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ABSTRACT
Supersonic turbulence in the interstellar medium (ISM) is closely linked to the formation of stars; hence, many theories connect
the stellar initial mass function (IMF) with the turbulent properties of molecular clouds. Here, we test three turbulence-based
IMF models (by Padoan and Nordlund, Hennebelle and Chabrier, and Hopkins) that predict the relation between the high-mass
slope (�) of the IMF, dN/d log M ∝ M� , and the exponent n of the velocity power spectrum of turbulence, Ev(k) ∝ k−n, where
n ≈ 2 corresponds to typical ISM turbulence. Using hydrodynamic simulations, we drive turbulence with an unusual index of
n ≈ 1, measure �, and compare the results with n ≈ 2. We find that reducing n from 2 to 1 primarily changes the high-mass
region of the IMF (beyond the median mass), where we measure high-mass slopes within the 95 per cent confidence interval of
−1.5 < � < −1 for n ≈ 1 and −3.7 < � < −2.4 for n ≈ 2, respectively. Thus, we find that n = 1 results in a significantly flatter
high-mass slope of the IMF, with more massive stars formed than for n ≈ 2. We compare these simulations with the predictions
of the three IMF theories. We find that while the theory by Padoan and Nordlund matches our simulations with fair accuracy,
the other theories either fail to reproduce the main qualitative outcome of the simulations or require some modifications. We
conclude that turbulence plays a key role in shaping the IMF, with a shallower turbulence power spectrum producing a shallower
high-mass IMF, and hence more massive stars.
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1 IN T RO D U C T I O N

The stellar initial mass function (IMF), which describes the mass
distribution of stars in a population at birth, plays a vital role in many
fields of astrophysics. The literature generally agrees that the IMF
has a power-law form dN/d log M ∝ M� in the high-mass end, with
� ≈ −1.35 (Salpeter 1955), while there is an ongoing debate on
the possible variations in observational estimates of the slope � for
extragalactic populations (Bastian, Covey & Meyer 2010; Krumholz
2014; Offner et al. 2014; Hopkins 2018).

One popular candidate for determining the physics of the IMF is
turbulence – this is because the spectra of the molecular interstellar
medium (ISM), where stars are born, provide clear evidence for
supersonic turbulent motions (Larson 1981; Ossenkopf & Mac Low
2002; Elmegreen & Scalo 2004; Heyer & Brunt 2004; Roman-Duval
et al. 2011). Thus, many theoretical models of the stellar IMF are
based on the statistics of supersonic turbulence. Padoan, Nordlund
& Jones (1997) and Padoan & Nordlund (2002, hereafter PN02)
proposed that supersonic shocks create dense cores by sweeping
through the ISM and compressing the gas. They then estimated the
likelihood of the cores to be Jeans unstable and hence the mass
distribution of collapsing cores, which may be closely linked to the
IMF (André et al. 2010; Offner et al. 2014; Guszejnov & Hopkins
2015). Hennebelle & Chabrier (2008, hereafter HC08) and Hopkins
(2012, hereafter H12) proposed derivations of the IMF using the Press
& Schechter (1974) and excursion-set (Bond et al. 1991) formalisms,
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respectively. In these models, one estimates the density variance as
a function of size scale, and then determines the IMF by measuring
the mass distribution of regions where the density is high enough
for gravity to overcome various supporting mechanisms (such as
thermal motions, turbulence, magnetic fields, and/or disc shear). The
turbulence-regulated theories of the IMF by PN02, HC08, and H12
yield estimates for � that are generally in good agreement with
observed IMFs (Miller & Scalo 1979; Kroupa 2001; Chabrier 2003,
2005; Kroupa et al. 2013; Offner et al. 2014), if the parameters are
chosen carefully.

In these analytical models, the power-law index n of the turbulent
velocity power spectrum,1 Ev(k) ∝ k−n, appears as a critical factor
that determines the high-mass power-law slope �. The narrow range
of n in nature (5/3 ≤ n < 2; Federrath 2013) can be used to argue for
the relatively universal high-mass slope of the IMF produced by these
models and seen in observations. However, the near universality of n
also makes it difficult to test any particular model’s prediction for the
relationship between n and the IMF. While the underlying functional
relationship between n and the IMF shape is fundamentally different
in the different models, the small range of variation in n yields a
similarly small range in predicted IMFs.

None the less, a handful of simulations have explored this question.
Bate (2009) studied the effect of n on the star formation within a
collapsing molecular cloud by carrying out simulations with initial
turbulent velocity fields characterized by n = 2 and n = 4, and

1We define E(k) to be the one-dimensional power spectrum, so that Kol-
mogorov turbulence corresponds to n = 5/3.
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concluded that the resultant IMFs show little dependence on n
overall. Delgado-Donate, Clarke & Bate (2004) conducted a set
of similar simulations but in the context of low-mass (5 M�) core
fragmentation, and also found that the initial choice of n does not
significantly affect the stellar IMF. Goodwin, Whitworth & Ward-
Thompson (2006), on the contrary, found that a shallower velocity
power spectrum (n closer to zero) leads to more fragmentation in
their simulations of low-mass (∼5 M�) cores, although the statistical
argument is weak due to the low number of sink particles used
for the analysis (Nsink < 100). In the studies mentioned above, the
authors varied only the initial velocity field, while the star formation
commenced roughly after one free-fall time. The problem with this
approach is that without continuous driving, most of the turbulent
energy would dissipate away within a free-fall time (Mac Low et al.
1998; Stone, Ostriker & Gammie 1998; Elmegreen & Scalo 2004;
McKee & Ostriker 2007), and n would relax to the natural range
of 5/3 to 2. Therefore, while the choice of n could affect the initial
structure of the collapsing cloud, it would have little effect during the
process of star formation. We conclude that the studies are insufficient
for a direct comparison with the turbulent fragmentation theories.

The aim of this work is to test how well the turbulence-regulated
IMF theories (PN02, HC08, and H12) predict the high-mass power-
law slope of the IMF, by simulating star formation under hydrody-
namic turbulence (i.e. without magnetic fields) with velocity power
spectral index n much different from what is observed in nature
(5/3 to 2). We develop a turbulence driving module that is capable
of driving and maintaining supersonic turbulence with arbitrary
n < 2, and create an artificial molecular cloud with n = 1 in the
computational domain. We measure the mass function of the stars,
represented by sink particles, born under the n = 1 turbulence, and
compare it with the IMF from the typical n ≈ 2 supersonic turbulence.
We assure the statistical significance of the study by collecting
around 1000 stars represented by ‘sink particles’ per set-up through
repeated simulations with different randomization of the turbulence
driving.

