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ABSTRACT
Energy equipartition is a powerful theoretical tool for understanding astrophysical plasmas. It is invoked, for example, to
measure magnetic fields in the interstellar medium (ISM), as evidence for small-scale turbulent dynamo action, and, in
general, to estimate the energy budget of star-forming molecular clouds. In this study, we motivate and explore the role of
the volume-averaged root-mean-squared (rms) magnetic coupling term between the turbulent, δB , and large-scale, B0, fields,〈
(δB · B0)2

〉1/2
V . By considering the second moments of the energy balance equations we show that the rms coupling term is

in energy equipartition with the volume-averaged turbulent kinetic energy for turbulence with a sub-Alfvénic large-scale field.
Under the assumption of exact energy equipartition between these terms, we derive relations for the magnetic and coupling term
fluctuations, which provide excellent, parameter-free agreement with time-averaged data from 280 numerical simulations of
compressible magnetohydrodynamic (MHD) turbulence. Furthermore, we explore the relation between the turbulent mean field
and total Alfvén Mach numbers, and demonstrate that sub-Alfvénic turbulence can only be developed through a strong, large-
scale magnetic field, which supports an extremely super-Alfvénic turbulent magnetic field. This means that the magnetic field
fluctuations are significantly subdominant to the velocity fluctuations in the sub-Alfvénic large-scale field regime. Throughout
our study, we broadly discuss the implications for observations of magnetic fields and understanding the dynamics in the
magnetized ISM.
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IN T RO D U C T I O N

agnetohydrodynamic (MHD) turbulence is pervasive across the
niverse, and for this reason the study of MHD turbulence is a
ecessary prerequisite for understanding a broad range of astro-
hysical processes. For example, each of the planets in our Solar
ystem probably assembled as the protoplanetary disc underwent
ydrodynamical and magnetohydrodynamical (MHD) instabilities,
riving turbulence, and establishing the initial conditions for planet
ormation (Lyra & Umurhan 2019, and references therein). The Sun
aintains a magnetized and turbulent heliosphere, with decades of

cale-free velocity and magnetic fluctuations that play an important
ole in the generation of solar winds, plasma heating, and particle
cceleration (Bruno & Carbone 2013, and references therein). Just
ike the planets, the Sun was born in a turbulent plasma environment.

In the context of star formation, turbulent density fluctuations in
he cool molecular gas clouds of galaxies seed the overdensities
hat fragment, become gravitationally unstable, and collapse to form
tars (Krumholz & McKee 2005; Hennebelle et al. 2011; Padoan &
ordlund 2011; Federrath & Klessen 2012; Hopkins 2013; Federrath
E-mail: james.beattie@anu.edu.au
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015; Burkhart 2018; Mocz & Burkhart 2018). The turbulent motions
hemselves steepen or flatten the initial mass function (IMF) of
tars (Padoan, Nordlund & Jones 1997; Hennebelle & Chabrier
009; Hopkins 2012; Federrath, Krumholz & Hopkins 2017b; Nam,
ederrath & Krumholz 2021) and potentially underlie the universality

hat we observe for the IMF by setting the density correlation scale for
tar-forming regions (Jaupart & Chabrier 2021), or more generally,
rom the universality of the supersonic turbulence energy cascade in
he interstellar medium (ISM; Padoan et al. 1997; Federrath 2013).
n scales above the neutral–ion decoupling scale, magnetic fields

re approximately flux frozen into the gas, and fluctuate, tangle, and
ecome turbulent with the gas velocities, hence magnetic fields also
lay an important role in all these processes (Hennebelle & Inutsuka
019; Krumholz & Federrath 2019).
In the ISM magnetic fields and turbulence coexist in a partnership.

xtremely weak, primordial magnetic fields were potentially formed
hrough a battery process (e.g. Biermann 1950), or a phase tran-
ition in the early Universe (Subramanian 2016, 2019), and, once
enerated, they are hard to destroy due to the lack of magnetic
onopoles (Parker 1970; Beck & Wielebinski 2013; Acharya et al.

022). Instead, turbulent motions of gas exponentially amplify the
eak seed fields, growing them through the turbulent dynamo, and
agnetizing the plasma (see McKee, Stacy & Li 2020 for a recent

http://orcid.org/0000-0001-9199-7771
http://orcid.org/0000-0003-3893-854X
http://orcid.org/0000-0003-2337-0277
http://orcid.org/0000-0002-0706-2306
http://orcid.org/0000-0001-9708-0286
http://orcid.org/0000-0002-2036-2426
http://orcid.org/0000-0001-6631-2566
http://orcid.org/0000-0002-3558-3926
mailto:james.beattie@anu.edu.au


5268 J. R. Beattie et al.

M

r
t
e
m
e
2
2

s
m
2
r
s
D
e
2
f
e
e
m
d
P
M
t
t
S
B
p
t

t
r
2
i
d
1
a
s
t
m
fl
a
(
i
a
t
δ

r
t
p
w
c
i
fl
c
p
c

S
m
s
r

e
S
t
a
e
fl
s
b
r
t
g
h
A
r
m
A

t
I
m
t
e
m
S
o
t
r
t
i
t

2

T
t
a
R
F
3
a

ρ

∇
w
e
w
ρ

m
c
s

1Note that we refer to a mean-field coordinate system, as adopted in Hartlep
et al. (2000), where B0 always points along ẑ = ê‖ and hence x̂ = ê⊥,1 and
ŷ = ê⊥,2. The plasma is statistically symmetric in the (ê⊥,1, ê⊥,2) plane, so
we will regularly state quantities for ê⊥.
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eview). Turbulence, through the dynamo process, likely continues
o maintain the magnetic fields found in the present-day Universe,
nsuring they are roughly in energy equipartition with the turbulent
otions, i.e. the saturated state of the turbulent dynamo (Federrath

t al. 2014; Schober et al. 2015; Federrath 2016; Xu & Lazarian
016; McKee et al. 2020; Seta & Federrath 2020, 2021a; Seta et al.
020; Achikanath Chirakkara et al. 2021).
Given the importance of MHD turbulence in the ISM, it is not

urprising that the ISM community has built numerous tools for
easuring turbulent properties (for a recent review, see Burkhart

021). These include, but are certainly not limited to: techniques that
elate starlight polarization dispersion to plane-of-sky magnetic fields
trengths, such as the methods described in Skalidis & Tassis (2021),
avis (1951), and Chandrasekhar & Fermi (1953) (for recent reviews,

xtensions, and modifications, see Lazarian, Yuen & Pogosyan 2020,
022); inference of magnetic field strengths and plasma energetics
rom local velocity centroids or intensity fluctuations (Lazarian
t al. 2018) and density gradients of dust continuum maps (Soler
t al. 2013); ascertaining the ratio of compressive to solenoidal
odes of turbulent driving sources from the deprojected column

ensity (Federrath, Klessen & Schmidt 2009; Brunt, Federrath &
rice 2010a,b; Brunt & Federrath 2014; Körtgen & Soler 2020;
enon et al. 2021; Sharda et al. 2022); and data-driven statistical

echniques that can capture abstract features of sub- or super-Alfvénic
urbulence using wavelet scattering transforms (Allys et al. 2019;
aydjari et al. 2021) or deep convolutional neural networks (Peek &
urkhart 2019). All of these diagnostics rely upon a thorough
hysical understanding of the underlying phenomenology of MHD
urbulence.

However, the parameter space of MHD turbulence is large, and
here need not be a universal phenomenology that captures the
ichness of the topic (see the eloquent review from Schekochihin
020 about phenomenologies and two-point statistical models for
ncompressible MHD turbulence, which continue to be subject to
ebate; Iroshnikov 1964; Kraichnan 1965; Sridhar & Goldreich
994; Goldreich & Sridhar 1995; Boldyrev 2006). In this study, we
im to explore energy balance in a particular part of the parameter
pace relevant to the ISM: isothermal, highly compressible MHD
urbulence, driven with a mixture of compressible and solenoidal
odes, and that is threaded by a large-scale magnetic field, B0,
ux frozen on the system scale. Such a description is potentially
pplicable to any of the approximately isothermal phases of the ISM
Wolfire et al. 1995; Omukai et al. 2005). In this context, we can
dentify several distinct energy reservoirs, but in this study our main
im is to understand the correlation between the large-scale and
urbulent magnetic field; mathematically, this term takes the form
B · B0, where δB and B0 are the fluctuating and large-scale fields,
espectively. We henceforth refer to this as the ‘magnetic coupling
erm’, or simply the ‘coupling term’. This term has been neglected
reviously in the literature (e.g. Zweibel & McKee 1995) because
hen averaging over a volume V that contains a few turbulent

orrelation scales, 〈δB · B0〉V = 0. However, we show that when one
nstead considers the second moments of the energy equation (the
uctuations of energy), which maintain the positivity for all of the
ontributions to the energy, including δB · B0, the coupling term
lays a leading order role in the energy balance when B0 is strong,
orresponding to sub-to-trans-Alfvénic turbulence.

Skalidis & Tassis (2021) and Skalidis et al. (2021a, hereafter
+2021) recently showed that the coupling term is important for
easuring the plane-of-sky magnetic field using polarization disper-

ion techniques for interstellar gas, especially in highly magnetized
egions of the ISM (Li et al. 2013; Federrath et al. 2016; Hu
NRAS 515, 5267–5284 (2022)
t al. 2019; Heyer, Soler & Burkhart 2020; Hwang et al. 2021;
kalidis et al. 2021b; Hoang et al. 2022). In this paper, we show

hat by constructing a set of analytical models for the coupling term
nd turbulent magnetic fluctuations, based on kinetic and magnetic
nergy balance, one can derive strong constraints on the magnetic
uctuations and Alfvén Mach numbers MA in the plasma. We also
tudy the impact of a large-scale magnetic field on the turbulence
y analysing the turbulent, total and mean field MA, and the
elationships between them. Beyond significantly suppressing the
urbulent component of the magnetic field as the large-scale field
rows in energy in a power-law fashion, δB ∝ B−1

0 , we show that
aving a strong large-scale field is a necessary prerequisite for sub-
lfvénic turbulence, i.e. a plasma can only be in the sub-Alfvénic

egime when the large-scale ordered field contains almost all of the
agnetic energy, making the magnetic fluctuations highly super-
lfvénic and hence dynamically subdominant.
This study is organized as follows. In Section 2, we outline

he compressible MHD turbulence simulations that we will use.
n Section 3, we review the basics of energy balance between
agnetic and kinetic energy in MHD turbulence. We focus upon

he coupling term, justify why it ought to be considered in the
nergy balance equation,. and in Section 4, we provide analytical
odels for this term in both the super- and sub-Alfvénic regimes. In
ection 5, we turn our attention to the fluid energetics in the context
f the Alfvén Mach number, highlighting the difference between the
urbulent mean field and total Alfvén Mach numbers and deriving
elationships between them. Next, in Section 6, we discuss the role of
he turbulent correlation scale for measuring magnetic field statistics
n simulations and observations. Finally, in Section 7, we summarize
he key results of this study.

