X = 0.71 is the hydrogen mass fraction
f the local interstellar medium (Nie v a & Przybilla 2012 ). On the
btained column-density map, we first mask pixels with the best-
tting dust temperature, which implies that the dust in that pixel falls
NRAS 511, 1431–1438 (2022) 
n the Rayleigh–Jeans tail of the modified blackbody spectrum across
ll Herschel bands, since in this case our fits represent only lower
imits on the temperature, and thus the best-fitting column densities
re only upper limits. The exact temperature limits are provided in
able 2 of Pokhrel et al. ( 2020 ). Second, we mask pixels with derived
olumn densities N (H 2 ) > 10 23 cm 

−2 , because for these dust optical
epth effects can be significant and thus fitted N (H 2 ) values may
nly represent lower limits. The effect of both masks is negligible
n our results, since for all clouds the masked regions constitute less
han 0 . 5 per cent of the cloud by either area or mass, and, for many
louds, no pixels are masked at all. 

The SESNA catalogue (Gutermuth et al., in preparation) we use
or protostars is a combination of Spitzer and Two Micron All-Sky
urv e y observations (Skrutskie et al. 2006 ), spanning about 90 deg 2 .
or the farthest target Cygnus-X, the deeper UKIDSS (Lawrence
t al. 2007 ) near-infrared (IR) Galactic Plane Surv e y (Lucas et al.
008 ) is used. We mask parts of column-density maps outside
ESNA co v erage. After remo ving field stars, we classify sources in

he SENSA field with excess IR emission as Class I YSOs (embedded
rotostars), Class II YSOs (which have cleared their envelopes, but
etain circumstellar discs), or contaminants by using flux selections
nd a series of reddening-safe colours (Gutermuth et al. 2009 ). We
alculate εff from the counts of Class I YSOs, since these have a short
ifetime of ≈0.5 Myr, and thus are less sensitive to time-varying star-
ormation rates than Class II objects, which inte grate o v er ≈2 Myr
see discussion in section 5.1 of Pokhrel et al. 2020 ). 

Before analysing the data, we must first remo v e two types of
ontaminants. First, Class II objects may be misclassified as Class I
f they are edge-on and the disc occults the central star. The median

isclassification rate from recent studies (Gutermuth et al. 2009 ;
ryukova et al. 2012 , 2014 ) is 3.5 per cent, and we therefore reduce

he count of Class I objects by 3.5 per cent of the total count of Class
I objects in the same area. Second, there are 4.5 ± 0.5 extragalactic
ontaminants per square degree whose colours are similar enough to
SOs for them to be included in the SENSA catalogue for Class I
bjects. To compensate, we subtract 4.5 objects per square degree
rom our Class I YSO counts. 

A final correction applies only to Cygnus-X, our most distant
arget. The YSO sensitivity for the SESNA catalogue is ∼0 . 1 M �
or all other clouds, but in the case of Cygnus-X, its relatively
arge distance ( ∼1400 pc), denser field stars, more regions of bright
ebulosity, and shallower infrared array camera (IRAC) data result
n a much lo wer YSO sensiti vity ( ∼1 M �). Assuming a Chabrier
 2003 ) initial mass function, this implies that the fraction of detected
SOs is 0.163 of the total present. Thus, we divide the Class I object

ount in Cygnus-X by this fraction to achieve a uniform sensitivity
f 0 . 1 M � in our sample. 

 M E T H O D S  

o predict the free-fall time-weighted mean density ρeff from the
pherical density ρsph , we apply the method of H21 to contours
enerated from the Herschel column-density maps. We first briefly
ntroduce the model in Section 3.1, and then we present the applica-
ion of this model to the observations in Section 3.2. 

