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ABSTRACT

Cosmic rays (CRs) are a plausible mechanism for launching winds of cool material from the discs of star-forming galaxies.
However, there is no consensus on what types of galaxies likely host CR-driven winds, or what role these winds might play in
regulating galaxies’ star formation rates. Using a detailed treatment of the transport and losses of hadronic CRs developed in
the previous paper in this series, here we develop a semi-analytical model that allows us to assess the viability of using CRs to
launch cool winds from galactic discs. In particular, we determine the critical CR fluxes — and corresponding star formation rate
surface densities — above which hydrostatic equilibrium within a given galaxy is precluded because CRs drive the gas off in a
wind or otherwise render it unstable. Our model demonstrates that catastrophic, CR-driven wind loss is a possibility at galactic
mean surface densities below <10?> Mg pc~2. In this regime — encompassing the Galaxy and local dwarfs — the locus of the
CR-stability curve patrols the high side of the observed distribution of galaxies in the Kennicutt—Schmidt parameter space of star
formation rate versus gas surface density. However, hadronic losses render CRs unable to drive global winds in galaxies with
surface densities above the ~10>—10° M, pc~? transition region. Our results show that quiescent, low surface density galaxies
like the Milky Way are poised on the cusp of instability, such that small changes to interstellar mass (ISM) parameters can lead
to the launching of CR-driven outflows, and we suggest that, as a result, CR feedback sets an ultimate limit to the star formation

efficiency of most modern galaxies.
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1 INTRODUCTION

This paper is the third in a series (Krumholz et al. 2020; Crocker et al.
2020, hereafter Paper I) exploring the physics of relativistic cosmic
ray (CR) transport, energy loss, and radiation in the interstellar
media of star-forming galaxies, and, more importantly, the dynamical
impact of CRs in such environments. In particular, our intention in
this series is to investigate, in broad brush strokes, the potential
importance of CRs as an agent of feedback in star-forming galaxies:
What role, if any, do CRs have — as a function of environmental
parameters — in establishing the remarkably low efficiency with
which galaxies convert into stars the gas flowing out of the cosmic
web and into their own interstellar media?

As discussed in Paper I and previous literature, CRs are a
plausible agent of star formation feedback for a number of reasons:
While this non-thermal particle population receives only a sub-
dominant fraction, ~10 per cent, of the total kinetic energy liberated
in supernova explosions, unlike the thermal gas (that receives most
of the supernova energy), CRs lose energy to radiation very slowly.
This means that, from their injection sites close to the mid-planes
of star-forming galaxies, CRs tend to disperse well out into these
galaxies’ interstellar media.! Within the Milky Way (MW) disc,
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'In fact, in many cases, including for the MW, they may escape the galactic
disc completely.
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the CR energy density is near equipartition with the magnetic field
and turbulent gas motions, implying CRs contribute significantly
to establishing the vertical hydrostatic equilibrium of the gas (e.g.
Boulares & Cox 1990) and maintain, therefore, the conditions under
which sustained, quiescent star formation can proceed.

Moreover, given their soft effective equation of state,> CRs come
to increasingly dominate the total energy density of a co-mingled
astrophysical fluid of thermal and non-thermal particles that is
suffering adiabatic losses under expansion in an outflow. Thus CRs
can help sustain galactic winds by providing a distributed heating
source via their non-adiabatic energy losses which, in this situation,
are mostly mediated by the streaming instability (e.g. Everett et al.
2008; Ruszkowski, Yang & Zweibel 2017; Zweibel 2017). Despite,
however, the early recognition of their potential importance in
driving winds (Ipavich 1975; Breitschwerdt, McKenzie & Voelk
1991; Zirakashvili et al. 1996; Ptuskin et al. 1997), the possibility
that CRs might generically be an important source of feedback in
galaxy formation has only recently begun to receive much sustained
attention, in either phenomenological (e.g. Zirakashvili & V6lk 2006;
Everett et al. 2008; Samui, Subramanian & Srianand 2010; Crocker
et al. 2011; Lacki et al. 2011; Crocker 2012; Hanasz et al. 2013;
Yoast-Hull, Gallagher & Zweibel 2016), or numerical models (e.g.
Jubelgas et al. 2008; Wadepuhl & Springel 2011; Uhlig et al. 2012;