We note that the interaction between magnetic fields and the
IMFs represents another point of difference that can be used to
test the models. Magnetohydrodynamic (MHD) simulations show
that magnetic fields have a variety of effects, including reducing the
star formation rate (SFR) and changing how gas fragments (Padoan,
Haugbølle & Nordlund 2014; Federrath 2015; Haugbølle, Padoan
& Nordlund 2018; Krumholz & Federrath 2019). However, they are
incorporated into IMF theories in different ways. In the PN02 model,
the presence of magnetic fields changes to which extent supersonic
shocks compress the medium, which changes the mass spectrum of
the density structures that may go on to collapse and form stars,
whereas in the HC08 and H12 models the primary role of magnetic
fields is to provide an additional form of pressure that makes it
more difficult for structures to collapse. Although we present only
hydrodynamic simulations here, in a forthcoming paper we explore
the effects of magnetic fields as a complementary way of testing IMF
theories.

The rest of the paper is organized as follows. We describe the
simulation set-up and the initial conditions in Section 2, and present
the results in Section 3. In Section 4, we compare our mass functions
with the three turbulence-based IMF theories. We summarize our
findings in Section 5.

2 N U M E R I C A L M E T H O D S

We simulate star formation within a turbulent, dense molecular
cloud with the FLASH4 adaptive mesh refinement (AMR) code

(Fryxell et al. 2000). Here, we use the HLL5R approximate Riemann
solver (Bouchut, Klingenberg & Waagan 2010; Waagan, Federrath &
Klingenberg 2011) and the multigrid Poisson gravity solver (Ricker
2008) on a block-based PARAMESH AMR grid. We explain the
turbulence driving method in Section 2.1 and the sink particles in
Section 2.2, and then we outline the initial conditions and simulation
procedure in Section 2.3.

2.1 Turbulence driving

In order to drive turbulence with a prescribed velocity power spec-
trum of slope n, we add a time-varying acceleration field Fstir(x, t) as
a source term in the momentum equation (Federrath et al. 2010a). We
utilize an Ornstein–Uhlenbeck process (Eswaran & Pope 1988) to
construct the driving field Fstir with an autocorrelation time matching
the turbulent crossing time T = L/2σ v , where σ v is the rms velocity
dispersion. Inspired by observations (e.g. Ossenkopf & Mac Low
2002; Elmegreen & Scalo 2004; Brunt, Heyer & Mac Low 2009), the
usual procedure is to construct Fstir with only large-scale modes (i.e.
to drive at wavenumbers2 k = |k| ∼ 2) and let small-scale turbulence
emerge naturally. The energy cascade in (supersonic) turbulence will
distribute energy to smaller scales in such a way as to produce n ≈ 2
(Federrath 2013).

Here, however, we want to construct velocity power spectra with
n significantly smaller than 2, in order to test theoretical predictions
for the dependence of the IMF on n. Thus, we must inject energy
on every resolvable scale, or in other words, the driving field needs
to contain modes up to kN = L/(2�x), where �x is the minimum
computational cell size of the simulation. However, including all
wavevectors within 2 ≤ k ≤ kN is expensive since FLASH evaluates
the acceleration field at each cell from the set of driving modes,
and the number of modes in a wavenumber bin [k, k + dk] is
proportional to k2 dk. To reduce the computational load, we take
a heuristic approach by generating a stirring field that contains only
a fraction of randomly selected wavevectors, such that the number
of modes between k and k + dk scales as k0.5 dk. This practice yields
a significant gain in speed (by a factor of ∼103) while preserving
the isotropy of Fstir, and therefore the isotropy of the turbulence.
The resultant driving field is constructed to have a natural mixture of
solenoidal and compressive modes, which corresponds to the driving
parameter b ∼ 0.4 (Federrath et al. 2010a).

In order to run a set of simulations in which the power spectrum of
the turbulent velocity field follows a power law with index n = 1 or
n = 2, we construct the acceleration field Fstir with 2.3 × 104 modes,
randomly selected within 2 ≤ k ≤ 256. We show below that when the
amplitude of each mode A(k) is proportional to k−0.9, the resulting
turbulence power spectrum reaches a slope close to n = 1. For the n =
2 case, we use the same method, but with A(k) ∝ k−2 to match the
shape of the power spectrum of Fstir to that of the turbulent velocity
typically observed in molecular clouds and simulations of supersonic
turbulence (Elmegreen & Scalo 2004; McKee & Ostriker 2007;
Federrath 2013). Below we refer to simulations run with a driving
field A(k) ∝ k−0.9 as N1 simulations, and those run with A(k) ∝ k−2

as N2 simulations. We show in Appendix A that the results we
obtain for the N2 simulations using this driving procedure are nearly
identical to those produced via the more common procedure of
driving only at low k (Federrath et al. 2010a), and allowing modes at
higher k to be produced by the turbulent cascade.

2In this paper, k is measured in units of the inverse box size, so k = 1
corresponds to a mode with wavelength equal to the box scale L.
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1140 D. G. Nam, C. Federrath and M. R. Krumholz

2.2 Sink particles and AMR

In order to follow local collapse and accretion of gas, we use the sink
particle method developed in Krumholz, McKee & Klein (2004)
and extended by Federrath et al. (2010b). Truelove et al. (1997)
showed that the local Jeans length λJ = (πc2

s /Gρ)1/2, where cs is
the sound speed, must be resolved with at least four grid cells
to prevent artificial fragmentation of the collapsing gas. The sink
particle technique ensures that the Jeans length is always sufficiently
resolved on the highest level of AMR, and that only bound and
collapsing gas is turned into sink particles. Gas above the sink particle
density threshold

ρsink = πc2
s

Gλ2
J

= πc2
s

Gr2
sink

, (1)

with the sink particle radius rsink = 2.5�xmin, is accreted, if the gas is
bound and collapsing. Since not all overdense regions that satisfy the
above density condition will collapse, we adopt an additional set of
sink creation criteria from Federrath et al. (2010b) to avoid artificial
sink particle formation.

For dense regions that are not yet on the highest level of AMR,
we refine based on the local Jeans density, to better resolve the
gravitational collapse. In our simulations, λJ is resolved with at
least 16 cells in all dimensions, in order to capture some solenoidal
motions of the turbulence inside the Jeans scale (Federrath et al.
2011).