.1 H21 model 

o determine the relationship between ρeff and ρsph , H21 analysed
imulations of the formation of low-mass star clusters in a dense
olecular clump by Cunningham et al. ( 2018 ). These simulations

nclude gra vity, magnetic fields, turb ulence, radiation feedback, and
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Figure 1. 2D distribution plot of ( εff, g / εf f,ef f ) versus ( εf f,ef f / εf f,ef f,mean ). The 
values are determined from simulation contours, and the colour shows the 
number of contours in each bin. 
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rotostellar jets/outflows. Adopting a periodic box size of 0.65 pc, 
 dynamic resolution range of (1.6 × 10 −4 pc, 2.5 × 10 −3 pc), and
as with solar metallicity, they produce star-formation efficiencies 
onsistent with observations. We refer readers to Cunningham et al. 
 2018 ) for full details. 

H21 construct synthetic dust observations of the simulations, and 
raw column-density contours on the projected images at a range 
f column densities. For each contour that encloses one or more 
rotostars, they measure both the true ef fecti ve density ρeff of the
nclosed mass and the density ρsph that one would derive from the 
pherical assumption. They also consider a number of other projected 
uantities that would be accessible to an observer, in order to search
or an estimator for ρeff more accurate than just ρsph . They find that
sing the Gini coefficient g of the column densities enclosed by a
ontour allows a substantially better prediction of ρeff , and define the 
ew estimator 

g = 10 kg−b ρsph , (2) 

here ρg is the predicted value of ρeff , and k = 4.6 and b = 0.93 are
oefficients determined by fitting the simulated data. We discuss how 

hese are modified in the presence of observational bias in Section 3.2.
In order to accomplish our goal of obtaining high-accuracy 

stimates of εff , it is important to understand the uncertainties in 
his relation. Although the values of k and b are fitted from exact
imulation data without error bars, we can none the less estimate the
rrors on these quantities from bootstrapping. We randomly choose 
lements from simulation sample with replacement until we obtain 
 new sample with the same size as before. Then we fit equation (2)
n this new sample and repeat this process for 10 4 times. We take
ur uncertainties to be the 16th and 84th percentiles of the fitted k
nd b values, which give k = 4.6 ± 0.1 and b = 0.93 ± 0.03. These
rrors are small enough that they are unimportant compared to the 
ther effects we discuss below. 
The mean of residual between ρg and ρeff is 0.18 dex. While this

s a substantial impro v ement o v er ρsph (for which the residual is 0.42
ex), the mean residual of our model should still be considered as
n error source in the calculation of εff of a single region. When
etermining the o v erall mean εff and its dispersion, ho we ver, we
re calculating mean values and percentiles from a sample of many 
ontours. In the analysis we present below, each measurement we 
ake will represent an average over at least 20 distinct contours, 
ith implies an upper limit of 0.04 dex on the contribution of our

mperfect estimate of ρeff to the o v erall error budget of star-formation
fficiencies. 

We conclude our discussion by addressing two possible concerns 
egarding the H21 method. First, the method implicitly assumes 
hat star-forming clouds are approximately self-similar, so that the 
elationship between ρeff and ρsph is not determined by tiny-scale 
ensity structures that do not have any counterpart in the column- 
ensity structure measured on scales accessible to the observations. 
his is an assumption, but it is a plausible one given both the
imulations and the available observations. On the simulation side, 
21 show that the absolute sizes of contours are very poor predictors
f the ρeff −ρsph relationship – exactly what we expect if the structure 
s close to self-similar. With respect to observations, we note that, due
o the different distances of the clouds in our sample, the Herschel
olumn-density maps co v er a resolution range from 0.02 to 0.24 pc.
e do not find systematic differences in cloud structure between 

louds observed with lower or higher physical resolution, indicating 
he self-similar assumption is valid at least within this range of scales.

A second concern is that, while H21 show that estimates of εff 

erived from ρg , which we denote εff, g are unbiased in the sense that
he expectation value of εff, g matches the true value of εff , this does
ot automatically guarantee that estimates for the dispersion of εff 

 alues deri ved using ρg , which we denote σ g , represent an unbiased
stimate of the intrinsic dispersion σ eff . Indeed, if the residual errors
f the estimated εff, g are random, then σ g will naturally be larger than
he intrinsic dispersion σ eff , which is why the goal of the H21 model
s to make the errors in εff, g as small as possible. Ho we ver, it is in
rinciple possible for the expectation value of σ g to be smaller than
eff , if the errors in εff, g are correlated and directional, meaning that
ontours for which the true value of εf f,ef f is smaller than the mean
 v er all contours tend to hav e positiv e errors, while for contours
here the true value of εf f,ef f is larger than the mean, the errors tend