>That follows from the fact that the energetically dominant cosmic ray
population is relativistic, i.e. adiabatic index y. — 4/3.
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Booth et al. 2013; Salem & Bryan 2014; Pakmor et al. 2016; Recchia,
Blasi & Morlino 2016, 2017; Salem, Bryan & Corlies 2016; Simpson
et al. 2016; Pfrommer et al. 2017; Ruszkowski et al. 2017; Buck
et al. 2019; Chan et al. 2019). Even so, there remains significant
disagreement in the literature about where and when CRs might be
important: some authors conclude they are capable of driving galactic
winds only off the most rapidly star-forming galaxies (e.g. Socrates,
Davis & Ramirez-Ruiz 2008), while others find they drive winds only
in dwarfs, (e.g. Jubelgas et al. 2008; Uhlig et al. 2012), and yet others
that they do not drive winds by themselves at all, but can reheat and
energize winds launched by other processes (e.g. Ruszkowski et al.
2017).

Thus, a first-principles effort to understand where and when CRs
might be important, taking into account all the available observational
constraints, seems warranted, and this is the primary goal of this and
our previous paper. Having explored the theory and observational
consequences of CR transport in the largely neutral gas phase from
which star form (Krumbholz et al. 2020), here and in our previous
paper (Paper 1), we seek to cut a broad swathe across the parameter
space of star-forming galaxies, and determine where within this
parameter space CRs might be important agents of feedback. We
break this task down into two parts. Paper I addresses the question:
What fraction of the total ISM pressure is typically supplied by CRs
as a function of galaxy parameters? In other words: How important
to the overall gas dynamics in typical star-forming galaxies can CRs
be? In this paper, we use the mathematical set-up of our previous
papers to address a rather specific, follow-up question: What is the
critical flux of cosmic rays above which a hydrostatic equilibrium
within a given column of gas is precluded? In other words: At
what point do cosmic rays — accelerated as a result of the star
formation process itself — start to drive outflows in galaxies? We
emphasize that we are not addressing the question of whether CRs
can re-accelerate or re-heat winds that have been launched by other
mechanisms, a question addressed by a number of previous authors as
discussed above. Instead, we seek to determine under what conditions
it becomes inevitable that the CRs themselves begin to lift neutral
interstellar gas out of galactic discs, certainly rendering the neutral
gas atmosphere unstable, and potentially giving rise to a cool galactic
wind.

The remainder of this paper is structured as follows: in Section 2,
we briefly recap the mathematical setup of the problem and, in
particular, write down the ordinary differential equation (ODE)
system that describes a self-gravitating gaseous disc that maintains a
quasi-hydrostatic equilibrium while subject to a flux of CRs injected
at its mid-plane; in Section 3, we present, describe, and evaluate
the numerical solutions of our ODEs; in Section 4, we consider
the astrophysical implications of our findings for CR feedback on
the dense, star-forming gas phase of spiral galaxies; we further
discuss our results and summarize in Section 5. For reference, a
table summarizing the meanings and definitions of symbols used in
our work is presented in table 1 of Paper I.

2 SETUP

2.1 Physical model: recapitulation

We provide a detailed description of the physical system we model
in the companion paper (Paper I). In brief, our model is similar
to one previously invoked by us in studies of radiation pressure
feedback (Krumholz & Thompson 2012, 2013; Crocker et al.
2018a, b; Wibking, Thompson & Krumholz 2018): an idealized 1D
representation of a portion of a galactic disc with total gas mass
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per unit area X4, and gas fraction fy,,, supported by a combination
of turbulent motions with velocity dispersion o, magnetic fields,
and CR pressure, and confined by gravity. CRs (or radiation)
are injected into this medium at the mid-plane with flux Fp.
In the radiation context, we have previously shown that, when
the injected radiation flux exceeds a critical value, the system
is destabilized and equilibrium becomes impossible. Numerical
simulations confirm that radiation-driven winds are possible only
in those systems for which equilibria do not exist. Here, we are
interested to determine whether a similar critical flux exists for CRs,
since, if it does, that would suggest the circumstances under which
it is possible for CRs to launch outflows of material out of galactic
discs.