2.3 Simulation set-up

We simulate a small section of a molecular cloud within a three-
dimensional periodic computational domain of length L = 2 pc,
mean gas density ρ0 = 1.31 × 10−20 g cm−3, and thus the cloud
mass Mcloud = ρ0L

3 = 1550 M�. The base-grid resolution is Nbase =
5123 grid cells, with two additional levels of AMR, which leads
to a maximum effective resolution of 20483 cells, i.e. a minimum
cell size of �x ≈ 200 au. At this resolution, we cannot capture
detailed small-scale structures and physics such as protostellar discs
and radiative feedback. While radiative feedback may be crucial
for setting the characteristic mass of the IMF (but see Bate 2009;
Offner et al. 2009; Krumholz 2011; Krumholz et al. 2016; Federrath,
Krumholz & Hopkins 2017; Haugbølle et al. 2018), at least in
the theoretical models that we aim to test it has little effect on
the high-mass slope of the IMF. We therefore focus solely on
determining the role of the turbulence power spectrum for the
high-mass tail of the IMF, and compare to predictions from IMF
theories. We assume isothermal gas with constant global sound speed
cs = 0.2 km s−1, and drive the turbulence to an rms Mach number
M = σv/cs = 5 for all simulations. This ensures that all simulations
have identical total kinetic energy, and thus the same global virial
parameter (Bertoldi & McKee 1992), αvir = 5σ 2

v L/(6GM) = 0.25,
and free-fall time tff = √

3π/(2Gρ0) = 0.58 Myr = 0.594 T . While
our choice of mean density is a factor of 2–3 higher than the
Larson (1981) relation,3 the choice of scaling cannot affect the
shape of the IMF, which is the quantity of interest for us. We
also emphasize that this commonly used approximation of αvir is
based on the uniform spherical approximation, and the geometry
of our simulations is much different from a sphere of gas. The
calculated value of αvir based on its definition, 2Ekin/|Egrav|, is more

3According to the Larson relation, a cloud with L = 2 pc has n(H2) =
1600 cm−3, or ρ0 = 5.4 × 10−21 g cm−3; however, there is substantial scatter
around this relation (Larson 1981; Falgarone, Puget & Pérault 1992).

than an order of magnitude higher than the approximated value of
0.25, and is dependent on turbulence parameters such as b and n
(Federrath & Klessen 2012). This discrepancy is particularly strong
for the simulations with n = 1, which, as we show below, develop
significantly less large-scale density structure than the n = 2 case,
and thus have weaker self-gravity than one might otherwise expect.

All simulations begin with uniform density distribution ρ(x) = ρ0

and zero velocity v(x) = 0. We let the supersonic turbulence grow
by running the models without self-gravity for two turbulent crossing
times 2 T (Federrath & Klessen 2012), after which, gravity is turned
on and sink particles are allowed to form in bound, collapsing regions
of the cloud. We aim to collect around 1000 sink particles for each
case to obtain tight statistical constraints on the slopes of the mass
functions of the sink particles. For this reason, we run 14 simulations
where we drive with a field A(k) ∝ k−0.9 in order to produce n ≈ 1
(N1A–N1N) and 8 simulations where we drive with A(k) ∝ k−2 and
thus produce n ≈ 2 (N2A–N2H). Table 1 summarizes the key input
parameters and derived quantities.

3 R ESULTS

In this section, we analyse the results of the simulations summarized
in Table 1. First, we examine the statistics of the velocity and density
fields in Section 3.1, and verify that our turbulence driving method
produces a range of power-law slopes as desired. We then study
how the modified turbulence affects molecular cloud morphology
in Section 3.2. We discuss the SFR and temporal evolution of the
simulations in Section 3.3, and finally, we construct the sink mass
function (SMF) and calculate its power-law slope � in Section 3.4.
Although we carry out simulations in physical units, as described in
Section 2.3, we note that, since they are isothermal, the simulations
themselves are dimensionless and can be re-scaled to arbitrary length-
and mass-scales. For this reason, in this section we will report
all results in dimensionless units, i.e. we will report all masses as
fractions of Mcloud, all lengths as fractions of L, and so forth, since
these ratios are independent of the choice of dimensional scaling.

3.1 Velocity and density statistics

To confirm that the simulations reach the intended values of the
velocity power spectral index n, we measure the velocity power
spectra Ev(k) of the simulations at t = 2 T , i.e. when the turbulence
would be fully developed and gravitational collapse begins. We
interpolate the AMR grid to a 5123 uniform grid (i.e. at the base-
grid resolution) when calculating the power spectra. Fig. 1 shows
the resulting power spectra, averaged over each set of runs, i.e. the
line labelled N1 in the plot is the average power spectrum of runs
N1A–N1N, and similarly for N2. For both sets of simulations, the
power spectra show a power-law dependence on k over a broad range
of length-scales until k ∼ 30, beyond which numerical dissipation
begins to take effect. We therefore estimate the slope of the power
law by fitting the velocity power spectrum Ev(k) over the range 5
≤ k ≤ 30. We find best-fitting values Ev(k) ∝ k−0.95 ± 0.01 for N1
and k−1.86 ± 0.01 for N2, as shown in the top panel of Fig. 1. The
value of n for N1 is in good agreement with our target, while the
one for N2 is slightly shallower, because of the low target Mach
number (see e.g. Kritsuk et al. 2007; Federrath et al. 2010a, for
comparison). None the less, it is clearly steeper than the result for
N1. We also present the compensated power spectra, in the bottom
panel of Fig. 1, to better visualize the deviations from the power-law
scaling. In both simulations, Ev(k) follows the scaling law very well
within the fitting range. We conclude that we successfully drive and
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Testing turbulent origin of IMF 1141

Table 1. Key simulation parameters and measured quantities.