NUMERI CAL SI MULATI ONS

o test our energy balance models, we use a modified version of
he FLASH code (Fryxell et al. 2000; Dubey et al. 2008), utilizing
second-order conservative MUSCL-Hancock 5-wave approximate
iemann scheme (Bouchut, Klingenberg & Waagan 2010; Waagan,
ederrath & Klingenberg 2011; Federrath et al. 2021) to solve the
D, ideal, isothermal, compressible MHD equations with a stochastic
cceleration field acting to drive non-helical turbulence,

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂v
∂t

− ∇ ·
[

1

4π
B ⊗ B − ρv ⊗ v −

(
c2

s ρ + B2

8π

)
I

]
= ρf , (2)

∂B
∂t

− ∇ × (v × B) = 0, (3)

· B = 0, (4)

here ⊗ is the tensor product and I the identity matrix. We solve the
quations on a periodic domain of dimension L3 ≡ VL, discretized
ith between 163 and 11523 cells, where v is the fluid velocity,
is the gas density, B = B0ê‖ + δB(t) is the magnetic field, with
ean-field B0ê‖1 and turbulent field δB(t), where 〈δB(t)〉VL

= 0,
s is the sound speed, and f the stochastic turbulent acceleration
ource term that drives the turbulence, which, in the ISM could be



MHD energy balance 5269

f
g
g
2
2
K
K
p
s
s
o
u

fi
t
i
0
g
2
w
w
(
|
1
e
fi
a
t
o
s
v
0

s
e
s
t
e
s
F
s
t
a
ρ

a

3

3

R
t
l
2
d

2

t
a
t
f

m
ρ

e

w
i
b
l
A
L
t
a
s
v
t
t
F
s
e
f
�
o
f
c
t
fi

o
p
h
t
i
s
(
s
a
t
δ

b
i
t

3A natural normalization for an isothermal plasma because ρ0 and cs are both
constant, and problem dependent.
4We show the super-Alfvénic version of this plot, which admits to isotropic
fluctuations, in Fig. B3.
5When B0  δB, (B · ∇)B ≈ −κB2

0 ê⊥, where κ is the field line curvature.
Hence (B · ∇)B acts to strongly dampen shear Alfvén waves. This approxi-
mation for (B · ∇)B is most appropriate for regions of the plasma where ∇�

· v� ≈ 0, because compressions can excite δB�, creating parallel gradients in
the magnetic field that also act to increase the tension (Beattie et al. 2021b).
6Note that in the language of solid-state physics, we may consider δB� to be
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rom, for example, supernova shocks, internal instabilities in the gas,
ravity, galactic-scale shocks and shear, or ambient pressure from the
alactic environment (Brunt, Heyer & Mac Low 2009; Elmegreen
009; Federrath 2015; Krumholz & Burkhart 2016; Padoan et al.
016; Federrath et al. 2017a; Grisdale et al. 2017; Jin et al. 2017;
örtgen, Federrath & Banerjee 2017; Colling et al. 2018; Schruba,
ruijssen & Leroy 2019; Lu et al. 2020). Here, and throughout this
aper, we use the notation 〈· · · 〉V to indicate the mean value of
ome quantity within a specified volume V (which can be the entire
imulation volume VL, but need not be). We discuss the resolution
f our simulations, and demonstrate that the quantities of interest for
s are converged in them, in Appendix A.
The forcing term f follows an Ornstein–Uhlenbeck process with

nite correlation time, τ = �0/
〈
v2
〉1/2

VL
= L/(2csM), where M is

he sonic Mach number, such that �0 = L/2 is the driving, or energy
njection scale, and f is constructed so that we are able to set
.5 � M � 10, encapsulating theM values of supersonic molecular
as clouds in the ISM (e.g. Schneider et al. 2013; Federrath et al.
016; Orkisz et al. 2017; Beattie et al. 2019) and the subsonic, diffuse,
arm medium (e.g. Kritsuk, Ustyugov & Norman 2017). We force
ith equal energy in both compressive (∇ × f = 0) and solenoidal

∇ · f = 0) modes. The energy injection is isotropic, centred on
kL/2π| = 2 and falling off to zero with a parabolic spectrum within
≤ |kL/2π| ≤ 3 (see Federrath, Klessen & Schmidt 2008; Federrath

t al. 2009, 2010, 2022 for turbulence driving details). MA0 is set by
xing B0 and using the definition of the mean-field Alfvén velocity
nd M, MA0 = 2cs

√
πρ0M/B0. We vary this value for each of

he simulations in the range 10−2 � MA0 � 103, resulting in a total
f 280 simulations across different grid resolutions, with 56 unique
imulations, which we list in Table 1. The initial velocity field is set to
(x, y, z, t = 0) = 0, with units cs = 1, the density field ρ(x, y, z, t =
) = ρ0, with units ρ0 = 1, and δB(t = 0) = 0, with units csρ

1/2
0 = 1.

We run the simulations for 10 correlation times of f , and report
tatistics from time-averages over the last five correlation times to
nsure that the sub-Alfvénic mean-field simulations are statistically
tationary (Beattie et al. 2021b). After five correlation times large ver-
ical structures develop in the sub-Alfvénic mean-field simulations,
xtending along the strong large-scale field and out to the driving
cale perpendicular to the field, which we show, as an example, in
ig. 1 for theM2MA01 simulation.2 For more details about the current
imulations, we refer the readers to Beattie & Federrath (2020) for
he anisotropy in ρ/ρ0, Beattie, Federrath & Seta (2020) for a detailed
nalysis of δB, Beattie et al. (2021a) for an anisotropic model of the
/ρ0 variance, and Beattie et al. (2021b) for the density intermittency
nd the ln (ρ/ρ0) probability density function (PDF).

EN E R G Y BA L A N C E

.1 Energy balance basics and averaging

ecent studies have shown that one can use energy balance arguments
hat include the large-scale magnetic field, B0, to derive scaling
aws between the Alfvénic and kinetic fluid quantities (Federrath
016; Beattie et al. 2020; Skalidis & Tassis 2021; S+2021). The
imensionless magnetic energy density, by which we mean the
We use a naming convention for our simulations whereby the value following
he M gives the target sonic Mach number M (with decimal points omitted)
nd the value following MA gives the target Alfvén Mach number MA0 –
hus run M2MA01 is one where we set the mean magnetic field and tune the
orcing to produce M = 2 and MA0 = 0.1.

a
−
p
g
b
fl
d
w

agnetic energy density normalized to the mean thermal pressure3

0c
2
s , is

mag = B2

8πc2
s ρ0

= 1

8πc2
s ρ0

(
B2

0 + 2δB · B0︸ ︷︷ ︸
coupling

term

+ δB2

)
, (5)

here B2
0 is the large-scale field contribution to the total energy, δB2

s the turbulent field contribution, and 2δB · B0 is the coupling term
etween the two field components. In the linear perturbation theory
imit of the MHD equations, δB2 includes contributions from shear
lfvén, fast and slow magnetosonic compressive eigenmodes (e.g.
andau & Lifshitz 1959). Because δB · B0 = δB‖B0, the coupling

erm only contains the component of magnetic field fluctuations that
re parallel to the large-scale field. In linear theory, both fast and
low magnetosonic compressible modes are able to perturb the field
ariables parallel to B0, so under the lens of linear theory, the coupling
erm is the fluctuation contribution from the compressible modes in
he turbulence scaled by B0 (Bhattacharjee, Ng & Spangler 1998).
urthermore, for sub-Alfvénic turbulence Beattie et al. (2021b)
howed that converging, shocked flows along magnetic field lines
xcite strong δB� fluctuations, which travel roughly at the theoretical
ast Alfvén mode speed. Therefore, it is likely, assuming that δB�/B0

1 (this is indeed the case for MA0 < 1 plasmas; see left panel
f fig. 5 in Beattie et al. 2022) where a linear theory may be valid
or the magnetic field, the coupling term contains significant energy
ontributions from fast magnetosonic modes excited by shocked gas
hat converges and forms dense filaments perpendicular to magnetic
eld lines.
The excitation of a dominating δB� is something characteristic

f sub-Alfvénic compressible turbulence. We demonstrate this by
lotting the time-averaged joint δB�−δB⊥ PDF in Fig. 2, for
ighly sub-Alfvénic turbulence (MA0 = 0.01). It is evident that
he distributions of δB� and δB⊥ are not the same.4 The reason
s straightforward: δB⊥ (fluctuations from shear Alfvén waves) is
ubject to a quadratic restoring force via the magnetic tension5

Yuen & Lazarian 2020; Beattie et al. 2021b), which results in a
ymmetry about δB⊥ = 0. However, δB� has a linear restoring force
nd is forced out of the minimum energy state δB� = −B0 to conform
o
〈
δB‖

〉
V = 06 (S+2021). This gives rise to a skewed distribution in

B�, with a long extended tail of negative δB� values. We will show
elow that δB� contains almost all of the turbulent magnetic energy
n the compressible plasma. Now we turn our attention to what feeds
he magnetic field fluctuations.
MNRAS 515, 5267–5284 (2022)

topologically frustrated field, because the minimum energy state is δB� =
B0, but conservation of total magnetic flux requires

〈
δB‖

〉
V = 0. Hence,

opulations of parallel magnetic fluctuations can be imagined to compete to
et to δB� = −B0, but for every δB� that comes close to −B0 there must
e either another fluctuation that comes close to +B0 or a population of
uctuations that in total add to +B0, ensuring globally that

〈
δB‖

〉
V = 0. We

o not take this analogy any further in this study but it may stimulate future
orks on magnetic field fluctuation PDFs.
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Table 1. Main simulation parameters and derived quantities used throughout this study.