o be ne gativ e. If such a correlation e xisted, it would artificially
educe the dispersion, leading us to underestimate rather than 
 v erestimate σ g . 
To investigate this scenario, we measure ρeff and ρg for each of 

he contours used in H21 , and from these compute ( εff, g / εf f,ef f ) and
 εf f,ef f / εf f,ef f,mean ), where εf f,ef f is the true star-formation efficiency (de- 
ermined from the true mean ef fecti ve density ρeff in the simulation),
ff, g is the star-formation efficiency inferred using ρg , and εf f,ef f,mean 

s the mean value of εff o v er all simulation contours. We plot the
oint distribution of these two ratios in Fig. 1 , and it is clear that
here is no significant ne gativ e correlation, as would be required
o render σ g an underestimate of σ eff . Linear regression between 
hese two ratio values returns a coefficient of determination R 

2 =
.05, confirming this visual impression. Thus, we expect that errors 
n εff, g are randomly directed, making the estimated star-formation 
fficiency dispersion σ g an upper limit of the intrinsic dispersion σ eff . 

.2 Application to Herschel observations 

he first step in applying our method to the Herschel observations is
o generate column-density contours across the full range of N (H 2 )
o v ered by the observations. For each of the 12 regions, we start
y finding the lowest N (H 2 ) value such that all pixels with column
ensity abo v e it are inside the SESNA co v erage; equi v alently, we set
he minimum value of N (H 2 ) to be the lowest possible choice such
hat the contour sits entirely within the SENSA footprint. We define
 0 as the total gas mass enclosed by this contour. We then draw 100
(H 2 ) contours at higher N (H 2 ), with the levels chosen such that the

otal mass abo v e each lev el is equally spaced from M 0 to M 0 /100 with
MNRAS 511, 1431–1438 (2022) 

art/stac174_f1.eps
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Figure 2. A column-density map of the Ophiuchus cloud derived from 

Herschel observations. The green contour is the Spitzer co v erage area, and 
we illustrate the largest contour that fits within this footprint in purple; the 
yellow contour is set at a level that encloses half as much mass as the purple 
one. The red dots are the positions of protostars. 
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 step of M 0 /100; we only retain contours that contain at least one
rotostar, consistent with the selection we apply to the simulations in
21 . We show an example of Ophiuchus cloud column-density map
ith N (H 2 ) contours, protostar positions, and SESNA co v erage area

n Fig. 2 . 
F or ev ery contour, we measure four values: total gas mass M gas ,

otal area A , completeness-corrected total protostar number N PS , and
he Gini coefficient g of the surface density of all pixels within the
ontour (see H21 for details). From these parameters, we derive five
dditional quantities: mean gas surface density � gas = M gas / A , star-
ormation surface density � SFR , the volume density ρsph , and free-fall
ime derived from the spherical assumption t ff,sph (see Section 1), and
he corresponding star-formation efficiency per free-fall time εff,sph .
o calculate � SFR , we assume the mean mass of protostars in SESNA

o be M PS ≈ 0.5 M � (Evans et al. 2009 ), and the mean duration
f protostellar phase included in SESNA observations to be t PS ≈
.5 Myr (Dunham et al. 2014 , 2015 ). Thus, � SFR = N PS M PS / At PS ,
nd εff,sph = � SFR /( � gas / t ff,sph ). 