ID n M Nsink SFRff m50 m84 m98

(1) (2) (3) (4) (5) (6) (7) (8)

N1
A 0.93 × 0.03 5.0 102 0.14 4.7 × 10−4 1.7 × 10−3 5.6 × 10−3

B 0.91 ± 0.03 4.8 99 0.53 5.3 × 10−4 1.5 × 10−3 6.5 × 10−3

C 0.92 ± 0.02 4.9 67 0.21 9.1 × 10−4 2.4 × 10−3 7.1 × 10−3

D 0.96 ± 0.02 4.9 57 0.14 4.3 × 10−4 5.0 × 10−3 1.0 × 10−2

E 0.95 ± 0.02 5.0 74 0.17 3.5 × 10−4 1.8 × 10−3 1.1 × 10−2

F 0.97 ± 0.02 5.0 97 0.22 3.9 × 10−4 2.0 × 10−3 7.1 × 10−3

G 0.97 ± 0.03 5.0 56 0.14 4.6 × 10−4 2.6 × 10−3 1.5 × 10−2

H 0.92 ± 0.03 4.9 64 0.13 6.3 × 10−4 3.7 × 10−3 6.2 × 10−3

I 0.98 ± 0.02 4.9 55 0.04 4.5 × 10−4 2.5 × 10−3 1.4 × 10−2

J 0.98 ± 0.03 5.0 56 0.31 9.9 × 10−4 4.1 × 10−3 6.8 × 10−3

K 0.98 ± 0.03 5.0 66 0.13 4.6 × 10−4 3.1 × 10−3 9.1 × 10−3

L 0.86 ± 0.03 4.8 76 0.17 4.7 × 10−4 2.1 × 10−3 1.1 × 10−2

M 0.92 ± 0.03 5.0 54 0.19 4.5 × 10−4 3.1 × 10−3 1.6 × 10−2

N 0.95 ± 0.02 5.0 64 0.20 4.3 × 10−4 3.8 × 10−3 7.4 × 10−3

Total 0.95 ± 0.01 4.9 ± 0.1 987 4.9 × 10−4 2.5 × 10−3 1.0 × 10−2

N2
A 1.80 ± 0.01 5.2 114 0.27 5.0 × 10−4 1.9 × 10−3 4.3 × 10−3

B 1.87 ± 0.01 4.5 110 0.30 6.3 × 10−4 1.8 × 10−3 3.3 × 10−3

C 1.89 ± 0.01 4.9 137 0.40 4.7 × 10−4 1.3 × 10−3 3.4 × 10−3

D 1.89 ± 0.01 4.7 112 0.30 6.3 × 10−4 1.6 × 10−3 3.1 × 10−3

E 1.91 ± 0.01 4.7 126 0.34 4.7 × 10−4 1.4 × 10−3 3.6 × 10−3

F 1.84 ± 0.01 5.0 113 0.36 3.8 × 10−4 1.6 × 10−3 5.7 × 10−3

G 1.87 ± 0.01 4.8 109 0.39 5.0 × 10−4 1.9 × 10−3 3.1 × 10−3

H 1.85 ± 0.01 4.7 105 0.32 5.7 × 10−4 1.7 × 10−3 4.4 × 10−3

Total 1.86 ± 0.01 4.8 ± 0.2 926 5.0 × 10−4 1.7 × 10−3 4.0 × 10−3

Notes. (1) Simulation name; (2, 3) power-law index n and rms Mach number M measured after two turbulent
crossing times; (4, 5) the number of sink particles and SFR per free-fall time recorded at the SFE of 10 per cent;
(6–8) 50th, 84th, and 98th percentiles of the SMF, where masses are measured as m = Msink/Mcloud.

Figure 1. Turbulent velocity power spectra Ev(k) (top) and the compensated
power spectra Ev(k)/k−n (bottom), for N1 (n = 1; blue solid line) and N2 (n =
1.9; black dashed line). The vertical lines indicate the 1σ range of variation
within the simulations, and the thick transparent lines in the top panel are
power-law fits over the range 5 ≤ k ≤ 30. The y-axes in both panels have
arbitrary units, and the compensated power spectra are normalized so that
their means within the fitting range are both equal to 1.

Figure 2. Power spectra of the density ρ (top) and logarithmic density s =
ln (ρ/ρ0) (bottom) for N1 and N2 runs. Symbols and fitting methods are
identical to those used in Fig. 1. The y-axes have arbitrary units.

maintain turbulence such that its velocity power spectrum is a power
law with an index of −1 or ≈−2 for a broad range of length-scales,
as required for the experiment we wish to perform.

In the top panel of Fig. 2, we plot the density power spec-
tra, Eρ(k), which we measure and fit exactly as we do the
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1142 D. G. Nam, C. Federrath and M. R. Krumholz

Figure 3. Column density maps extracted from N1A (top) and N2A (bottom), at the point when we turn on self-gravity (left) and at the times when the
simulations reach an SFE of 1 per cent (middle) and 10 per cent (right). The colour scale is logarithmic and ranges from 
 = 0.3
0 (black) to 125
0 (white),
where 
0 = ρ0L. We plot sink particles as cyan circles on top of the density projections, with sizes proportional to the logarithm of their mass m = Msink/Mcloud

as indicated in the legend. Panels are annotated with the number Nsink of sink particles present in the frame and time t of the simulation, where t = 0 corresponds
to the time at which we turn on self-gravity.

velocity field, for N1 and N2 runs. We find turbulence with
n = 1 has considerably less power on large spatial scales
(small k) than with n = 1.9, due to the weaker large-scale
turbulence. More interestingly, the total variance of the density
fluctuations,

〈ρ2〉 =
∫

Eρ(k) dk, (2)

for N1 simulations is about 20 per cent lower than for the N2 counter-
part, despite the fact that the total velocity fluctuation σ 2

v = (Mcs)2

is equal in both cases.
The bottom panel of Fig. 2 shows the power spectra of the

logarithmic density s = ln (ρ/ρ0), Es(k), for N1 and N2 runs. We
find the spectral index of Es(k), which we denote as −n

′
, to be n

′ =
0.65 ± 0.01 for N1 and n

′ = 1.48 ± 0.01 for N2. Although the
exact scaling exponent of the density power spectrum remains in
debate [our result for Eρ(k) is similar to that of Kim & Ryu (2005)
and slightly shallower than found by Konstandin et al. (2016)], it is
important to note that n

′
does not equal n for both simulations. This

contradicts a core assumption in the HC08 model and we discuss
the impact this has on the shape of the HC08 IMF in detail in
Section 4.2.

3.2 Cloud structure

Fig. 3 compares the column density distributions of run N1A (top)
with N2A (bottom). The left-hand panels show the structure at time
2 T , immediately before we turn on self-gravity. This figure confirms
our speculations based on Fig. 2: there exist large (k ∼ 5) density
structures in the cloud with n ≈ 2, but such structures are much
less prominent in the n = 1 model. Instead, small-scale velocity
perturbations dominate the cloud, which prevent large-scale density
structures from forming. As a result the overall level of density
perturbation in N1A is smaller than in N2A, which explains why the
integral of Eρ(k) is lower for n = 1.