Turbulence Large-scale B-field Fluctuating B-field Total B-field

Simulation ID M �cor,v
�0

MA0
B0

csρ
1/2
0

〈
δB2

c2
s ρ0

〉
V

〈(
δB·B0
c2

s ρ0

)2
〉1/2

V
MA,turb MA,total

(1) (2) (3) (4) (5) (6) (7) (8) (9)

M05MA001 0.567+0.02
−0.07 1.48+0.05

−0.07 0.0113+0.0003
−0.001 177.0 0.000191+0.004

−0.005 2.32+0.4
−0.5 392.0+20.0

−40.0 0.0113+0.0003
−0.001

M05MA01 0.566+0.02
−0.07 1.47+0.05

−0.07 0.113+0.004
−0.01 17.7 0.0181+0.03

−0.04 2.23+0.3
−0.4 35.6+2.0

−2.0 0.113+0.004
−0.01

M05MA05 0.534+0.004
−0.04 1.44+0.02

−0.07 0.534+0.004
−0.04 3.54 0.233+0.05

−0.08 1.16+0.05
−0.1 7.28+0.3

−0.2 0.544+0.005
−0.05

M05MA1 0.469+0.01
−0.05 0.953+0.02

−0.005 0.938+0.03
−0.1 1.77 1.2+0.1

−0.3 1.0+0.08
−0.07 2.75+0.1

−0.2 0.974+0.07
−0.08

M05MA2 0.462+0.03
−0.03 0.783+0.06

−0.03 1.85+0.1
−0.1 0.886 3.17+0.3

−0.3 0.871+0.03
−0.07 1.67+0.2

−0.08 1.59+0.2
−0.09

M05MA4 0.473+0.06
−0.03 0.838+0.03

−0.03 3.79+0.5
−0.2 0.443 3.12+0.2

−0.2 0.415+0.02
−0.009 1.98+0.2

−0.2 2.1+0.4
−0.2

M05MA6 0.483+0.06
−0.03 0.904+0.03

−0.03 5.8+0.8
−0.4 0.295 2.74+0.09

−0.1 0.256+0.01
−0.006 2.32+0.4

−0.1 2.51+0.5
−0.2

M05MA8 0.502+0.06
−0.02 0.907+0.05

−0.02 8.03+1.0
−0.3 0.222 2.47+0.1

−0.2 0.192+0.009
−0.01 2.76+0.3

−0.1 2.99+0.3
−0.2

M05MA10 0.514+0.06
−0.03 0.934+0.02

−0.03 10.3+1.0
−0.5 0.177 2.24+0.1

−0.07 0.145+0.01
−0.006 3.05+0.4

−0.2 3.18+0.4
−0.1

M05MA100 0.637+0.09
−0.05 0.889+0.04

−0.03 127.0+20.0
−10.0 0.0177 0.721+0.1

−0.3 0.00852+0.0008
−0.001 7.9+3.0

−1.0 7.92+3.0
−1.0

M05MA1000 0.672+0.07
−0.05 0.835+0.03

−0.04 1340.0+100.0
−100.0 0.00177 0.36+0.2

−0.3 0.000613+0.0001
−0.0002 11.8+8.0

−3.0 11.8+8.0
−3.0

M2MA001 1.9+0.04
−0.06 1.34+0.02

−0.09 0.0095+0.0002
−0.0003 709.0 0.000879+0.02

−0.003 18.7+9.0
−2.0 498.0+20.0

−30.0 0.00943+0.0002
−0.0003

M2MA01 1.85+0.06
−0.02 1.37+0.03

−0.1 0.0926+0.003
−0.001 70.9 0.0989+0.1

−0.03 18.4+4.0
−1.0 41.1+2.0

−3.0 0.0917+0.003
−0.001

M2MA05 2.24+0.07
−0.09 1.26+0.08

−0.06 0.561+0.02
−0.02 14.2 6.81+0.3

−0.3 20.6+3.0
−2.0 5.28+0.3

−0.3 0.575+0.01
−0.03

M2MA1 1.98+0.1
−0.09 0.845+0.02

−0.02 0.989+0.05
−0.05 7.09 25.3+0.3

−1.0 16.3+0.7
−1.0 2.47+0.2

−0.2 1.01+0.05
−0.06

M2MA2 1.95+0.2
−0.2 0.815+0.04

−0.04 1.95+0.2
−0.2 3.54 40.6+0.6

−0.9 12.3+0.7
−1.0 1.73+0.4

−0.07 1.54+0.1
−0.1

M2MA4 2.07+0.2
−0.1 0.92+0.02

−0.04 4.13+0.5
−0.3 1.77 37.0+0.3

−0.3 5.88+0.4
−0.3 2.39+0.1

−0.4 2.39+0.3
−0.4

M2MA6 2.09+0.2
−0.2 0.946+0.02

−0.05 6.26+0.6
−0.6 1.18 33.8+0.5

−0.4 3.83+0.1
−0.1 2.45+0.5

−0.3 2.68+0.6
−0.5

M2MA8 2.05+0.09
−0.2 0.945+0.04

−0.02 8.21+0.4
−0.7 0.886 21.5+0.3

−0.3 2.39+0.1
−0.1 3.44+0.2

−0.3 3.91+0.2
−0.3

M2MA10 2.11+0.1
−0.2 0.987+0.03

−0.03 10.5+0.7
−1.0 0.709 18.4+0.3

−0.1 1.74+0.1
−0.04 4.07+0.3

−0.6 4.65+0.4
−0.9

M2MA100 2.36+0.1
−0.2 1.01+0.03

−0.02 118.0+6.0
−8.0 0.0709 3.3+0.08

−0.5 0.0729+0.003
−0.006 16.1+3.0

−2.0 17.0+4.0
−3.0

M2MA1000 2.37+0.08
−0.1 0.999+0.01

−0.05 1180.0+40.0
−70.0 0.00709 0.276+0.3

−0.3 0.00214+0.0005
−0.0007 61.9+40.0

−20.0 62.8+40.0
−20.0

M4MA01 4.03+0.06
−0.5 1.39+0.05

−0.09 0.101+0.002
−0.01 142.0 0.838+0.2

−0.4 106.0+9.0
−20.0 36.5+3.0

−3.0 0.1+0.002
−0.01

M4MA05 4.08+0.04
−0.1 1.27+0.04

−0.1 0.51+0.005
−0.01 28.4 24.4+0.4

−0.6 74.1+7.0
−7.0 4.94+0.3

−0.4 0.513+0.007
−0.01

M4MA1 4.12+0.5
−0.4 0.832+0.04

−0.04 1.03+0.1
−0.09 14.2 84.3+2.0

−2.0 61.9+7.0
−10.0 2.49+0.3

−0.1 1.02+0.05
−0.1

M4MA2 4.02+0.2
−0.3 0.846+0.04

−0.02 2.01+0.08
−0.1 7.09 125.0+1.0

−1.0 43.4+2.0
−6.0 1.93+0.2

−0.1 1.49+0.2
−0.1

M4MA4 4.03+0.2
−0.4 0.916+0.02

−0.03 4.03+0.2
−0.4 3.54 109.0+0.2

−0.5 20.3+2.0
−0.5 2.38+0.1

−0.3 2.41+0.1
−0.3

M4MA6 3.97+0.2
−0.4 0.959+0.02

−0.02 5.96+0.3
−0.6 2.36 76.3+0.3

−0.6 11.7+0.7
−0.4 2.94+0.4

−0.3 3.29+0.4
−0.2

M4MA8 4.05+0.08
−0.5 0.979+0.02

−0.03 8.1+0.2
−1.0 1.77 68.5+0.6

−0.4 8.38+0.3
−0.3 3.41+0.3

−0.6 4.15+0.4
−1.0

M4MA10 3.91+0.2
−0.2 0.994+0.03

−0.01 9.78+0.5
−0.6 1.42 59.7+0.2

−0.2 6.27+0.2
−0.3 3.69+0.3

−0.1 4.23+0.9
−0.3

M4MA100 4.21+0.2
−0.08 1.02+0.03

−0.02 105.0+5.0
−2.0 0.142 6.29+0.4

−0.4 0.203+0.01
−0.01 21.0+3.0

−2.0 24.2+5.0
−2.0

M4MA1000 4.31+0.1
−0.2 1.05+0.02

−0.01 1080.0+30.0
−50.0 0.0142 0.391+0.4

−0.3 0.00519+0.001
−0.001 115.0+20.0

−40.0 128.0+30.0
−50.0

M6MA01 6.96+0.5
−0.8 1.35+0.05

−0.04 0.116+0.008
−0.01 213.0 3.86+0.3

−0.7 325.0+20.0
−60.0 29.0+4.0

−3.0 0.115+0.008
−0.01

M6MA05 6.44+0.2
−0.1 1.21+0.02

−0.04 0.536+0.02
−0.01 42.5 58.0+1.0

−0.7 169.0+10.0
−10.0 5.02+0.3

−0.3 0.535+0.01
−0.01

M6MA1 6.01+0.8
−0.8 0.844+0.04

−0.02 1.0+0.1
−0.1 21.3 157.0+1.0

−4.0 121.0+10.0
−20.0 2.73+0.2

−0.2 0.937+0.1
−0.2

M6MA2 5.81+0.3
−0.3 0.844+0.03

−0.03 1.94+0.1
−0.09 10.6 217.0+2.0

−0.5 83.7+9.0
−5.0 2.1+0.2

−0.1 1.58+0.09
−0.09

M6MA4 6.23+0.1
−0.4 0.94+0.02

−0.01 4.15+0.08
−0.3 5.32 202.0+0.8

−2.0 42.8+2.0
−5.0 2.55+0.2

−0.2 2.53+0.3
−0.2

M6MA6 5.96+0.4
−0.6 0.946+0.02

−0.01 5.96+0.4
−0.6 3.54 168.0+1.0

−1.0 25.8+3.0
−2.0 2.82+0.3

−0.2 3.04+0.3
−0.2

M6MA8 5.96+0.2
−0.5 0.979+0.01

−0.01 7.95+0.2
−0.6 2.66 139.0+0.3

−0.9 17.4+1.0
−0.6 3.39+0.2

−0.4 3.73+0.2
−0.4

M6MA10 5.99+0.2
−0.5 0.99+0.02

−0.02 9.99+0.4
−0.8 2.13 124.0+0.5

−1.0 12.6+1.0
−0.4 3.82+0.8

−0.6 4.11+1.0
−0.7

M8MA01 8.7+0.09
−0.9 1.49+0.02

−0.1 0.109+0.001
−0.01 284.0 4.53+0.4

−0.7 488.0+40.0
−90.0 32.0+4.0

−4.0 0.108+0.001
−0.01

M8MA05 8.35+0.2
−0.3 1.14+0.02

−0.02 0.522+0.01
−0.02 56.7 90.2+1.0

−0.6 278.0+20.0
−30.0 5.01+0.3

−0.4 0.505+0.01
−0.03

M8MA1 8.16+0.6
−1.0 0.837+0.04

−0.03 1.02+0.08
−0.1 28.4 257.0+2.0

−4.0 205.0+10.0
−20.0 2.74+0.3

−0.3 0.92+0.07
−0.1

M8MA2 8.15+0.4
−0.5 0.863+0.03

−0.03 2.04+0.1
−0.1 14.2 395.0+1.0

−1.0 148.0+7.0
−8.0 2.25+0.2

−0.2 1.59+0.1
−0.2

M8MA4 7.99+0.3
−0.4 0.933+0.01

−0.03 4.0+0.1
−0.2 7.09 344.0+0.8

−2.0 72.7+4.0
−8.0 2.41+0.2

−0.1 2.3+0.2
−0.2

M8MA6 7.97+0.4
−0.9 0.938+0.02

−0.02 5.98+0.3
−0.7 4.73 278.0+2.0

−1.0 42.4+7.0
−1.0 2.84+0.2

−0.5 2.93+0.3
−0.6

M8MA8 7.82+0.4
−0.4 0.994+0.01

−0.02 7.82+0.4
−0.4 3.54 247.0+0.8

−1.0 31.5+2.0
−2.0 3.2+0.2

−0.3 3.46+0.5
−0.3

M8MA10 8.06+0.2
−1.0 1.01+0.02

−0.03 10.1+0.3
−1.0 2.84 197.0+1.0

−0.5 22.3+1.0
−0.5 3.72+0.6

−0.4 3.89+0.6
−0.5
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Table 1 – continued