Our next step is to account for the limited resolution and dynamic
ange of the observations, which is much smaller than that of the
imulations. First, consider the effects of resolution: the Herschel
eam will smear out the density structure on scales comparable to the
eam full width at half-maximum (FWHM), and this will suppress
he Gini coefficient. We must, therefore, remo v e from our sample
ontours small enough that beam smearing precludes an accurate
stimate of g . To do so, for each contour we compute the ratio of the
ean contour radius r = 

√ 

A/ π to the resolution R of the Herschel
aps (expressed as the ef fecti ve beam FWHM, taken from table 1

f Pokhrel et al. 2020 ). To check when beam smearing becomes
ignificant, we artificially blur our data: For each cloud, we construct
ight column-density maps smeared by Gaussian beams with sizes
niformly spaced between R and 20 R , and place contours on these
meared maps exactly as we do for the original maps. We plot the
NRAS 511, 1431–1438 (2022) 
istribution of g values for all contours with � SFR > 0 in Fig. 3 . The
gure clearly shows the expected effect: Contours with small r / R
ave systematically smaller values of g than larger ones. To quantify
his, we fit the distribution of [log ( r / R ), g ] values with a piecewise
inear function 

 = 

{
k ( log ( r/R ) − x 0 ) + y 0 if log( r/R) < x 0 
y 0 if log( r/R) ≥ x 0 

, (3) 

here, k , x 0 , and y 0 are free parameters. The green line shows the
est-fitting, k = 0.47, x 0 = 0.95, and y 0 = −0.65, which illustrates
he effect in which we are interested: The distribution of g values
ecomes independent of resolution when log ( r / R ) ≥ 0.95, and drops
elow this threshold. Therefore, before analyzing the contours from
he original, unsmeared maps, we remo v e all those contours with
og ( r / R ) < 0.95. We also select contours that contain at least one
rotostar, since we obviously cannot compute εff values for those
hat contain none. 

We perform a similar analysis to control for the effects of the
imited dynamic range of the observations, i.e. the fact that there
re minimum and maximum measurable values of � gas , and this in
urn imposes limits on the maximum possible value of g . Define η =
 gas,min / � gas,max < 1 as the ratio of minimum and maximum column

ensities within a given map contour. The value of η necessarily
imits the range of g , since as η → 1, the column densities within the
ontour all become the same, and clearly we must therefore have g
 0. 
This effect means that we must truncate our sample by discarding

ontours for which η > ηmax , where the value of ηmax must be
etermined. To do so, we need to estimate the quantitative relation
etween g and η from the molecular cloud column-density distri-
ution. Pre vious observ ations have sho wn that the column-density
istribution of molecular clouds can be characterized by a lognormal
eak and a power-law tail towards to higher end (e.g. Goodman,
ineda & Schnee 2009 ; Kainulainen et al. 2009 ; Froebrich & Rowles
010 ; Lombardi, Alves & Lada 2010 ; Schneider et al. 2011 , 2015 ;
okhrel et al. 2016 ); we concentrate on the power-law tail, since we
nly select star-forming contours with column density abo v e av erage,
nd we find that our contours do indeed have approximately power-
aw distributions of pixel column density, with slopes ≈−2. For such
 distribution, d N p / d � gas ∝ � 

α
gas , if the range of measurable column
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Figure 4. 2D histograms of contour Gini coefficients g and column-density 
range log ( η). Top panel: Simulation contours. Bottom panel: Herschel map 
contours. The solid line plots in both panels show the theoretical value of g 
for contours with perfect power-law column-density distributions with α = 

−2 (equation 4), the approximate value we measure in both simulations and 
observations; results for other values of α within the uncertainty of the fits 
are nearly indistinguishable. The grey dashed vertical line shows log ( η) = 

−0.7. Note that the simulations, which have greater dynamic range than the 
observations, extend well beyond the range of η shown in the plot. 
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ensities is limited to � min to � max , the resulting Gini coefficient is 

 = 1 − 2 

{ 

(3 + 2 α) η2 −α−( α+ 2) η3 −( α+ 1) η−2 α

(2 α+ 3)( η−η−α )( η−α−η2 ) 
, α < −1 , α 
= −2 

η

η−1 − 1 
log( η) , α = −2 

. (4) 