2.1.1 Equations for transport and momentum balance

In Paper I, we provide a detailed derivation of a pair of coupled
ordinary differential equations (ODEs) that describe hydrostatic
equilibrium and transport of CRs with losses. We present only a
sketch of this development here for convenience, and refer readers
to Paper I for the full derivation. We treat CRs in the relativistic,
fluid dynamical limit whereby they behave as a fluid of adiabatic
index y. = 4/3. Our ODEs express how the CR pressure and the
gas column change as a function of our single variable, z, the height
above the mid-plane. CRs are assumed to be injected by supernova
explosions occurring solely in a thin layer near z = O; in the context
of establishing a stability limit, this assumption turns out to be
conservative (even though it is not realistic for most galaxies). We
show in Paper I that the system can be described in terms of four
dimensionless functions, s(§), r(§) = ds/d&, p.(§), and F.(§), which
represent the dimensionless versions of the gas column, gas density,
CR pressure, and CR flux as a function of dimensionless height &.
These functions are prescribed by two equations. The first is the
dimensionless CR transport equation

fslream dfC de

= —Tabs’Pc stream ~ ;. s 1
T Tabs’ Pe + Tst d (D
where T gyeam, Tabs, and B are all defined below and
Bs _,dpc
Fe=——"7r714 2
rslreamr ds ( )

is the dimensionless CR flux expressed in the standard diffusion
approximation (Ginzburg & Syrovatskii 1964), in which g specifies
the running of the diffusion coefficient with density (i.e. the diffusion
coefficientis proportional to p~¢ where p is the gas density). The term
on the LHS of equation (1) represents the gradient of the CR flux,
while the two terms on the RHS represent, respectively, collisional
and streaming losses of the CRs.* The coupled ODE expressing
hydrostatic balance is

dp. dr

a + ¢B G
The terms in equation (3) are, from left to right, the pressure gradient
due to CRs, the pressure gradient due to combined turbulence (treated

_(1 - fgas)r - fgassr- (3)

3Note that we can describe the process in terms of diffusion even if the
microphysical transport process is predominantly streaming, as long as we
are averaging over scales comparable to or larger than the coherence length
of the magnetic field — see Krumholz et al. (2020) for further discussion.
#Note that here we assume that second-order Fermi reacceleration is negligi-
bly small or actually zero (cf. Zweibel 2017).
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as isotropic) plus magnetic support,’ the gravitational acceleration
due to stellar gravity, and the acceleration due to gas self-gravity.

The dimensionless variables are related to the physical quantities
as follows. The dimensionless height is the physical height measured
in units of the turbulent scale height:

z

E=— 4)
Tx

where
o2

Ze = —, )
8«

(in which the turbulent velocity dispersion of the gas o is assumed
constant) and

X gas
f gas

Similarly s(£) is the (dimensionless) fraction of the total half column
contributed by gas in the height range from 0 to £z, and p.(£) is the
dimensionless CR pressure obtained by normalizing the dimensional
CR pressure to the characteristic mid-plane pressure P, (with related
energy density u, = (3/2)P,) given by

8. =2nG (6)

2 G 2 Eéas 1 -3
P =gupizi = pu0” = —— X > 0.57———eVcem °, 7
f gas f gas
where we have defined X1 = Zga5/(10Mg pc?) and
Zgas
——k 8

Px 22, (8)
is the characteristic matter density. The local density as a function of
height is p,(ds/d¢).

Other parameters appearing in the coupled ODEs are as follows:
The coefficients 7,55 and Tgeam appearing on the RHS of equation
(1) are, respectively, the optical depths of the gas column to CR
absorption and scattering (see equations 9 and 10 below). In equation
(3), ¢ on the LHS strictly lies in the range 0-2° and specifies
the importance of magnetic effects in modifying the pressure due
solely to gas turbulence (with values > 1 indicating magnetic pressure
support and values <1 indicating confinement by magnetic tension).
We adopt g = 1/4 and ¢ = 28/27 as fiducial values, but our results
are only weakly sensitive to these choices — for further discussion
see Paper L.

The cosmic ray optical depth parameters are given by

Bs

Tstream = K.B )
1

e = T (10)

SNote that we thus implicitly assume negligible thermal pressure. An
important implication of this approximation is that we are neglecting any
possible contribution to wind driving by CR heating, which would manifest
as an increase in thermal pressure. Our reason for doing so is that, in the
neutral gas on which we are focusing here, radiative cooling is generally rapid
enough that the velocity dispersion is dominated by bulk turbulent motions
rather than thermal motions. Consequently, changes in temperature such as
might be produced by CR heating have little effect on the total (thermal plus
turbulent) pressure.