The dominance of small-scale turbulence in N1A continues after
the self-gravity is switched on, as shown in the middle and right-
hand panels of Fig. 3. While the standard supersonic turbulence (n
≈ 2) allows gas to collapse into dense filaments, inside which dense
protostellar cores emerge, gas in the n = 1 turbulence collapses in
a fairly different manner. We no longer observe gas filaments, but
dense, quasi-spherical patches of gas, and fragmentation happens
inside these patches. There are two explanations for the lack of gas
filaments: run N1A lacks low-k supersonic shocks that compresses
gas in one dimension over large spatial scales, and the excessive
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Testing turbulent origin of IMF 1143

Figure 4. SFE (top) and SFR measured per free-fall time (bottom) plotted
as a function of time since the formation of the first sink particle, which we
denote tsink. Solid lines are simulations with n = 1.9 and dashed lines are for
n = 1. In general, N1 simulations evolve more slowly than N2 simulations
and have lower SFRs.

amount of turbulent energy in high-k modes would quickly destroy
the filaments.

3.3 Star formation rate

We note in Fig. 3 that star formation is much slower in turbulence
with n = 1. N2A arrives at a star formation efficiency (SFE =
Msink/Mcloud) of 10 per cent after 0.89 tff, whereas it takes 2.31 tff for
N1A to convert the same amount of mass into sinks. In order to show
that this is a general result and not just the case for N1A versus N2A,
we plot the temporal evolution of the SFE and the SFR measured
per free-fall time SFRff = d SFE/d(t/tff) for all our simulations in
Fig. 4. We observe that it takes an average of approximately 0.5 free-
fall times for the N2 simulations to go from the formation of their
first sink particle to the time when the SFE reaches 10 per cent and
we stop the simulation, whereas this number grows to ∼1.7 tff for
N1 simulations. Similarly, we see that turbulence with n = 1 keeps
SFRff � 0.2 throughout most of the simulations, while for the N2
simulations with n = 1.9 we have SFRff ∼ 0.3.

One distinct and noteworthy feature is that some N1 simulations
show a longer period of near-quiescence, even after the first sink
particle appears, before the onset of vigorous star formation. Sim-
ulation N1B (light blue solid line in Fig. 4) is the most extreme
example of this: even after the first sink forms, this run remains
at SFE ≈ 0.5 per cent for almost two free-fall times, but then the
SFRff peaks at 0.54 near the end of the run. On the contrary, all N2
simulations show a much more regular pattern where star formation
begins slowly, but then SFRff rapidly increases over �1 free-fall
time.

3.4 Mass function of the sink particles

We collect sink particles from the simulations when they reach
SFE = 10 per cent and construct the sink mass functions (SMFs)
dN/d log m for each value of n, where m is the relative mass m =

Figure 5. Logarithmic mass function dN/d log m (m = Msink/Mcloud is the
sink mass relative to the cloud mass) of the sink particles from the N1
(blue shaded histogram) and N2 (black hatched histogram) simulations, at
SFE = 10 per cent. The error bars on the histograms indicate the 68 per cent
confidence interval for each bin. The solid lines show the median values of
the posterior PDF obtained from the MCMC fitting, with the surrounding
shaded regions representing the 68 per cent (thick shades) and 95 per cent
(light shades) confidence intervals determined from the MCMC fit. We also
report the median values for the high-mass power-law slope �, with the 2nd
to 98th percentile ranges in the legend. The red dotted line corresponds to the
Salpeter (1955) slope (� = −1.35). We find that the power-law slope of the
SMFs generated from the simulations are shallower (for N1) and significantly
steeper (for N2) than the Salpeter slope. Thus, the turbulence power spectrum
plays a key role in controlling the high-mass slope of the IMF.

Msink/Mcloud of the sinks. Fig. 5 shows the resultant SMFs, which
span three orders of magnitude in mass and thus provide a sufficient
dynamic range to identify differences between the N1 and N2 cases
at high confidence. Quantitatively, we form sinks as small as m =
5 × 10−7 (Msink = 8 × 10−4 M�), and as large as m = 2.5 × 10−2

(Msink = 40 M�); the lower cut-off is imposed by the resolution of
the simulation, while the upper one is due to the finite amount of mass
contained in the periodic box. We observe that the N1 simulations
generate significantly more sinks with m � 5 × 10−3 than the N2
simulations. This makes the high-mass fall-off in N1 slightly shal-
lower than that of the Salpeter (1955) IMF, while the N2 SMF shows
high-mass scaling visibly steeper than the Salpeter slope. The char-
acteristic mass where the IMF peaks (m ≈ 10−3), on the other hand,
appears to be fairly insensitive to the velocity power spectral index.

We compare the cumulative mass functions for the N1 and N2
runs in Fig. 6. The figure clearly shows that the mass distributions
are statistically indistinguishable below the median mass, but that
the cumulative SMF for N1 is skewed significantly towards higher
mass compared to that for N2. To demonstrate this quantitatively,
we report the values of the 50th, 84th, and 98th percentile of the
SMF in Table 1. While we find that the median masses are almost
identical for N1 and N2 (m50 = 4.9 × 10−4 for N1 and 5.0 × 10−4

for N2), the 86th and 98th percentile masses widely differ, as one
can find from Table 1. We also conduct a Kolmogorov–Smirnov
(KS) test comparing the SMFs. If we compare only the parts of the
distribution below the median mass, the test returns a p-value (p =
0.59), consistent with the hypothesis that the N1 and N2 data are
drawn from the same parent distribution. However, if we instead
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1144 D. G. Nam, C. Federrath and M. R. Krumholz

Figure 6. Cumulative distribution function (CDF) of the sink masses for N1
(blue) and N2 (black) simulations. We observe that the CDFs with n = 1 and
1.9 disagree only within the high-mass (beyond the median mass) region. N1
simulations produce a significantly more top-heavy CDF.

compare the full SMFs, we obtain p ∼ 10−8. These statistics provide
additional evidence for our speculation that altering the turbulence
spectral index primarily affects the high-mass tail of the IMF.