We can use this result to study where limited dynamic range begins
o affect our results by examining the locations of our contours in
he ( η, g ) plane – contours that lie near the upper limit suggest that
ur measured values of g may be compromised by limited dynamic 
ange, while those that lie well below the limit are likely to suffer
nly minimal effects. 
We plot 2D histograms of g versus log η for both our Herschel

bservations and for the C18 simulations, together with equation (4), 
n Fig. 4 . We see that, for both the simulations and observations, the
istribution approaches the limit as η → 1, but falls significantly 
elow it when η � 1. Based on this figure, we choose to truncate
ur sample at log ηmax = −0.7, since for both the simulations and
he observations the data approach the maximum value of g for log η
 −0.7, but fall well below it for smaller η. 
To ensure that our truncation of the sample at both small radii

nd small dynamic range does not create an inconsistency between 
he observations and our simulations, we apply the same cuts to the
imulations and refit the relationship between ρeff , ρsph , and g , using
he same method as described in H21 . Doing so yields k = 4.3 ± 0.1,
 = 0.84 ± 0.04, and a coefficient of determination R 

2 = 0.70.
he error range of k and b are obtained from half-sample fitting as
escribed in Section 3.1. Such values are close to previous ones. For
onsistency, we will use the new fitted model coefficients throughout 
he rest of this manuscript. 

Applying the down-selections described abo v e to the Herschel 
ata, we obtain 2905 contours that form the data set for further
nalysis. For all selected contours, we apply equation (2) (with the
odified values of k and b ) to determine their ef fecti ve volume

ensity ρg , and replace ρs ph with ρg to recalculate the new result 
tar-formation efficiency denoted as εff, g . 

 RESULTS  

ith the properties determined from the unsmeared contours on 
if ferent surface-density le v els, we first inv estigate how the triplet ( g ,
ff,sph , εff, g ) changes with � gas . In Fig. 5 , we show the 2D histogram of
 versus log ( � gas ). We can find no significant relation between g and
 gas in this plot, which is consistent with the simulation results. The
edian value of g is g median = 0.24, which is abo v e 0.2, the value for
 uniform-density sphere ( H21 ). This indicates that the free-fall time
f most contours will be o v erestimated by the spherical assumption.
or a typical Gini coefficient g = 0.24, our estimated uncertainties on
 and b in equation (2) translate to an increase in the dispersion of εff 

y 0.01 dex, which is negligible. For this reason, we will simply treat
 and b as constants fixed to their central values for the remainder
f this analysis. Similarly, given that we have an average of 300
ontours per cloud, the 0.18 dex mean residual scatter of the H21
odel corresponds to only a ∼0.005 dex scatter in the percentiles

nd mean values of εff , negligibly small. 
To study the difference between estimates of εff derived using 

he spherical assumption and our impro v ed method, we define two
uantities: the mean star-formation efficiency for an individual cloud 
 εff 〉 , and the mean dispersion in star-formation efficiency σ . We
ompute these as follows: For each cloud, we sort the contours by
 gas and place them in 10 bins of equal size, or fewer if that leaves
 cloud with < 20 contours per bin. (Recall that � gas is the mean gas
urface density inside a given contour, not the contour level itself,
o two contours at the same level still generally have different � gas .)

ithin each bin, we denote the 16th, 50th, and 84th percentiles of
ff (for both εff,sph and εff, g ) as εff,16 , εff,50 , and εff,84 . We plot these
uantities as a function of � gas in Fig. 6 . We then define the mean
tar-formation efficiency for one cloud 〈 εff 〉 as 1 

 εff 〉 = 

∫ log � gas , max 

log � gas , min 
εff, 50 d( log � gas ) 

log � gas , max − log � gas , min 
, (5) 

here, � gas,min and � gas,max are the minimum and maximum contour 
urface density available for a given cloud; in terms of Fig. 6 ,
 εff 〉 is simply the mean value of the coloured line for each cloud.
e e v aluate this integral by approximating it as a finite sum o v er

ur groups. Similarly, we define the mean star-formation efficiency 
MNRAS 511, 1431–1438 (2022) 
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Figure 5. 2D histogram plot of g versus log ( � gas ). The values are determined 
from the unsmeared contours after all selections, and the colour shows the 
number of contours in the bin. 