OSpecifically, given a magnetic field that is amplified by a local turbulent
dynamo into near equipartition with the energy density of the gas turbulent
motions (as we assume here and in Paper I), we expect My ~ 1-2 and
pp=1+1/ (12./\/1%), implying that physically plausible values of ¢p are
close to 1. Our fiducial value ¢p — 28/27 assumes My = 1.5.

Cosmic ray feedback — I ~ 2653
where s = v/c denotes the dimensionless CR streaming speed,
= o/c is the dimensionless ISM velocity dispersion, and K, is the
dimensionless mid-plane CR diffusion coefficient expressed in units
of the effective diffusion coefficient for convective transport:

K = Kikconvs 1)
where
o — W0 _ 03 foas
3 6 G Xy
~ 3.8 x 10 cm’ s 07 fuu Tl ) 12)

and we have defined o; = 6/10 km s~'. Note that, as convection sets
a lower limit to the rate of diffusion, K, > 1. We apply this limit to
all of the CR transport models we describe below. The 7, parameter
appearing in the definition of 7, is the optical depth for ‘absorption’
of cosmic rays via the hadronic collisions they experience in the limit
of rectilinear propagation at speed ¢ from the mid-plane to infinity

through (half of the total) gas column X g:

Yigas
T = 5 (13)
pp
where
33 gcm™?
Tpp = 2 £ ~ 1.6 x 10° M pc >

3p0pp  (Mpp/0.5)(0pp/40 mbarn)
(14)

is the grammage required to decrease the CR flux by one e-folding;
here m,, is the proton mass, p, > 1.17 is the number of protons per
nucleon for gas that is 90 per cent H, 10 per cent He by number,
npp and o, are the inelasticity and total cross-section for hadronic
collisions experienced by relativistic CR protons.

The system formed by equations (1) and (3) is fourth order, and
thus requires four boundary conditions. Two of these apply to the
density, and are

s(0)=0 (15)
Jim 5@) = 1. (16)

which amount to asserting that the gas half column is zero at the
mid-plane, and that lim; _, oo Xgy1/2(2) = 1/2 Xgss. The remaining
two apply to the CR pressure and flux, and are

Tstream 1 Fc 0
FC 0 = — = N 17
5. () K. F JSead a7
at& =0and
Elim Feo = Elim 4B pe. (18)

The first of these, equation (17), is set by the CR flux F entering the
gas column; here F, = cP, is the scale flux for our non-dimensional
system, and fgqq is the Eddington ratio, which gives the ratio of the
momentum flux carried by the CRs to that imparted by gravity. The
second, equation (18), asserts that the CR flux approach the value
for free-streaming as § — oco. Again, we refer readers to Paper I for
a full derivation of these conditions.

2.2 CR transport models

To complete the specification of the system, we require expressions
for K, and B, the normalized CR diffusion coefficient and streaming
speed. These depend on the microphysics of CR confinement, and
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here we consider the same three models for this process as in Paper
I. These are:

2.2.1 Streaming (fiducial case)

We are interested in the feedback effects of CRs on the (predom-
inantly) neutral ISM, which at the mid-plane of a galactic disc
constitutes ~50 per cent of the volume (Dekel et al. 2019), and close
to 100 per cent in the densest starbursts (Krumholz et al. 2020),
and the vast majority of the mass. Thus our fiducial case is for CR
transport through such a medium. As discussed in Paper I and shown
in Krumholz et al. (2020), in such a medium strong ion-neutral
damping prevents interstellar turbulence from cascading down to
the small scales of CR gyroradii, which are the only scales that
efficiently scatter CRs. Thus the only disturbances in the magnetic
field with which CRs interact are those they themselves generate via
the streaming instability. Thus CRs stream along field lines, but for
the relatively low (but still relativistic) CR energies that dominate the
CR energy budget, streaming instability limits the streaming speed
to the ion Alfvén velocity of the medium’

o
oA V2XMy'
where My is the Alfvén Mach number of the Alfvénic turbulence
modes in the ISM and x is the ionization fraction by mass. For a
dynamo-generated field M5 &~ 1—2 (Federrath et al. 2014; Federrath
2016, Paper I), and astrochemical models show that the ionization
fraction x ranges from ~1072 in MW-like galaxies with relatively
diffuse neutral media (Wolfire et al. 2003) to ~10~* in dense
starbursts (Krumholz et al. 2020). On larger scales, the CR diffusion
coefficient is therefore set by the combination of streaming at this
speed along the field lines, and the random walk of the field lines
themselves in the turbulence. For this model, we show in Paper I that

(19)

1
K,=—— (20
NV2xMa
B
= = 2D
ﬁ «/ZXMA
Tstream — M/z (22)
V2 M3
Tabs = #Tpp’ (23)

and we use g = 1/4 as our fiducial choice as introduced above.® For a
given choice of M and x, and a galactic disc of specified X, and o
(which set 7, and B, respectively), these expressions complete the
specification of the system.