Finally, in order to quantitatively measure the difference in the
slope of the SMFs (�), we use the Markov chain Monte Carlo
(MCMC) sampler EMCEE (Foreman-Mackey et al. 2013) to fit the
SMFs to a Chabrier (2005)-like functional form for the IMF,

dN

d log m
= A1

{
1√

2πσ 2 exp
[
− (log m−log m0)2

2σ 2

]
, m < mT,

A2m
�, m ≥ mT,

(3)

with four free parameters θ = (m0, σ, mT, �), where m0 and σ are
respectively the peak and standard deviation of the lognormal part, mT

is the transition point between the lognormal and power-law part, and
� is the power-law slope. A1 is a normalization constant, set by the
total mass in stars, and A2 is set so as to ensure continuity at mT.4 The
posterior probability distribution for θ is given by Bayes’ Theorem,

P (θ |{msink}) = P (θ)P ({msink}|θ)∫
P (θ ′)P ({msink}|θ ′) dθ ′ , (4)

where the likelihood function for a given set of parameters θ and
sink masses {msink} is

P ({msink}|θ) =
∏

mi∈{msink}

dN

dm
(mi ; θ ). (5)

In other words, P ({msink}|θ ) is the probability density for the
particular set of sink particle masses {msink} produced in our
simulations, given a proposed set of parameters θ describing the
IMF. The advantage of this approach, compared to fitting a model to
the histograms, is that fitting to histograms often produces results that

4We note that the derivative of equation (3) is not necessarily continuous at
m = mT. We allow this possibility to ensure that the slope we find for the
power-law portion of the IMF at high masses is not forced to some particular
value by a requirement that it match the slope favoured by the sub-peak sink
population, which dominates the total number of sink particles, and thus the
likelihood function.

are sensitive to the choice of bins, particularly in sparsely populated
ranges of mass; our Bayesian approach removes the need for binning.

Fitting requires some care with respect to the choice of priors. We
adopt flat, uninformative priors for m0, σ , and tan−1 �, with the latter
being equivalent to assuming that all angles of the power-law slope
(straight line in log–log space) are equally likely (Jeffreys 1946).
These choices have little impact on the results of the fit parameters.
For the N2 SMF, we also adopt a flat prior for mT, and we obtain
a good fit by doing so; we show the results of our MCMC fit in
comparison to the data in Fig. 5, indicating that the fit describes
the data well. We find the high-mass slope �(n = 1.9) = −3.07+0.67

−0.77

for N2, where the central estimate is the median of the posterior
probability distribution function (PDF), and the error bars indicate
the 2nd to 98th percentile confidence interval. If we adopt a similar
flat, unconstrained prior for mT for N1, we find a higher value for mT

than for N2. In order to enable a meaningful comparison of the slopes
between N1 and N2, we therefore adopt an informative prior on mT

when fitting the N1 SMF, by setting it equal to a Gaussian approx-
imation of the posterior distribution of mT in N2.5 Intuitively, this
amounts to saying that, in order to perform a meaningful comparison
of slopes between N1 and N2, we demand that the turnover point
mT between the lognormal and power-law portions of the SMF be at
similar masses. With this prior, we find �(n = 1) = −1.20+0.23

−0.27 for
N1. We show this fit in Fig. 5, and find that the resulting functional
form is a good fit to the simulated mass distribution.

In summary, we find that the turbulence power spectrum is a key
ingredient for controlling the high-mass region of the IMF, with N1
producing more massive stars than N2. The high-mass slope (�)
of the IMF is significantly shallower for N1 compared with N2,
with the Salpeter slope in between N1 and N2. We discuss possible
reasons for this when we now compare the simulation results with
the predictions of the IMF theories.

4 C O M PA R I S O N W I T H T H E O R E T I C A L
M O D E L S O F T H E IM F

In this section, we compare the simulation results with the three
turbulence-regulated IMF models: PN02 (Padoan & Nordlund 2002),
HC08 (Hennebelle & Chabrier 2008), and H12 (Hopkins 2012). We
summarize the comparison in Fig. 7, as well as in Table 2, which lists
the high-mass IMF slopes estimated from the three theoretical models
and calculated from our simulations for velocity power spectral
indices of n = 1 and 1.9. We emphasize that we only compare the
high-mass region of the IMF, and other features of the IMF such as
the IMF peak and the sub-stellar mass function are out of the scope
of this study, since we do not include the relevant physics in our
simulations (Section 3.4).

4.1 PN02 model

In the PN02 theory, cores emerge from turbulent shocks sweeping
through the molecular cloud medium, and hence the resultant IMF
is dependent on the extent to which shocks compress the gas. PN02
predict that the resulting IMF will be a power law with slope

� = −3/(4 − n), (6)

assuming a linear shock jump condition, i.e. shocks increase the
density of the gas linearly with the Mach number of the shock

5To be precise, the prior distribution we adopt for mT is pprior ∝ exp[−(mT −
mT,N2,med)2/2σ 2

N2], where mT,N2,med is the median posterior value of mT for
our fit to N2 and σN2 is half the 16th–84th percentile range for the posterior.
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Testing turbulent origin of IMF 1145

Figure 7. Comparison between the mass distributions obtained in the simulations (Fig. 5) and the high-mass IMF slopes estimated by the three IMF theories
by PN02 (left), HC08 (middle), and H12 (right). The blue histograms and lines correspond to the N1 (n = 1) simulations and the black ones correspond to the
N2 (n = 1.9) simulations. Left-hand panel: the PN02 model, using the MHD (dashed lines) or HD (dash–dotted lines) shock jump conditions. Note that the
IMF slope is identical for n = 1, regardless of the choice of the jump condition. Middle panel: the IMF slopes originally presented in the HC08 paper (dashed
lines) and the slopes including the correction term as given in Hennebelle & Chabrier (2009, dash–dotted lines). For the PN02 and HC08 models, we anchor
the power-law functions at m = mT = 3 × 10−3, as obtained from the MCMC fitting of the simulation data. Right-hand panel: the IMFs predicted by the H12
model, with the characteristic Mach number (Mh) calculated from the velocity dispersion on the largest scales in our simulations, 1 < k < 3, where k = 1
corresponds to the box scale L (dashed lines), or set to the rms Mach number of the simulations (dash–dotted lines). We arbitrarily shift both dashed lines to
lower masses by a factor of 2 and both dash–dotted lines to lower masses by a factor of 10, compared with the direct prediction of the H12 model, as an attempt
to match the high-mass end of the SMFs with that of the corresponding IMFs.

Table 2. Predictions of the slope � of the high-mass tail of the IMF
from turbulence-regulated IMF theories.

Model Velocity spectral index
n = 1 n = 1.9

� =
PN02 −1.0 −1.4
PN02 (HD) −1.0 −2.5
HC08 −2.0 −1.3
HC08 (exact) +1.3 −1.1
H12 (k = 1−3) −16 −2.1
H12 (rms) −0.3 −2.0

This study −1.20+0.23
−0.27 −3.07+0.67

−0.77

Notes. PN02: Padoan & Nordlund (2002). PN02 (HD): PN02 with
hydrodynamic shock jump conditions (ρ′/ρ = M2). HC08: Hen-
nebelle & Chabrier (2008). HC08 (exact): HC08 with the correction
term discussed in Hennebelle & Chabrier (2009). H12 (k = 1−3):
Hopkins (2012), with Mh derived by integrating the power spectrum
from k = 1 to 3, and slope derived by averaging between m = 3 × 10−3

and 10−2. H12 (rms): same as H12 (k = 1−3), but using the full rms
Mach number for Mh.