Figure 6. Distributions of log εff,sph (top panel) and log εff, g (bottom panel) 
as a function of log � gas . For each cloud, the coloured line and grey band show 

the 50th percentile and 16–84th percentile range of εff in a bin of log � gas . 
The black dashed lines show the median values 〈 εff,sph 〉 and 〈 εff, g 〉 o v er all 
clouds. 

Table 1. Estimates of 〈 εff 〉 and σ for individual clouds, using both the 
spherical assumption (values with subscript ‘sph’) and the Gini model 
equation (2) (values with subscript ‘ g ’); 	σ = σ sph − σ g . The column 
log � gas reports the (min, max) contour average surface density measured 
for each cloud. Finally, the last three rows list the median, mean, and standard 
deviation (STD) values of the corresponding columns. 

Cloud log 〈 εff,sph 〉 log 〈 εff, g 〉 σ sph σ g 	σ log � gas 

(dex) (dex) (dex) (M � pc −2 ) 

Ophiuchus − 1 .45 − 1 .59 0.18 0.13 0 .05 (2.05, 2.79) 
Persus − 1 .76 − 1 .97 0.28 0.31 − 0 .03 (1.85, 2.67) 
Orion-A − 2 .12 − 2 .29 0.13 0.15 − 0 .02 (2.24, 3.00) 
Orion-B − 1 .86 − 2 .03 0.19 0.16 0 .03 (2.10, 2.64) 
Aquila-N − 1 .79 − 2 .03 0.31 0.23 0 .08 (2.02, 2.56) 
Aquila-S − 1 .69 − 1 .84 0.18 0.11 0 .07 (1.92, 2.78) 
NGC 2264 − 1 .84 − 2 .18 0.04 0.05 − 0 .01 (1.97, 2.77) 
S140 − 1 .62 − 1 .78 0.04 0.03 0 .01 (1.95, 2.36) 
AFGL 490 − 1 .45 − 1 .56 0.01 0.00 0 .01 (2.14, 2.32) 
Cep OB3 − 1 .76 − 1 .82 0.13 0.11 0 .02 (1.92, 2.41) 
Mon R2 − 1 .69 − 1 .97 0.06 0.09 − 0 .03 (1.77, 2.48) 
Cygnus-X − 1 .63 − 1 .67 0.41 0.40 0 .01 (1.90, 2.78) 

Median − 1 .73 − 1 .90 0.16 0.12 0 .01 –
Mean − 1 .72 − 1 .89 0.16 0.15 0 .02 –
STD 0 .18 0 .22 – – – –
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ispersion σ as 

= 

∫ log � gas , max 

log � gas , min 
( log εff, 84 − log εff, 16 ) d( log � gas ) 

2( log � gas , max − log � gas , min ) 
, (6) 

here, we again e v aluate numerically as a finite sum o v er our bins
f � gas . In terms of Fig. 6 , σ is simply half of the mean width of the
rey band that surrounds each of the coloured lines. 
We report the 〈 εff 〉 and σ values we measure using the spherical

ssumption (denoted by subscript sph) and with equation (2) (sub-
cript g ) for all 12 clouds in Table 1 . After applying our model,
he median value of log 〈 εff 〉 decreases from log 〈 εff,sph 〉 = −1.73 to
og 〈 εff,sph 〉 = −1.90. This is consistent with the prediction in H21 that
se of the spherical assumption leads to a ∼0.13 dex overestimation
f εff . We also measure the difference in dispersion 	σ = σ sph −
g derived using the spherical assumption versus using equation (2)

or each cloud. We find that eight of the 12 studied clouds yield
ositive 	σ , corresponding to a reduction in the dispersion; the
ean reduction is 	σ mean = 0.02 dex. This demonstrates that our
odel does decrease the dispersion, but less than the ∼0.15 dex found
hen testing the method on simulated data in H21 . This is likely due

o the difference between the simulated data and observations. H21
alibrate their method based on simulations from Cunningham et al.
 2018 ) that use periodic boundary conditions, so the column-density
aps used in the calibration are from infinitely large self-similar

louds. The observed clouds, ho we ver, are from of finite size, so,
or e xample, the y can contain large-scale density gradients that are
bsent in periodic boxes. This suggests that we might obtain an
mpro v ed v ersion of equation (2) by analysing a zoom-in galactic
imulation. 