2.2.2 Scattering

Our second model is based on the premise that, although we are
interested in feedback on the neutral ISM, ionized gas nevertheless
fills ~50 per cent of the mid-plane volume in most galaxies (Cox
& Smith 1974; Dekel et al. 2019), with the fraction rising as one

"We justify this in Appendix A of Paper L.

8This corresponds to the physical limit where the turbulent velocity dispersion
is density independent, there is a local turbulent dynamo acting, and the
ionization fraction becomes independent of the local gas density; while this
latter is unlikely to hold strictly, as we have previously shown (Paper I and
Krumbholz et al. 2020), our results are not strongly dependent on ¢ so long as
0<g<l1.
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goes away from the mid-plane, and thus CR transport might take
place predominantly in the ionized phase of the ISM. Indeed, in situ
observations suggest that such is the case for the local CR population
seen at Earth (e.g. Ghosh & Ptuskin 1983; Jones et al. 2001). In
this case CRs may still interact predominantly with their own self-
generated turbulence, in which case we return to a situation much
like the streaming model, except with y = 1. The more interesting
possibility, therefore, is that, although CRs do stream at speed vy =
va; = 0/~/2My, they also scatter off turbulence that is part of the
large-scale turbulent cascade in the ISM, and that this scattering is
what sets the diffusion coefficient. In this case, we show in Paper I
that transport coefficients are given by

1 P2 EcrMa\”
K, = — G ZCRTA (24)
B \2fgs ec?
B
- 25
B NITA (25)
-p
38 (Ex [ G
Tsteam = =5 | 5 26
‘ V2M3 <602 2fgas> (20
-p
3 E G
T = o [ 2R : @7
My eo zfgas

Here Ecg is the CR energy (we adopt Ecg = 1 GeV = Ecgp as a
fiducial choice), e is the elementary charge, and p is the index of
the turbulent power spectrum — p = 1/3 (corresponding to g = 1/6)
for a Kolmogorov spectrum, and p = 1/2 (corresponding to g = 1/4,
i.e. the fiducial value) for a Kraichnan spectrum, though which value
of p we choose makes little difference to the qualitative results. As
with the streaming model described above, for a particular choice
of Ecrp, p, and M4, the above expressions allow us to compute the
transport coefficients B, Tyyeam, and T,ps for any choice of galactic
disc parameters Xy, and o. Compared to the streaming model,
the scattering model generally predicts smaller streaming optical
depths in all galaxies, and comparable diffusion rates and absorption
optical depths in MW-like galaxies. The models differ mainly in their
predictions for denser and more rapidly star-forming galaxies, where
the scattering model predicts slower transport and greater absorption
optical depths than in the MW (due to stronger turbulence), while the
streaming model predicts the opposite (due to the lower ionization
fraction in denser galaxies allowing faster CR streaming). We provide
a more detailed comparison in Paper I.

2.2.3 Constant diffusion coefficient

The third model we consider is a purely empirical one: The empiri-
cally determined diffusion coefficient for ~GeV CRs in the MW is
close to k,mw = 10?8 cm? s7! (e.g. Ptuskin et al. 2006) and, in this
model, we simply assume « in all galaxies is given by this value.
We thus assume that CRs stream through a fully ionized medium,
as in the scattering case, but we take the dimensionless diffusion
coefficient to be K, = k. mw/Kkconv- The corresponding expressions
for the dimensionless numbers entering the equilibrium equations are

_ 67'[ GEgasK*,MW

.= (28)
fga503
B
s = (29)
P V2M,
1 < KCOHV ) (30)
Tstream = ~—=
! \/EMA Ky MW
w=®(®ﬂ. @31
' B\ Kemw
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Since we can write down the convective diffusion coefficient i .opy
as a function of Xy, and o (cf. equation 12), this again represents
a complete specification of the system.