Turbulence Large-scale B-field Fluctuating B-field Total B-field

Simulation ID M �cor,v
�0

MA0
B0

csρ
1/2
0

〈
δB2

c2
s ρ0

〉
V

〈(
δB·B0
c2

s ρ0

)2
〉1/2

V
MA,turb MA,total

(1) (2) (3) (4) (5) (6) (7) (8) (9)

M10MA01 11.3+0.3
−1.0 1.45+0.07

−0.09 0.113+0.003
−0.01 354.0 6.76+1.0

−1.0 720.0+100.0
−200.0 33.7+8.0

−7.0 0.112+0.003
−0.01

M10MA05 10.2+0.3
−0.3 1.13+0.02

−0.02 0.509+0.01
−0.02 70.9 143.0+2.0

−2.0 420.0+20.0
−40.0 4.88+0.6

−0.5 0.496+0.02
−0.02

M10MA1 9.72+0.9
−0.9 0.868+0.03

−0.03 0.972+0.09
−0.09 35.4 338.0+3.0

−4.0 309.0+20.0
−40.0 2.79+0.4

−0.1 0.888+0.06
−0.1

M10MA2 10.5+0.3
−0.8 0.888+0.02

−0.02 2.1+0.07
−0.2 17.7 549.0+0.9

−1.0 215.0+9.0
−10.0 2.39+0.1

−0.3 1.56+0.2
−0.1

M10MA4 10.3+0.4
−0.4 0.931+0.03

−0.03 4.12+0.2
−0.2 8.86 529.0+2.0

−2.0 112.0+8.0
−6.0 2.42+0.4

−0.2 2.32+0.4
−0.2

M10MA6 9.78+0.3
−1.0 0.952+0.02

−0.03 5.87+0.2
−0.7 5.91 398.0+2.0

−0.7 65.2+7.0
−3.0 2.7+0.3

−0.4 2.77+0.3
−0.4

M10MA8 10.0+0.4
−0.9 0.997+0.02

−0.02 8.03+0.3
−0.7 4.43 346.0+1.0

−1.0 46.7+4.0
−1.0 3.27+0.4

−0.4 3.41+0.4
−0.6

M10MA10 9.42+0.2
−0.5 0.99+0.01

−0.01 9.42+0.2
−0.5 3.54 288.0+2.0

−3.0 34.3+3.0
−4.0 3.37+0.3

−0.2 3.5+0.5
−0.3

Note. All simulations listed are run with grid resolutions of 163, 363, 723, 1443, and 2883. All statistics are spatially averaged over the entire domain, V = VL,
and are computed for 51 time realizations, across five correlation times of the Ornstein–Uhlenbeck forcing function. From the distributions in time, we report
the values for the 16th, 50th, and 84th percentiles. This process minimizes the possibility of using statistics that are undergoing temporally intermittent turbulent

events (Beattie et al. 2021b). Column (1): the simulation ID, used throughout this study. Column (2): the turbulent Mach number, M ≡ 〈
(δv/cs)2

〉1/2
VL

. Column
(3): the correlation scale of the turbulence, �cor, v , in units of the driving scale, �0, defined directly from the power spectra in equation (32). Column (4): the
Alfvén Mach number of the mean magnetic field, MA0 ≡ 〈

(δv
√

4πρ0)/B0
〉

, with fluctuations coming from δv, since ∂xi
B0 = ∂t B0 = 0. Column (5): the mean

magnetic field strength in units of csρ
1/2
0 . Column (6): the volume-averaged square of the turbulent magnetic field, proportional to the turbulent magnetic energy,

in units of thermal energy. Column (7): the volume-averaged root-mean-squared (rms) of the magnetic coupling term δB · B0, in units of thermal energy. Column
(8): the Alfvén Mach number of the turbulent magnetic field, equation (28). Column (9): the Alfvén Mach number of the total magnetic field, equation (29).

Figure 1. Typical velocity (red) streamline structure in sub-Alfvénic mean-
field turbulence, with M = 2 and MA0 = 0.1. The direction of the mean
field, B0, is shown in the bottom right-hand corner of the box. Slices of the
density are shown in grey scale at the box edges. Ordered vortex structures
occupy the full extent of the box along ê‖, and out to the driving scale in ê⊥.
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Figure 2. The joint probability density function (PDF) for δB� and δB⊥
for the M2MA001 simulation, showing a long, asymmetric tail into the
negative values for δB�. As demonstrated in S+2021, the δB⊥ fluctuations
are symmetric about δB⊥ = 0, and are analogous to a harmonic oscillator
(in magnetic amplitude space) that is restored by the magnetic tension ∝δB2

⊥
with a quadratic potential. On the other hand, the δB� amplitude fluctuates
anharmonically, ∝δB�, with a linear potential. In sub-to-trans-Alfvénic
compressible MHD the anharmonic, parallel magnetic field fluctuations
contain most of the magnetic energy.
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The dimensionless turbulent kinetic energy, normalized by the
ean thermal pressure (similarly to emag; see equation 5), is

kin = 1

2

(
δv

cs

)2

, (6)

hich acts as an energy reservoir for the magnetic field fluctuations
ia the velocity term in the induction equation, equation (3). Con-
idering our ideal, isothermal (in our units, the thermal energy is
thermal = 3/2), MHD system, the total energy is then

tot = 1

2

(
δv

cs

)2

+ 1

8πc2
s ρ0

(
B2

0 + 2δB · B0 + δB2
) + 3

2
, (7)
nd for just the ‘total’ turbulent energy,

turb = 1

2

(
δv

cs

)2

+ 1

8πc2
s ρ0

(
2δB · B0 + δB2

)
, (8)

here only the δB2 and δB · B0 terms are retained in the magnetic
nergy, because they contain the turbulent contribution.

In a fluid with initially weak magnetic fluctuations and B0 = 0,
kin (equation 6) will transfer energy and enhance emag (equation 5
ith B0 set to 0) via the small-scale turbulent dynamo (for a recent

eview see McKee et al. 2020). A standard ansatz of dynamo theory
MNRAS 515, 5267–5284 (2022)
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M

Figure 3. The square root of the fourth-order turbulent velocity (left) and magnetic field (right) moments as a function of second-order moments, coloured
by MA0, for all of the simulations listed in Table 1. The second-order moments of the turbulent fields are approximately equivalent to the scaled fourth-order

moments,
〈
δv4

〉1/2
V = (1.3 ± 0.3)

〈
δv2

〉
V , and

〈
δB4

〉1/2
V = (1.5 ± 0.4)

〈
δB2

〉
V , rarely deviating by more than a factor of 2 (dotted line) from the 1:1 dashed

line. This means that the standard deviation of the magnetic and kinetic energy distributions scale with the mean.
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7S+2021 showed that even this leads to complications because δB · B0 is
analogous to a potential energy, which does not make sense to average because
it is invariant to gauge transforms, not positive definite, nor symmetric around
the minimum energy state for δB�. See discussion in section 4 of S+2021 for
more details.
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s that saturation will be reached between the turbulent fields, such
hat〈
emag

〉
V

〈ekin〉V
= αsat, (9)

here 0 ≤ αsat ≤ 1. The value of αsat is a function of M, the Alfvén
ach number MA (a precise definition for which we defer to

ection 5), the nature of the driving mechanism, f , in particular if it is
ompressive ∇ × f = 0 or solenoidal ∇ · f = 0, and the Prandtl and
eynolds numbers of the fluid (Federrath et al. 2011a, 2014; Schober
t al. 2012, 2015; Federrath 2016; Achikanath Chirakkara et al. 2021;
riel et al. 2022). The exact physics of the saturation is still an open
roblem in dynamo theory, but most likely the saturation develops
ue to the effect of strong magnetic fields on both the amplification
via field line stretching), diffusion of magnetic fields and instabilities
aused by tearing and magnetic reconnection (Schekochihin et al.
002; Xu & Lazarian 2016; Seta & Federrath 2021a; Galishnikova,
unz & Schekochihin 2022); however, the exact value of αsat and its
ependence on other parameters is not important for our purposes.
hat is significant is that, assuming that the energy transfer from ekin

o emag is solely through the turbulent components of the respective
elds, including the turbulent and large-scale field coupling term for

he more general case where B0 �= 0, from equations (8) and (9)
ecomes

1

8πc2
s ρ0

〈
2δB · B0 + δB2

〉
V = αsat

2

〈(
δv

cs

)2
〉

V

, (10)

hich naively reduces to

1

8πc2
s ρ0

〈
δB2

〉
V = αsat

2

〈(
δv

cs

)2
〉

V

, (11)

f 〈δB · B0〉V = 〈
δB‖

〉
V B0 = 0 because

〈
δB‖

〉
V = 0 when V cap-

ures a few correlation lengths of the turbulence, for the regular
NRAS 515, 5267–5284 (2022)
eynolds (1895) decomposition of a stochastic field.7 But this is not
ecessarily a sensible result because when the large-scale field is
trong the coupling term is leading order in the turbulent magnetic
nergy, and all energy reservoirs should be strictly positive. Because
he coupling term is the only term that is not positive semidefinite
n equation (10) we may want to treat averaging the equation with

ore care.
These considerations lead us to consider an alternative ansatz, one

hat enforces the positivity of all terms. Our approach is to take the
econd-moments of equation (10), but also taking the square root to
nsure that the units are appropriate for an energy balance,

1

8πc2
s ρ0

〈(
2δB · B0 + δB2

)2
〉1/2

V
= αsat

2

〈(
δv

cs

)4
〉1/2

V

. (12)

he physical interpretation of this balance is that instead of balancing
he means of the energy distributions, we balance the root-mean-
quared (rms) values, which are a measure of the typical local
uctuations in energy of the plasma. This method of volume-
veraging equation (10) gives rise to fourth-order terms in velocity
nd magnetic field fluctuations (second order in energies). Note that
or finite MA0, αsat is now different from αsat in small-scale dynamo
xperiments (where B0 = 0) because it is now sensitive to the large-
cale field through the energy contribution of the coupling term.

To better understand the fourth-order terms we plot them as a
unction of second-order terms in Fig. 3 and show the 1:1 and 1:2
ines with dashes and dots, in each of the plots, respectively. Using
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Figure 4. The magnetic coupling term,
〈

(δB · B0)2
〉1/2
V , as a function of the

M, coloured by MA0, for all of the simulations up to MA0 = 10. We show
the strong-field model, equation (20), for the coupling term, indicated with
the grey dashed line, which is valid for the simulations with dark shading,
assuming exact energy equipartition between the turbulent kinetic and the
coupling term energy.
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east-squares fitting we find that
〈
δv4

〉1/2

V = (1.3 ± 0.3)
〈
δv2

〉
V , and

δB4
〉1/2

V = (1.5 ± 0.4)
〈
δB2

〉
V , hence, within ≈1σ , the propor-

ionality constants are approximately unity. Physically, this means
hat as the mean of the energy distributions increase, so does the
ms, or spread of the distributions. This has been shown before,
or example, in Schekochihin et al. (2004), where they found
δB4

〉1/2

V ≈ √
2
〈
δB2

〉
V (see fig. 11, saturated regime). This is an

mportant point, because it means that the contributions from the
urbulent fields remain approximately the same in both averaging
chemes, equations (10) and (12), but now we are able to properly
nclude the energy contribution from the coupling term.