For all 12 clouds, we determine the STDs of both types of 〈 εff 〉
alues: STD sph = 0.18, and STD g = 0.22. There is a slight increase
fter applying the H21 model, the reason for which might be that
here are real physical differences between clouds that we have
nco v ered by not adopting the uniform spherical assumption. Given
he relatively small 	σ median we obtain, it is also interesting to ask
hether we could forgo individualized corrections altogether, and

imply adopt the median value g = 0.24 for all contours. Doing
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o would still produce a 0.1 dex median value decrease in εff , while
eaving the dispersion unchanged. Ho we ver, such an approach would 

iss an important subtlety: while g = 0.24 is the median value for
ll contours on all scales, the value of g also changes systematically
ith size scale: on the largest scales of the 12 clouds we study,
 median = 0.35. Properly accounting for this is crucial to obtaining 
he correct changes in εff versus � gas , and thus the correct 	σ values
ithin individual clouds. For this reason, we prefer to use individual- 

ontour corrections when possible. 

 C O N C L U S I O N S  

e use a new method proposed by H21 to combine column-density 
aps derived from Herschel with YSOs from the SESNA catalogue 

o determine the star-formation efficiency per free-fall time εff in 
2 nearby clouds. Our method provides a more realistic estimate of
he mean volume densities of clouds seen in projection, reducing the 
rror incurred by assuming that projected clouds are spherical, and al- 
owing higher precision estimates of εff than previously possible. We 
nd that the spherical assumption leads to ∼0.1 dex overestimation 
f log 〈 εff 〉 , and also increases the estimated intracloud dispersion in
og 〈 εff 〉 by ∼0.02 dex on average. With our new method, we find that
ur sample of 12 clouds has a median star-formation efficiency per 
ree-fall time log 〈 εff 〉 = −1.9, and the median spread in log 〈 εff 〉 =
.12 dex within a single cloud. The intercloud dispersion in log 〈 εff 〉 is
early identical, at 0.2 dex, and this value is, within the uncertainties,
naffected by the use of the H21 model for the gas density. This
trongly suggests that the intracloud dispersion we are measuring 
eflects a real variation in cloud properties, not an observational 
rror. 

Our results confirm the existence of a universal εff ∼ 0.01 value, 
nd, importantly, let us identify a real ≈0.2 dex spread from cloud
o cloud with 3D cloud geometry considered for the first time. 
s discussed in Pokhrel et al. ( 2021 ), such a small spread is in

ension with models where star formation is regulated mainly by 
alactic-scale processes, but individual molecular clouds undergo 
apid collapse (e.g. Kim et al. 2011 ; Ostriker & Shetty 2011 ; Faucher-
igu ́ere et al. 2013 ). These models predict a much larger dispersion.
onversely, ho we ver, our measured spread in εff can be used to
 v aluate the spread in parameters that enter models for cloud-scale
egulation of star formation, which do predict dispersions comparable 
n size to the observed one. For example, in the turbulence-regulated 
tar formation of Krumholz & McKee ( 2005 ), a ∼0.2 dex spread in
ff could naturally be explained by a σα ∼ 0.3 dex spread in cloud 
irial parameters (or a σM 

∼ 0 . 7 dex spread in Mach number), while
n the similar model of Hennebelle & Chabrier ( 2011 ) the required
ispersion is σα ∼ 0.8 dex ( σM 

∼ 0 . 6 dex), and for the model of
adoan et al. ( 2012 ) would require σα ∼ 0.5 de x. F or comparison, Lee
t al. ( 2016 ) study 195 star-forming giant molecular clouds and find a
catter of 0.32 dex in the virial parameter. Thus, observed clouds have
pproximately the level of dispersion in virial parameter required to 
eproduce the spread we see in εff . In future work, we can use the
ame technique of high-precision estimates of εff deployed here to 
earch not just for the dispersion in εff , but to look for systematic
ariations with virial parameter or other cloud properties, thereby 
pening up a new method for testing theories of star formation. 
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