(hereafter ‘MHD condition’). On the other hand, Padoan et al. (2007)
suggested that if there are no magnetic fields present, it is more
appropriate to consider the post-shock gas density to be proportional
to M2 (‘HD condition’), which leads to

� = −3/(5 − 2n). (7)

In either the HD or MHD cases, PN02 predict that a shallower
velocity power spectrum produces a shallower high-mass IMF: �(n =
1) = −1 (for both the MHD and HD condition) and �(n = 1.9) =
−1.4 (MHD condition) or −2.5 (HD condition). We show these
theoretical predictions for � together with the simulation SMFs in
the left-hand panel of Fig. 7. Overall, the PN02 prediction with the
HD shock jump condition (i.e. in the absence of magnetic fields) is
quantitatively consistent with both N1 and N2 simulations within the
95 per cent interval range.

The n-dependence on the high-mass slope of the PN02 model
comes from the linewidth–size relation. Shocks larger in size (i.e.
also with higher Mach number) can sweep up more gas and thereby
produce more massive cores. However, this effect is countered by the
fact that shocks with higher M produce thinner compressed post-
shock layers, which reduces the mass of the resultant dense core,
because the core size is set equal to the post-shock length-scale in
the PN02 model. Because the velocity power spectrum controls how
the velocity dispersion scales with size, namely M(�) ∝ �(n−1)/2,
altering n changes the mass of cores produced by a shock with fixed
length, and hence changes the IMF shape. In addition, since more
massive stars take longer to form because they require a larger core
with a longer dynamical time, a shallower IMF is predicted for n =
1 in the PN02 model, which is also consistent with our finding of a
lower SFR for n = 1.

4.2 HC08 model

In the HC08 model, turbulence has two roles during the star
formation process: it creates dense patches of gas that may become
self-gravitating, but also provides additional turbulent energy that
counteracts collapse. According to the model, decreasing n (i.e.
making the power spectrum flatter) and hence enhancing turbulence
on smaller scales both narrows the density PDF (i.e. creating
dense regions less frequently) and increases the critical density for
collapse. This prediction suggests that the SFR would be much
lower for n = 1, consistent with our results (see Sections 3.1 and
3.3). HC08 also predict6

� ≈ −(n + 3)/(2n), (8)

6Here, we note that our n is the index of the one-dimensional power spectrum,
whereas HC08 work in terms of the three-dimensional spectrum, which has
index n − 2. Care should therefore be taken in comparing the expressions
we give here to those given in HC08, since our n does not refer to the same
quantity as the n that appears in their equations.
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1146 D. G. Nam, C. Federrath and M. R. Krumholz

that is, turbulence with a shallower velocity power spectrum
produces a steeper IMF, which is opposite to what is observed in
our simulations (middle panel of Fig. 7).

However, Hennebelle & Chabrier (2009) suggested a correction
term for equation (8):

� = −n + 3

2n
+ 3(3 − n)

n

lnM∗
σ 2

s

, (9)

where M∗ is the (one-dimensional) Mach number on the Jeans
scale (λJ) and σs

2 is the global variance in the logarithmic density
s. Under usual circumstances, where n ≈ 2 and M∗ � 10, the
second term is close to zero and has only minimal effect on the
overall shape of the IMF. However, for n = 1, the correction term
becomes much more significant. We calculate the exact value of
the high-mass slope predicted by HC08 with the correction term
to be � = +1.3 for n = 1, given in our n = 1 simulations
σ 2

s = 1.94 at the beginning of gravitational collapse (t = 2 T ) and
M∗ = 4.9/31/2 = 2.8 (converting the 3D Mach number of ∼4.9 in
the simulations, to the 1D Mach number used in the HC model).
While the correction is in the right direction, it is far larger than the
difference between the measured value from our simulations and the
HC08 prediction, and appears implausible, since for � = 1.3 the total
mass in the high-mass tail of the IMF would diverge.

4.3 H12 model

The role of the velocity power spectrum in the H12 theory is similar to
that in the HC08 theory. The primary difference between the theories
lies in how one estimates the density PDF and counts the number of
bound regions as a function of length-scale. The difference is none the
less significant; for example, H12 speculates that the density variance
is greater on small length-scales and smaller on large length-scales
for n ≈ 1, qualitatively similar to our results (Fig. 2), while in HC08
the density variance is smaller across all scales. Since the H12 IMF
model generally does not have a closed form, one needs to follow
the excursion-set formalism and directly rebuild the mass functions
in order to study the effect of n in the H12 model. We therefore
developed our own PYTHON code that reproduces the last-crossing
IMF, and compared the results with our simulation.7

In the H12 theory, the power spectral index n and the characteristic
Mach number Mh are the two important parameters that determine
the shape of the IMF. The parameter n is straightforward to define
and measure in our simulations, but there is some ambiguity in how
to define Mh for our simulation. In the context of the H12 model,
Mh is the Mach number of the velocity field measured on sizes
comparable to the galactic scale height, h, which is identified with
the outer scale of the turbulent cascade. Our simulation does not
possess a scale height, since it takes place in a periodic box, and
there is some ambiguity in how to define the outer scale of the
turbulence, particularly for the n = 1 case where turbulent power
is not sharply peaked on large scales. We therefore consider two
possibilities, which roughly bracket the range of reasonable choices.
The first is simply to set Mh = M = 5, i.e. to set the Mach number
at the outer scale of the turbulence equal to the Mach number of
the simulation box as a whole. This choice is most consistent with

7We make one modification in our code relative to the original H12 model.
In the H12 model, the barrier function includes a term representing rotational
support, parametrized by the epicyclic frequency κ . Since our simulation has
no systematic rotation, we take the limit κ → 0 when evaluating the barrier
function.

the implicit assumption in the H12 model that the turbulent power
is mostly on large scales, so as one considers larger and larger size
scale, the Mach number monotonically increases, approaching the
total Mach number as the size scale under consideration approaches
h. Our second method for estimating Mh is to integrate the velocity
power spectra in the region 1 < k < 3, which is roughly the outer scale
of the turbulence in our periodic box. Doing so, we find Mh = 1.3
for the N1 simulations and 2.9 for the N2 simulations.