.2 Weak and strong B-field limits for rms energy balance

onsider now equation (12) in the weak B0 regime, such that B0 �
B, averaged over V . This means〈(

2δB · B0 + δB2
)2
〉
V

= 〈
(2δB · B0)2

〉
V + 〈

4(δB · B0)δB2
〉
V + 〈

δB4
〉
V (13)

∼ 〈
δB4

〉
V , (14)

o leading δB4 order, and therefore〈
δB4

〉1/2

V
8πc2

s ρ0
≈ αsat

2

〈(
δv

cs

)4
〉1/2

V

. (15)

ased upon our numerical results this equation can be rewritten in
erms of second-order terms (see Fig. 3),〈
δB2

〉
V

8πc2
s ρ0

≈ αsat

2

〈(
δv

cs

)2
〉

V

, (16)

ith the
〈
δB2

〉
V dominating the balance between the kinetic turbu-

ent energy. Likewise, as Federrath (2016) framed the relation, the
inetic energy is feeding the magnetic field through the δB2 term in
his regime.

In the strong B0 regime we have B0  δB, and hence, to leading
2
0 order equation (13) becomes〈(

2δB · B0 + δB2
)2
〉
V

∼ 2
〈
(δB · B0)2

〉
V , (17)

ith the 2
〈
(δB · B0)2

〉1/2

V term dominating the balance. Hence the
nergy balance must be between〈
(δB · B0)2

〉1/2

V
4πc2

s ρ0
≈ αsat

2

〈(
δv

cs

)4
〉1/2

V

, (18)

hich we can similarly reduce to second-order terms,〈
(δB · B0)2

〉1/2

V
4πc2

s ρ0
≈ αsat

2

〈(
δv

cs

)2
〉

V

. (19)

ote now this is the same relation derived in S+2021, but it comes
rom directly considering the rms balanced energy equations, and
hen invoking the numerical result that the square root of the fourth-
rder velocity and magnetic terms scale almost perfectly with the
econd-order terms. The second–fourth moment relation should be
ccurate to a factor less than 2, as indicated in Fig. 3. Establishing
he strong mathematical footing for this relation is a key result from
ur study.
We will return to equation (10) and the two limiting cases,

quations (16) and (19), throughout this study. Specifically, we will
how that by using this simple energy balance model that includes
(δB · B0)2

〉1/2

V , we can learn a great deal about the magnetic and
elocity field fluctuations. First, we start by understanding the nature
f the coupling term.

MODELS FOR
〈
(δB · B0)2

〉1/2
V

.1 Strong mean field, B0 � δB

ssuming that the kinetic energy fluctuations are in energy equipar-
ition with the coupling term (αsat = 1) it immediately follows from
quation (19) that in the strong-mean-field regime the coupling term
s

(δB · B0)2
〉1/2

V = 2c2
s ρ0πM2. (20)

e plot this predicted relationship, along with the values measured
rom our simulations, in Fig. 4. The plot is consistent with our
xpectations: simulations in the strong-mean-field regime,MA0 < 1,
it very close to the equipartition line, while those with MA0 > 1 sit
elow it, indicating that the

〈
δB2

〉
V term is playing an increasingly

arge role in the energy balance as we transition to the weak-mean-
eld regime.
Even in the strong-mean-field regime, we see weak variation

ith M in how closely the simulations follow the prediction of
quation (20). For low M, the strong-field model works best, but as

gets larger there is some scatter to lower values of
〈
(δB · B0)2

〉1/2

V ,
ven in the sub-Alfvénic simulations. This suggests that forMA0 � 1
here are some contributions to the magnetic energy through the
δB2

〉
V term, which we neglect in our model, i.e. the shear Alfvén

aves and fast modes that perturb the magnetic field perpendicular
o B0. Of course, the turbulence naturally excites such modes but it
s plausible that the magnetic tension significantly suppresses them
hen B0/δB is large.
To further quantify when each of the magnetic terms in equa-

ion (12) contributes the most to the energy balance we ex-
mine the ratio of the two magnetic energy reservoir terms,
(δB · B0)2

〉1/2
/
〈
δB2

〉
. We estimate

〈
δB2

〉
following the fluc-
MNRAS 515, 5267–5284 (2022)

V V V

art/stac2099_f4.eps


5274 J. R. Beattie et al.

M

Figure 5. The ratio of the magnetic coupling term,
〈

(δB · B0)2
〉1/2
V , to the

turbulent magnetic energy,
〈
δB2

〉
V as a function of MA0, coloured by the

M, for all simulations. We show in red dots the equipartition between the
two terms. The grey dashed line shows the strong-field model, equation (22),
which is valid for B0  δB, or MA0 � 2, and the grey dot–dashed line for
the weak-field model, equation (25), valid for MA0 > 2.
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(δB · B0)2
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V , compensated by

equation (20), as a function MA0, coloured by M, for all simulations. This
choice of compensation reveals the MA0 dependency in the super-Alfvénic
turbulence regime, which we provide a model for in Section 4.2, shown with
the grey dot–dashed line.
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uation models in Federrath (2016) and Beattie et al. (2020),8 which
eads to a predicted relationship〈
δB2

〉1/2

V = cs
√
πρ0MMA0. (21)

he ratio between the coupling term to the energy from the above
quation squared is then〈
(δB · B0)2

〉1/2

V〈
δB2

〉
V

= 2

M2
A0

= 2
emag,0

ekin
, (22)

here M−2
A0 = emag,0/ekin. This means at MA0 = emag,0/ekin = 1,

.e. when the turbulent and B0 energy are in equipartition, we
xpect

〈
(δB · B0)2

〉1/2

V /
〈
δB2

〉
V = 2. We plot the relation measured

n the simulations in Fig. 5, showing our predicted scaling in the
trong-mean-field regime with the dashed, grey line. Again, the plot
hows excellent agreement between the model and the MHD data
n the range 0.01 ≤ MA0 ≤ 2, indicating a perfect balancing act
etween

〈
(δB · B0)2

〉1/2

V and
〈
δv2

〉
V . The MA0 ≈ 2 transition is

here
〈
δB2

〉
V /B2

0 ≈ 1, and the turbulent magnetic field starts to
ominate the magnetic energy reservoir. We will find that this is a
eoccurring transition phase for compressible MHD turbulence.

.2 Weak large-scale field, B0 � δB

eyond MA0 � 2 energy balance arguments only work if the
aturation level changes as a function of plasma parameters, because
B is not constant with B0 (Federrath 2016; Beattie et al. 2020).
e have one free parameter, αsat, which need not be constant for

ll MA0 and M (Federrath 2016; Achikanath Chirakkara et al.
021; Seta & Federrath 2021a). To extract αsat, we model the
oupling term in the super-Alfvénic regime by starting with an
mpirical model that Beattie et al. (2020) found held universally for
NRAS 515, 5267–5284 (2022)

Note that anisotropy in the magnetic and velocity fluctuations (decomposing
o perpendicular and parallel field components) was ignored in these studies,
s pointed out by S+2021, but the corrections are of order unity, which
e show in Appendix B, and only become important for more sensitive

alculations, which we discuss later in Section 5.

W
v
t
r
p
d
r

in the MA0 � 2 regime,
〈
δB2

〉1/2

V /B0 = M2/3
A0 . This provides

n independent estimate of the super-Alfvénic turbulent magnetic
uctuations,〈
δB2

〉1/2

V = M2/3
A0 B0 = 2cs

√
πρ0MM−1/3

A0 , (23)

nd therefore, equating equation (16) with the square of equa-
ion (23), αsat = M−2/3

A0 , which implies that as the large-scale field
ecomes weaker, the turbulent magnetic field saturates to smaller
nd smaller values because there is less total magnetic energy,
onsistent with what was qualitatively found in Beattie et al. (2020).
ollowing the same steps as in Section 4.1, additionally using
0/(csρ

2
0 ) = 2

√
πMM−1

A0, the definition of the large-scale field
lfvén Mach number, the coupling term in the super-Alfvénic regime
ecomes

(δB · B0)2
〉1/2

V = 2πc2
s ρ0M2M−4/3

A0 , (24)

nd ratio
〈
(δB · B0)2

〉1/2

V /
〈
δB2

〉
V ,〈

(δB · B0)2
〉1/2

V〈
δB2

〉
V

= 1

2
M−2/3

A0 . (25)

e plot equations (24) and (25), alongside their strong-field coun-
erparts, in Figs 5 and 6, respectively. Note that Fig. 6 shows the
ame information as Fig. 4, but we have normalized by equation (20)
o remove the M2 dependency. This allows us to better observe the
ependence on MA0 in the B0 � δB regime. Astonishingly, through
his relatively simple analysis both of the theoretical models describe
he data very well, providing excellent agreement over three orders
f magnitude in MA0, with no free parameters.

.3 Discussion and caveats

e have established that for sub-to-trans-Alfvénic turbulence, the
olume-averaged turbulent kinetic energy is in exact energy equipar-
ition with the rms δB · B0 field. Each of the models in Section 4.1
elies on this assumption (αsat = 1), and without any further free
arameters, with such a simple model, the agreement to the numerical
ata in Figs 4–6 is remarkable. The models in the super-Alfvénic
egime critically rely on the empirical result from Beattie et al.
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2020),
〈
δB2

〉1/2

VL
/B0 = M2/3

A0 , but likewise, the models for the
oupling and fluctuation terms outlined in Section 4.2 are in excellent
greement with the data, again, with no free parameters.

Our results therefore strongly support the Skalidis & Tassis (2021)
nd S+2021 model for relating the balanced rms magnetic field
oupling term to the volume-averaged turbulent kinetic energy (the
nergy balance arguments). We hope that our treatment satisfies
ther authors’ concerns about the Skalidis & Tassis (2021) coupling
erm method. These concerns have taken two forms. One is that
he energy contribution from 〈δB · B0〉V must= 0 because 〈δB〉V = 0,
s highlighted in the appendix of Li et al. (2022). But as has been
xtensively discussed in S+2021, and in Section 3 of this study,
δB · B0〉V = 0 is not a valid way of understanding the contribution
rom the coupling term. The other concern raised in the appendix of
i et al. (2022) is that energy balance only involves second-order
uantities; this approach by definition omits the coupling term
ontribution, which is first order, in the energetics. Omission of the
oupling term leads to significantly underestimating the magnetic
nergy in sub-Alfvénic turbulence;9 this is strongly supported by
ur numerical results in Figs 5 and 6. In the same figures we show
hat second-order terms become significant only in super-Alfvénic
urbulence. Therefore, one should clearly state the magnetization
evel of turbulence (sub- or super-Alfvénic) before arguing about the
elative contribution of the various terms in the energy balance.

Liu, Qiu & Zhang (2022) further argue that self-gravity may
odify this energy balance. We do not include gravity in this study,

ut it is possible that gravity may collapse locally bound (by self-
ravity) regions in the ISM, enhancing and creating strong magnetic
elds (Sur et al. 2010). This may make the coupling term even more
elevant as the regions collapse, forming convergent flows parallel
o the field lines, and strengthening the magnetic field and hence
he local effect of δB · B0. This is speculative, and the exact effects
f gravity are unclear; we will return to this topic in future work.
f course, all of this work is done in the isothermal context, so our

elations are only relevant to individual phases of the ISM, which are
ell approximated by an isothermal equation of state (e.g. Wolfire

t al. 1995).

TH E T H R E E A L F V É N M AC H N U M B E R S

.1 Definitions and results

he Alfvén Mach number, MA, is another part of the energy balance
tory, because the quantity itself is directly related to the energy
quilibrium in the plasma,

−2
A =

〈
B2/(8π)

(1/2)ρδv2

〉
V

=
〈

emag

ekin

〉
V

, (26)

hich is similar to αsat in equation (9), but not exactly the same,
ecause 〈X/Y 〉V �= 〈X〉V / 〈Y 〉V if there are any correlations be-
ween X and Y, as is the case for the magnetic and kinetic energy
αsat = M−2/3

A0 , Section 4.2).
Throughout the previous section, we utilizedMA0 to construct our
odels around values of B0. We could do this easily because MA0

s an input (or at least controlled, albeit with some small variation
S+2021 showed that omitting the coupling term in the estimation of the
agnetic field strength in sub-Alfvénic turbulence, or equally applying the
avis (1951) and Chandrasekhar & Fermi (1953) method, can produce

stimates that can be up to an order of magnitude larger than the actual
alues.

w

1

p
s
w

ue to velocity fluctuations) in our simulations. However, in many
strophysical turbulence studies, authors prefer to useMA. For some
f these studies, it is not clear if one should interpret this as the MA

ith respect to just turbulent fluctuations, or the total field strength.
he difference between these quantities is rarely appreciated, so
e make a point by defining and relating three different canonical

onstructions of MA. The three definitions we use10 are

A0 =
〈

δv
√

4πρ

B0

〉
V

, (27)

A,turb =
〈

δv
√

4πρ

δB

〉
V

, (28)

A,total =
〈

δv
√

4πρ

B

〉
V

, (29)

here the first of the three defines the large-scale field (or mean
eld on the system scale) Alfvén Mach number, which compares the

arge-scale magnetic energy with the kinetic energy, the second is the
urbulent-field Alfvén Mach number, which compares the turbulent
agnetic energy with the kinetic energy, and the third, the total field
lfvén Mach number.
To understand the relation between the three quantities, we plot

hem in Fig. 7 (MA,total in red, and MA,turb in blue, both as a
unction of MA0). The dashed, grey line shows the one-to-one
ine between MA0 and MA. For MA0 � 2, MA0 ≈ MA,total, which

eans the energetics of the fluid are completely dominated by the
arge-scale field, and not the turbulence at all. MA,turb follows a
ower law in MA0 that prevents the fluctuating magnetic field from
ver becoming stronger than MA,turb ≈ 2. Once the turbulent field
as reached MA ≈ 2, it then begins weakening again, but this time

A,turb ≈ MA,total, with MA,total � MA0, i.e. transitioning into a
urbulent magnetic field dominant regime as the B-field becomes tan-
led and more energy dense than the large-scale field. As discussed
n Section 4.1, the MA0 = 2 transition between the sub-and-super-
lfvénic regimes defines exactly when the B0 and δB field are equal

n energy, and the transition between
〈
(δB · B0)2

〉1/2

V ∝ 〈
δv2

〉
V and

δB2
〉
V ∝ 〈

δv2
〉
V , as annotated in the plot.

We are able to derive the relation between MA,turb and MA0

n the sub-Alfvénic regime by rearranging the coupling magnetic
omponents,

〈
(δB · B0)2

〉1/2

V = 〈
δB2

‖
〉1/2

V B0, on the right-hand side
RHS) and turbulent components on the left-hand side (LHS) of
quation (19),

2
〈
δB2

‖
〉1/2

V
δv

√
4πρ0

= MA0. (30)

ut now we need to use total fluctuating magnetic field, not just
he parallel field, to get the complete MA,turb. In Appendix B, we
irectly measure the different field components and relate them
o the total fields. The most strongly anisotropic regime, in the
ighly sub-Alfvénic turbulence, corresponds to (1/3)

〈
δB2

‖
〉1/2

V ≤
δB2

⊥
〉1/2

V ≤ (2/3)
〈
δB2

‖
〉1/2

V and
〈
δv2

‖
〉1/2

V ≈ (2/3)
〈
δv2

⊥
〉1/2

V . For the
agnetic fluctuations, we pick the average between these two

alues,
〈
δB2

⊥
〉1/2

V = (1/2)
〈
δB2

‖
〉1/2

V , and then propagate both the
agnetic anisotropy through the regular vector magnitude equations,
hich gives

〈
δB2

〉1/2

V = √
3/2

〈
δB2

‖
〉1/2

. Substituting this back into
MNRAS 515, 5267–5284 (2022)

V

0We note there are, of course, even more definitions that one could in
rinciple construct, for example, MA = 〈δv〉 √

4πρ0/ 〈B〉, which we use to
et the Alfvén Mach number in Section 2, or one could even use component-
ise constructions.
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M

Figure 7. The total Alfvén Mach number, MA,total (equation 29), shown in red, and the turbulent Alfvén Mach number, MA,turb (equation 28), shown in blue,
as a function of large-scale field Alfvén Mach number, MA0 (equation 27), for all simulations. The grey dashed line is the one-to-one line between the two
Alfvénic Mach numbers and MA0. The dotted line shows the model for MA,turb for the MA0 ≤ 2 (shown with vertical purple line) regime. The separation
of MA into field components shows explicitly that the turbulent component of the field is highly super-Alfvénic in the sub-Alfvénic large-scale field regime
(i.e. the turbulent kinetic energy is much larger than the turbulent magnetic energy, shown with the horizontal purple line), and the large-scale field dominates

the total magnetic energy, MA0 ≈ MA,total, which coincides to
〈

(δB · B0)2
〉1/2
V ∝ 〈

δv2
〉
V , as discussed in Section 4.1. The transition into the super-Alfvénic

large-scale field regime happens at a critical point in the MA–MA0 diagram, MA0 ≈ MA,total ≈ MA,turb ≈ 2, where there is energy equipartition between
the turbulent and large-scale magnetic field. For MA0 > 2, the turbulent magnetic energy is greater than the energy in the large-scale field (vertical purple line),
hence MA,turb ≈ MA,total, and the turbulent kinetic energy is greater than the magnetic energy, corresponding to the

〈
δB2〉

V ∝ 〈
δv2

〉
V regime, as discussed

in Section 4.2.
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Figure 8. Schematic for the MA,turb–MA0 plane, showing the small-
scale dynamo saturation in the MA0 → ∞ limit, and the MA,turb ∝ M−1

A0(〈
δB2

〉1/2
VL

∝ B−1
0

)
power law in the MA0 → 0 limit, derived using energy

balance. The separation between MA,turb(MA0) curves, 
MA,turb, changes
with different plasma parameters that control the small-scale dynamo satura-
tion.
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quation (30) gives

A,turb =
√

6M−1
A0, MA0 ≤ 2, (31)

hich we plot with the grey dotted line in Fig. 7. This simple
odel intersects with the MA = MA0 line at the MA,total ≈ MA,turb

ransition. At lower MA0 there is some deviation away from the
odel, which is because of the stronger than average magnetic
uctuation anisotropy present in the MA0 � 1 data.

.2 Hypothesis on limiting behaviour

he discussion in the preceding sections leads us to propose a
ypothesis regarding the limiting behaviour of MHD turbulent
ystems in Fig. 7, which we illustrate schematically in Fig. 8.

.2.1 MA0 → 0

s MA0 → 0, the turbulent field should continue to become weaker
nd weaker (MA,turb  1). The reason for this is that the magnetic
uctuations (specifically the shear Alfvén waves) are smoothed out
y the increasing magnetic tension, (B · ∇)B, and are reduced in
NRAS 515, 5267–5284 (2022)
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egrees of freedom since they are perfectly flux frozen into B0.
herefore, instead of any field-line stretching, coherent magnetic
eld lines are randomly walked in the perpendicular plane to B0

field line random walk; Jokipii & Parker 1968). 2D planar motions
annot instigate dynamo action (Zel’dovich 1957 theorem), so it is
nlikely that δB ever grows irreversibly11 again in this limit, and
e find

〈
δB2

〉1/2

VL
∝ B−1

0 (equation 31; consistent with qualitative
bservations in previous studies; Haugen, Brandenburg & Dobler
004), until the magnetic field only has a large-scale component and
= B0.

.2.2 MA0 → ∞
n the MA0 → ∞ (B0 → 0) limit, we reach the results from the
mall-scale dynamo community. Very broadly speaking, in these
tudies, where B0 = 0, and hence MA0 → ∞, the equilibrium
agnetic field strength asymptotes to a value that depends on the

onic Mach number and ratio of compressive to solenoidal modes in
he turbulence, and plasma Reynolds numbers (if they are finite). In
his limit, the maximally efficient turbulent dynamo is for the most
ubsonic, solenoidal flows and the least efficient for the highest M,
ost compressible flows (Federrath et al. 2014; Schober et al. 2015;
ederrath 2016; Achikanath Chirakkara et al. 2021). Hence, as MA0

ecomes larger, we should expect to observe the MA(MA0) curves
eparate and asymptote to different constant values of MA,turb as
function of M, which is what we find in Fig. 7. Since the most

fficient turbulent dynamo12 leads to saturation of MA,total ≈ 2 (see
ighly subsonic, solenoidal experiments in Achikanath Chirakkara
t al. 2021), this defines a floor that bounds MA from below as

A0 → ∞.