We compare the predictions of the H12 model with the aforemen-
tioned parameters to our simulations in the right-hand panel of Fig. 7
(dashed and dot–dashed lines). We first focus on the case where
we measure Mh by integrating over k = 1−3, and observe that,
while the IMF predicted for n = 1.9 coincides fairly well with the
N2 simulations for m � 10−3, the n = 1 prediction is significantly
steeper than that for n = 1.9, which is the opposite of what we observe
from our simulations. By contrast, if we accept a mass shifting factor8

of 10, the predicted IMF shapes beyond the peaks are significantly
closer to what we measure for both the N1 and N2 simulations in the
case where we takeMh = M = 5 (dash–dotted lines), except near m
≈ 10−2. The predicted qualitative effect of varying n is also consistent
with our simulation results, and with Hopkins (2013). According to
the H12 model, the cut-off in the N1 SMF beyond m > 10−2, which
is most likely a result of the finite mass in the simulation box, is
explained by the suppression of density fluctuations due to mass
conservation. However, we caution that, because of the ambiguity
in the definition of Mh inherent in the H12 models, as well as the
necessity of an arbitrary horizontal shift, we can only tentatively
identify this as a successful prediction. Finally, we note that while
the H12 model in principle allows for the inclusion of magnetic
fields, the dependence of the IMF on the magnetic field has not been
studied in detail in Hopkins (2013). We aim to quantify the effects
of the magnetic field on the IMF in a follow-up study.

5 C O N C L U S I O N S

Using hydrodynamical simulations that include gravity and sink
particles, we investigate the effect of the shape of the power spectrum
of supersonic turbulence [Ev(k) ∝ k−n] on the stellar IMF. With the
help of AMR and repeated simulations with different random seeds
for the turbulence, we construct statistically significant sink mass
distributions with 900–1000 sink particles formed for each n, and a
dynamic range spanning three orders of magnitude, from a low-mass
cut-off imposed by the grid resolution to a high-mass cut-off imposed
by the finite size of the simulation domain. From the sink particle
populations, we find that turbulence with n = 1 significantly flattens
the high-mass end of the IMF compared to n ≈ 2 (i.e. n = 1 turbulence
generates more massive stars), but has little effect on the distribution
of low-mass stars and sub-stellar objects. This result is consistent
with our current understanding of molecular cloud dynamics and
star formation: turbulence governs the large-scale fragmentation of
molecular clouds, while other mechanisms such as radiative heating
play more important roles below a certain length-scale (or mass-
scale). We also find that compared to natural supersonic turbulence
with n ≈ 2, turbulence with a scaling index of n = 1 creates less
density dispersion, does not promote the formation of large-scale gas
structures such as large-scale filaments, and slows down the SFR.

8A possible justification for this shift is that in our simulations there are no
density fluctuations at the box scale, whereas in the H12 model fluctuations
at the galactic scale height h are non-zero, and only damp to zero on scales
�h (e.g. Hopkins 2013, fig. 2).
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Testing turbulent origin of IMF 1147

We compare our simulation results with three turbulence-regulated
theoretical models of the IMF: PN02, HC08, and H12. We find that
the qualitative predictions of the three models vary significantly
(e.g. the dependence of the high-mass slope of the IMF on n).
Out of the three IMF models, we find that the PN02 theory is
consistent with our measurement of the n-dependence of the high-
mass IMF slope (�). The density statistics predicted by the HC08
model agree qualitatively with our observations, but their predicted
high-mass slope diverges for n → 1. We find that the H12 model
can be made similar to our simulated IMFs in the high-mass range.
However, the model is quite sensitive to the choice of the definition
of a key parameter (Mh), which is defined somewhat ambiguously
in the model, and if we adopt an alternative definition, the H12
theory predicts qualitatively different results that disagree with our
simulations.

There remains one important question that is not yet answered:
why did turbulence with n ≈ 2 shape a high-mass IMF much steeper
than the Salpeter IMF in our simulations? As mentioned in Sections 1
and 4.1, the answer may be the absence of magnetic fields, since only
the PN02 theory successfully predicts the high-mass slope for the n
≈ 2 hydrodynamical turbulence (apart from the modified H12 theory
with Mh = 5), and it is the only model that explicitly encodes the
role of magnetic fields in shaping the high-mass IMF. We suggest
a follow-up study that includes varying levels of magnetic fields, in
order to quantify the role of the magnetic field in the shape of the
IMF.
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APPENDIX A : EFFECT OF TURBULENT
D R I V I N G R A N G E O N TH E I M F SH A P E

Here, we compare the N2 simulations, in which the turbulence is
driven with n ≈ 2 over an extended wavenumber range of 2 ≤ k ≤
256, with an additional set of simulations in which only large-scale
modes (1 < k < 3) are excited and the turbulent cascade naturally
populates the small-scale modes (i.e. as in Federrath 2015; Mathew
& Federrath 2020, for example). We run four simulations with this
large-scale driving (hereafter denoted as para simulations) to check
the effect of our turbulence driving method on the velocity power
spectra and the IMF.

Figure A1. Turbulent velocity power spectra Ev(k) (top) and the compen-
sated power spectra Ev(k)/k−n of the N1 (blue solid line), N2 (black dashed
line), and para (red dash–dotted line) simulations. The errorbars and fitting
methods are identical to those used in Fig. 1.

In Fig. A1, we show the velocity power spectra of the N1, N2, and
para simulations. We measure the scaling exponent of the velocity
power spectrum in the para simulations and find Ev(k) ∝ k−1.86 ± 0.01,
which is identical to that in the N2 simulations. The para simulations
have more power in very large modes (k = 1−2) compared to the
N2 simulations because most of the energy is injected on those
scales. In Fig. A2, we compare the SMFs from the three simulation
sets. We find that the SMFs from the N2 and para simulations are
statistically indistinguishable. Therefore, we conclude that the choice
of the turbulent driving range for n ≈ 2 does not affect the mass
distribution of sink particles formed in simulations with n ≈ 2, as
this is the turbulence exponent that naturally arises when driving
supersonic turbulence on large scales (Federrath 2013; Federrath
et al. 2020).

Figure A2. Logarithmic mass function dN/d log m of the sink particles from
the N1 (blue shaded histogram) and N2 (black densely hatched histogram)
simulations as in the main part of the article, and with the para (red coarsely
hatched histogram) simulations added (all at SFE = 10 per cent). To facilitate
the comparison, we normalize the histograms so that the total area under the
histogram is 1 for all three cases. The figure is otherwise identical to Fig. 5.
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