.3 Sub-Alfvénic turbulent fields do not exist

e find that the fluctuating magnetic field becomes extremely weak
t MA0 < 2, and is bounded from below by the most efficient
aturation of the small-scale dynamo in the limit MA0 → ∞. An
mmediate consequence of these two limiting behaviours is that
here is no room in the MA–MA0 plane for MA,turb � 2 turbulence.
ence the only sub-Alfvénic turbulence that is possible in this
arameter space is sub-Alfvénic large-scale field (or coherent field)
uid turbulence. We show that this kind of turbulence is highly super-
lfvénic with respect to the turbulent velocity fluctuations (shocks

nd vortices), MA,turb  1, and it is only through the non-turbulent
omponents of the plasma that the magnetic energy is able to be
ufficiently stronger than the kinetic energy. As a caveat of this
nalysis, in this section, we volume-averaged the plasma beyond the
orrelation scale of the turbulence, hence this does not rule out that
he turbulence can be sub-Alfvénic on scales much smaller than the
orrelation scale. In the next section, we explore averaging below
he correlation scale, and discuss how sub-Alfvénic turbulence can
merge by taking statistics below the correlation scale.
1Note that it may grow locally, through reversible processes such as
ompression, but these ought to average out over time.
2Note this is in absence of magnetic helicity, which may significantly change
he saturation of the dynamo given that there are more degrees of freedom
o store magnetic energy than in non-helical turbulence and magnetic modes
bove the outer scale of the turbulence can be energized (e.g. sections 4–5 in
incon 2019).

t
m
c
i
R

1

s

 2022
TH E AV E R AG I N G SC A L E

e have shown it is important to average equation (9) in such a way
hat all of the terms are positive definite, and that

〈
(δB · B0)2

〉1/2

V
alances the kinetic turbulent energy perfectly in the sub-Alfvénic
arge-scale field turbulence regime. However, these methods criti-
ally rely on an averaging scale V . In this section, we highlight the
mportance of V and show that even if one adopts the traditional
nsatz that does not enforce positivity, equation (10), the coupling
erm can make non-zero contributions to the turbulent energy.

The fundamental reason for this is that the volume-averaging scale
or 〈· · · 〉V is important. In simulations, we regularly report volume-
veraged statistics over a few turbulent correlation scales, �cor, v , i.e.
= ⋃N

i=1(�3
cor,v)i , where N is a few, or directly at the full size of a

imulation box,V = VL. However, for many observations of the ISM,
he region sampled is far smaller than the turbulent correlation scale.
or example, magnetic fields in star-forming clouds are observed to
e correlated on scales up to ∼100 pc (Li et al. 2014), comparable to
he scale height and the outer scale of turbulence in galactic discs (e.g.
arlsson, Bromm & Bland-Hawthorn 2013; Falceta-Gonçalves et al.
014; Krumholz & Ting 2018). Dust polarization observations using
erschel (e.g. the Herschel Gould Belt Survey; André et al. 2010)
enerally sample13 much smaller fields of view (of order 10 pc); over
ize scales typically probed by such observations, there is no sign of
flattening in the velocity dispersion–size relation (Federrath et al.
021; Yun et al. 2021; Zhou, Li & Chen 2022), clear evidence that
he region being studied is much smaller than the correlation scale.

To explore the implications of this, we directly compute the
orrelation scales of the turbulence �cor, v and magnetic field �cor, B in
ur simulations, and plot them as a function of MA0, coloured by M
n Fig. 9. We compute both of them in the textbook manner, directly
rom the energy spectra Pv(k) and PB (k) as

�cor

�0
= L

�0

∫ ∞

0
dk k−1P(k)∫ ∞

0
dk P(k)

, (32)

here P(k) is replaced by Pv(k) for the turbulence correlation
cales, and PB (k) for the magnetic field correlation scales.

We focus first on the top panel of Fig. 9, the turbulence correlation
cale. The super-Alfvénic large-scale field experiments have �cor, v

�0, with a small dip at MA0 = 2 as the turbulence transitions
etween B0 and δB dominated (as discussed in Section 3). The
ub-Alfvénic turbulence has correlations scales above the driving
cale, most likely due to the system-scale vortices that develop in
he flow (Beattie et al. 2020, 2021b). If we interpret this experiment
t face value, this means that if individual clouds are sub-Alfvénic,
e should expect correlated turbulent velocities beyond the extent of

he entire sub-Alfvénic region, even if the driving scale is not itself
arger than the individual clouds. For the ISM in general, which is
robably trans-Alfvénic-to-super-Alfvénic (MA0 ≈ 2) and transonic
n average (Gaensler et al. 2011; Krumholz et al. 2020; Seta &
ederrath 2021b; Liu et al. 2022), we should expect turbulent motions

o be correlated out to the driving scale of the largest turbulent
otions. This, of course, is a natural repercussion of one of the

entral tenets of turbulence: the energy cascade from large (galactic,
n this context) to small (molecular cloud and smaller; Armstrong,
ickett & Spangler 1995) scales.
MNRAS 515, 5267–5284 (2022)

3In observations we can define a sampling scale as the maximum spatial
eparation of observational data in the plane of the sky.
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M

Figure 9. Top: the turbulent correlation scale, �cor, v (equation 32), in units
of turbulent driving scale, �0, as a function of MA0, for all simulations. We
find �cor, v ≈ �0, with some systematic deviation at low MA0, most likely
due to the strong, global anisotropy in those simulations. Bottom: the same,
but for the correlation scale of the magnetic field, �cor, B. The scatter at each
MA0 is determined by M, which ranges between M ≈ 0.5 and 10 and only
weakly changes the correlation scale of the turbulence.
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Figure 10. Coupling and mean-squared values of magnetic fluctuation terms
in units of large-scale field as a function of averaging scale normalized to
the correlation scale of the turbulence, �cor, v , for the 10 randomly sampled
regions in the M2MA001 (top) and M2MA10 (bottom) simulations. The square
magnitude of δB on scale �/�cor, v is shown in red, and the mean of δB · B0

on that scale is shown in black. The yellow shaded region indicates where
numerical dissipation effects may influence the field statistics. Because of
the spatial correlation of the magnetic field, on scales � < �cor, v (volumes
V � �3

cor,v), turbulent fields are converted into effective mean fields. This
means 〈δB · B0〉V �= 0 on scales below �cor, v , acting as an effective mean
field on that scale. On scales above �cor, v the Reynolds rule of averaging
holds and 〈δB · B0〉V = 0 as expected.
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Similar to the turbulence correlation scales, the magnetic corre-
ation scales of the sub-Alfvénic simulations are on larger scales
han the driving scale, indicating, as we showed in Section 5,
hat the fluctuating magnetic field is negligible in the sub-Alfvénic
egime, and is strongly suppressed by the large-scale field. The super-
lfvénic simulations show a decaying power law �cor,B ∝ �0M−1/2

A0 ,
hich demonstrates that as the large-scale field weakens, the causally

onnected regions in the magnetic field move to smaller and
maller scales (qualitatively consistent with previous expectations;
.g. Lazarian & Beresnyak 2006). This is likely due to the strong
urbulent motions tangling the magnetic field (e.g. section 4.1.1 in
ampson et al. 2022), increasing the net curvature (Yuen & Lazarian
020) and facilitating a smaller scale field.14 This means, to place the
orrelation scale of the magnetic field on comparable scales of a 10 pc
bservation (e.g. Federrath et al. 2016; Panopoulou, Psaradaki &
assis 2016; Beattie et al. 2019; Hu et al. 2019), for �0 = 100 pc we
equire that MA0 � 100, which on average is unrealistically high for
he MA0 in the disc of Milky Way analogues (Hopkins et al. 2021;

ibking & Krumholz 2021). Likewise, for average ISM parameters
hat we use from the above discussion (�0 = 100 pc, MA0 = 2),
cor,B ∝ �0M−1/2 gives �cor,B ≈ 70 pc, which determines the largest
NRAS 515, 5267–5284 (2022)

A0

4In the sense that the ratio of the magnetic energy in the low-k modes to the
agnetic energy in the high-k modes is shrinking.

e
M
I
f
h

cale in which the magnetic field can be casually connected via
agnetic field fluctuations, when driven at 100 pc.
The significance of this for magnetic energy balance, in both

imulations and observations, is that we are often dealing with vol-
mesV � VL, and while 〈δB · B0〉VL

= 0, in general 〈δB · B0〉V �= 0
hen V < VL. More generally, for random fields X and Y, averaged
n volumes V < VL, 〈〈X〉V Y〉V �= 〈X〉V 〈Y〉V and without loss of
enerality, 〈δX〉V �= 0, i.e. the Reynolds rule of averaging is no
onger valid (Germano 1992; Hollins et al. 2018). We show an explicit
xample of this for sub-Alfvénic M2MA001 (top) and super-Alfvénic
2MA10 (bottom) simulations, mimicking the transonic average

SM in Fig. 10. We provide a full description of the methodology
or performing the experiment in Appendix C, but to summarize
ere, we use real-space spherical top-hat filters initialized at random
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Figure 11. The same as the bottom panel of Fig. 10, but for the scale-
dependent Alfvén Mach numbers of the large-scale field, equation (27), and
the turbulent field, equation (28).
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Figure 12. The same as the top panel of Fig. 10, but for the scale-dependent
energy balance, in the strong-field limit equation (19). We show lines of 1:1
(blue, dashed), 2:1 and 1:2 (blue, dot–dashed), highlighting that between the
largest scales in the simulations and the dissipation scales (indicated with the
yellow shaded region) almost all of the random regions sampled fall within a
factor of 2 in exact equipartition.

o
fi
i
t
t
fl
p
m
w
n
(
s
o
o
f
c
i
s
m
b
m
s
c
M
i
c
o

t
(
A
p
b
n〈
t

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/4/5267/6651395 by Australian N
ational U

niversity Library user on 12 N
ovem

ber 2022
oordinates in each the simulation, each with diameters �/�cor, v , to
ompute the mean-squared (red) and mean (black) of the filtered δB
nd δB · B0 fields, in units of the large-scale field, respectively; �cor, v

s computed independently, directly from the velocity power spectra,
quation (32). We indicate in yellow the scales for which numerical
issipation may influence the rms statistics, which can be up to ∼30
rid cells for our (and other grid) simulation solvers (see section 2 in
itsionas et al. 2009; Federrath et al. 2011b, for further details).
For both simulations, we find that on scales � < �cor, v ,

δB · B0(�/�cor,v)
〉
V �= 0, coupled with a small

〈
δB2(�/�cor,v)

〉
V

ompared to the system-scale
〈
δB2

〉
V . This is a natural repercussion

f finite spatial correlation in the plasma, where local regions in
he turbulence, �3 < �3

cor,v , can have fields that appear ordered, even
hough they are part of the global fluctuating field, as evident from
ig. 10. When averaging over these filtered regions the spatially
orrelated fluctuating field acts as an effective large-scale field on that
cale. The main difference between the two simulations is the size
f the fluctuating field, which is orders of magnitude smaller on all
cales in the sub-Alfvénic simulation, as expected from our previous
iscussions in Section 5. Our analysis also illustrates the difficulty of
istinguishing between large- and small-scale magnetic fields when
ne is making observations well below �cor, v , and provides a very
lear reason why δB · B0 may be an important quantity for magnetic
eld observations made over a finite field of view. This finding has
trong implications for the interpretation of observations. As we
iscussed in Section 1, some ISM observations suggest that clouds
re in a sub-Alfvénic state (Li et al. 2013; Federrath et al. 2016; Hu
t al. 2019; Heyer et al. 2020; Hwang et al. 2021; Skalidis et al.
021b; Hoang et al. 2022). Based on our analysis in Section 5, this
eans that a very strong, large-scale field must be present. Naively,

he small-scale dynamo, which is generally invoked to explain the
agnetic field strengths in the ISM, should not be able to maintain

uch a system (the most efficient dynamo saturates at MA ≈ 2;
ederrath 2016), with all of the magnetic energy being stored in

he large-scale field. An α–� dynamo that can grow a large-scale,
oherent magnetic field through the Parker loops (α; Parker 1979) or
ifferential, possibly galactic, rotation (�; see section 2.6 in Beck &
ielebinski 2013) may be required to grow such a field at the kpc

cale, which is coupled to the ISM of the galaxy, piercing individual
louds and making them highly magnetized.
Our current analysis suggests an alternative possibility: one way
f creating an effective mean field, which may act like a large-scale
eld for scales below it (e.g. for a sub-Alfvénic plasma embedded

n a super-Alfvénic plasma), is by taking filtered statistics of the
urbulence, and hence observing the fluctuating field well below
he correlation scale of the turbulence. Because this process turns
uctuating field into an effective large-scale field, it facilitates the
erfect conditions for moving left in Fig. 7, with subdominant
agnetic field fluctuations and a strong coherent field. In Fig. 11,
e show the same filtered turbulence calculation as in Fig. 10 but
ow instead with MA0(�/�cor,v) (black curve) and MA,turb(�/�cor,v)
blue curve). We use the M2MA10 simulation, which is globally
uper-Alfvénic, MA0(L/�cor,v) ≈ 10, as indicated to the far right
f the black curve. On scales smaller than the �cor, v , a majority
f the random samples exhibit MA,turb(�/�cor,v) < 1, and likewise
or MA0(�/�cor,v), albeit over a narrower range in �/�cor, v . In the
ontext of simulations, this shows that the statistics of small regions
n the turbulence can be effectively sub-Alfvénic, even in a globally
uper-Alfvénic plasma. In the context of observations of the cold,
olecular ISM, it means that even though individual clouds may

e observed to be sub-Alfvénic, the magnetic fields in these clouds
ay still be the result of a small-scale dynamo process, saturating at

uper-Alfvénic values, but operating on scales much larger than the
loud being observed. Thus observing a cloud to be sub-Alfvénic,

A � 2, does not automatically mean that the field in that cloud
s the product of an α–� or similar large-scale dynamo; one can
onclude that such a process is at work only if one recovers MA � 2
n scales larger than the turbulent correlation length.
As a final calculation for this study, we compute the energy ratio of

he coupling term to the kinetic energy,
〈
(δB · B0)2

〉1/2

V /(2c2
s ρ0πM2)

the ratio of the left- to right-hand side of equation 19) in a sub-
lfvénic plasma as a function of scale, just as we did in the previous
aragraphs for the other rms statistics. This tests if the energy
alance we presented in Section 3 is valid over a range of scales,
ecessary for making it a useful relation for applications. We plot
(δB · B0)2

〉1/2

V /(2c2
s ρ0πM2) as a function of �/�cor, v in Fig. 12, for

he same simulation as in the top panel of Fig. 10. We find that on the
MNRAS 515, 5267–5284 (2022)
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nterval between the system scale L and the scale in which numerical
issipation effects exist �ν (the largest scale that is shaded yellow)
hat our filtered samples of the turbulence mostly fall within the 1:2 to
:1 interval (blue, dot–dashed lines). On average, across all samples
nd � ∈ [�ν , L], we find

〈
(δB · B0)2

〉1/2

V /(2c2
s ρ0πM2) = 1.5 ± 1,

apturing the exact equipartition within 0.5σ . Below �ν most of the
amples become highly magnetized due to the kinetic energy being
ominated by numerical dissipation and the large-scale magnetic
eld permeating through all of the scales in the plasma.

SU M M A RY A N D K E Y FI N D I N G S

otivated by recent works on measuring and modelling magnetic
elds in the ISM (Beattie & Federrath 2020; Skalidis & Tassis
021; S+2021), we provide a theoretical and numerical exposition
f the rms energy balance between the kinetic and magnetic energy,
ighlighting the role of the magnetic coupling term,

〈
(δB · B0)2

〉1/2

V ,
hich describes the energy contained in magnetic fluctuations

B coupled to the large-scale magnetic field B0. We discuss the
ignificance of this term in the context of the first (comparing
olume-averaged energies) and second (comparing magnitudes of
nergy fluctuations) moments of the energy balance equations,
eriving its typical value directly from the second moment equations,
hich preserve the positivity of each energy contribution. From

his argument we derive a number of analytical models with no
ree parameters, for the coupling term and fluctuating magnetic
eld, δB, and demonstrate that these yield outstanding agreement
ith the results of a large suite of MHD simulations. Our analysis
emonstrates that

〈
(δB · B0)2

〉1/2

V plays an important role in sub-to-
rans-Alfvénic large-scale field turbulence, regardless of the sonic

ach number M. This term becomes less important for MA0 > 2,
here δB2 becomes dominant, but the large-scale field still has

n effect. In Section 5, we explore three different formulations of
he Alfvénic Mach number MA, and the relations between them,
howing that sub-Alfvénic large-scale field turbulence, supports
n extremely super-Alfvénic turbulent field, suggesting that the
agnetic field fluctuations are smaller than velocity fluctuations

n this limit. We present a heuristic for understanding the whole
urbulent and large-scale field Alfvén Mach number parameter plane
nd discuss the implications for interpreting ISM observations and
ub-Alfvénic turbulence. We list the key results of this study below.

(i) We provide theoretical models for the volume-averaged fluc-
uating and coupling magnetic fields,

〈
δB2

〉
and

〈
(δB · B0)2

〉1/2

V ,

ssuming energy equipartition between
〈
(δB · B0)2

〉1/2

V and the
olume-averaged velocity fluctuations

〈
δv2

〉
V in the sub-Alfvénic

egime (equations 20 and 22), and
〈
δB2

〉
V and

〈
δv2

〉
V in the super-

lfvénic regime (equations 24 and 25). These models are free of
arameters, but rely on the numerical observation that 〈δv2〉 ≈
δv4〉1/2 and 〈δB2〉 ≈ 〈δB4〉1/2, i.e. that the average energy scales with
he magnitude of energy fluctuations, which we demonstrate in Fig. 3.
ur models show excellent agreement with numerical compressible
HD data, over a very broad range of plasma values, in Figs 4–6.
e discuss how this provides strong support for the polarization dis-

ersion models [Davis–Chandrasekhar–Fermi (DCF)-like methods]
erived in Skalidis & Tassis (2021) and S+2021.
(ii) We define large-scale field, turbulent, and total Alfvén Mach

umbers (Section 5) and propose that we can completely define the
hole MA,turb–MA0 data plane, shown in Fig. 8, based on the small-

cale dynamo saturation as MA0 → ∞, and an analytical model
hat we derive using energy balance for MA0 → 0, equation (31),
NRAS 515, 5267–5284 (2022)
hich implies
〈
δB2

〉1/2

VL
∝ B−1

0 . Critically, we show that the turbulent
agnetic field never becomes sub-Alfvénic, and it is only through a

trong, large-scale magnetic field that the turbulence can transition
nto this regime. We show that the turbulence becomes highly super-
lfvénic in the sub-Alfvénic large-scale field regime, and discuss the

mplications for sub-Aflvénic ISM observations in Section 5.3. We
uggest that a contributing factor to sub-Alfvénic ISM observations
ay be from measuring a trans-to-super Alfvénic average ISM,
hich, unlike sub-Alfvénic turbulence, may be supported by a small-

cale dynamo, well below the correlation scale of the turbulence. We
how that this is true for simulations of globally super-Alfvénic
urbulence in Fig. 11.

(iii) In Fig. 10, we explicitly show that by measuring filtered
agnetic field statistics below the correlation scale of the turbulence

equation 32), which is roughly equal to the driving scale with some
light deviations in the sub-Alfvénic regime (Fig. 9), one turns the
uctuating field into an effective mean field. We show this is true for
oth the sub-Alfvénic and super-Alfvénic regime. This highlights
hat for quantities such as 〈δB · B0〉V or

〈
δB2

〉
V , if the volume-

veraging scale, V , does not resolve the correlation scale of the
urbulence, then the volume average need not be zero, as previously
iscussed in Germano (1992) and Hollins et al. (2018). Furthermore,
n Fig. 12, we show our sub-Alfvénic energy balance model provides
ood agreement across the resolved scales available to us in the
ub-Alfvénic regime.
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Figure A1. The coupling term, as discussed in Section 3, as a function of
numerical grid resolution for the MA01 and MA10 simulations, from Table 1.
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Figure B2. The same as Fig. B1, but for the rms velocity fluctuations
perpendicular and parallel to B0. Note, compared to Fig. B1 the anisotropy is
inverted between the parallel and perpendicular directions.
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PPEN D IX B: ANISOTROPY O F THE
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Figure B3. The same as Fig. 2, but for the M2MA10 simulation, highlighting
the global, isotropic nature of the magnetic field fluctuations in the super-
Alfvénic regime.
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ecause the coefficients are so close to unity (
√

11/3 ≈ 1.11,
17/3 ≈ 1.37) this demonstrates that in the sub-Alfvénic mean-field

egime it is the parallel magnetic field fluctuations and perpendicular
elocity fluctuations that dominate the respective total fluctuations.

In Fig. B3, we plot the joint magnetic field fluctuation distribution
or the super-Alfvénic simulation, M2MA10, to contrast the sub-
lfvénic case in Fig. 2. The strong anisotropy in the sub-Alfvénic

oint PDF disappears in the super-Alfvénic data, and the fluctuations
ecome spherically symmetric and hence isotropic.
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P P E N D I X C : AV E R AG I N G A S A FU N C T I O N
F L E N G T H SC A L E

n Section 6, we compute 〈δB · B0〉 and
〈
δB2

〉1/2
as a function

f length scale in the turbulence for the M2MA001 and M2MA10
imulations, as well asMA0 andMA,turb for theM2MA10 simulation.
o do this we pick a random coordinate (x1, x2, x3), in the three-
imensional simulation, and expand a set of concentric i spheres,

i = {(x, y, z) ∈ VL | (x − x1)2 + (y − x2)2 + (z − x3)2

= (�i/2L)2}, (C1)

ver a range of diameters, �i/L ∈ [0, 1]. Si is then our filter, and for
ach �i/L we compute the convolved field variables,

∗(�i/L) =
∫
VL

df Sif (x, y, z), (C2)

here f(x, y, z) is either δB · B0, δB2, all of the components
or MA0 and MA,turb as per our definitions in Section 5, or

or
〈
(δB · B0)2

〉1/2
/(2c2

s ρ0πM2), and f∗ is corresponding length-
NRAS 515, 5267–5284 (2022)

V

ependent field variable. Next, we compute the volume averages,
f ∗(�i/L)〉V , where V is the volume (4/3)π(�i/2L)3, for each �i/L.
inally, we independently compute the velocity power spectra and
orrelation scale, �cor, v , of the simulation boxes using equation (32),
llowing us to transform all of the length scale units into correlation
cales. We show

〈
δB · B0(�i/�cor,v)

〉
V and

〈
δB2(�i/�cor,v)

〉
V for a

epresentative sub-Alfvénic and super-Alfvénic simulation in Fig. 10.
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