3 THE COSMIC RAY EDDINGTON LIMIT

With this review of our dimensionless ODE system, and having
dealt with the microphysics of CR transport, we are now in a
position to address the basic question posed in this paper: under
what conditions does it become impossible for a galactic disc forced
by CRs from below to remain hydrostatic? To answer this question,
we first describe a numerical method to identify this limit in the
space of the dimensionless variables that characterize our system
(Section 3.1), we use this method to obtain critical stability curves
in this space (Section 3.2), and then we translate from the space of
dimensionless variables to the space of observable galaxy properties
(Section 3.3).

3.1 Numerical method

We must solve equations (1) and (3) numerically. Because the
boundary conditions for the system, equations 15-18, are specified
at different locations, the system forms a boundary value problem,
which we solve using a shooting algorithm as follows: we have s(0)
= 0 from equation 15, and we start with an initial guess for the
mid-plane density 7(0) = s'(0) and pressure p.(0). These choices
together with equation 17 allow us to compute the mid-plane CR
pressure gradient p.(0), so that we now have a set of four initial
values at s = 0 and can integrate outwards until s(&§) and p.(§)
approach constant values at large £. In general, our guess will not
satisfy equation 16, i.e. s(§) will go to a value other than unity as &
— 00. We therefore iteratively adjust s (0) while holding p.(0) fixed,
until equation 16 is satisfied. In general, however, this choice will not
obey equation 18, i.e. the CR flux will not go to the correct value as
& — 00. We therefore now iteratively adjust our guess for p.(0). We
continue to iterate between our guesses for s (0) and pc(0) until the
system converges and all boundary conditions are satisfied, or until
convergence fails (see below).

A crucial feature of solutions to this system is that, as fg4q increases
at fixed T, and Tgreqnm, the dimensionless mid-plane density s (0)
decreases monotonically, approaching zero at a finite value of fgq4.
We illustrate this behaviour for two example cases in Fig. 1. We
refer to the value of frgqg for which this occurs as the critical
Eddingtion ratio, fgqqc. No solutions exist for fgaga > frade, and
thus frqac represents the largest Eddington ratio for which it is
possible for a gas column through which CRs are forced to remain
in equilibrium. Larger values of fzqq necessarily render the system
unstable. Mathematically, this manifests in that we are unable to
find values of s (0) and p.(0) such that, when we integrate equations
(1) and (3), the resulting solution satisfies the boundary conditions
equations 16 and 18 as & — oo. The shooting method fails to
converge.

We determine the value of the critical Eddington ratio fgdq.c(T abss
Tsiream) @S @ function of 7, and Tgye,m as follows. We start with
a small value of fgqq, for which a solution is guaranteed to exist
because in the limit fgqg — 0, equations (1) and (3) are completely
decoupled; the former just reduces to the equation for an isothermal
atmosphere, and the latter to a non-linear diffusion equation with
losses, the analytical solution for which is given by Krumholz et al.
(2020). We use the shooting procedure described above to obtain the
numerical solution for this small value of fr4q. We then progressively
increase frqq and solve again, using the solution for the previous value

Cosmic ray feedback — I ~ 2655
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Figure 1. Profiles of (dimensionless) volumetric density (&) = s (&) (solid)
and (dimensionless) CR pressure p.(£) (dashed) for various representative
cases as indicated in the legend. The upper panel is for 7,ps = 0.1, the lower
is for Taps = 3.0; otherwise, parameters common between the panels are ¢
= 1/4, Tyream = 1, faas = 0.9, and ¢p = 28/27. In both panels, the blue
curves are evaluated for the critical fgqq case and the yellow curves are for
a sub-critical fgqq value; the solid green curve is the density profile of a gas
column supported purely by turbulence (with ¢ = 49/48). Note that because
o is constant, s (&) is equivalent to the dimensionless turbulent pressure, and
thus the ratio of solid and dashed curves of the same colour is also the ratio
of turbulent to CR pressure.

as a starting guess. Eventually we reach a value of fiqq for which the
shooting method fails to converge, and no solution exists. Once we
find this value, we iteratively decrease and increase fr4q in order to
narrow down the value fgqq. for which a solution ceases to exist. We
iterate in this manner until we have determined fraq for a given s
and Tgream to some desired tolerance. Fig. 1 confirms that the value
of frdd. We obtain by this procedure is indeed such that 5 (0) is close
to zero, although in practice how close we are able to push s (0) to
zero depends on the tolerances we use in our iterative solver — in the
vicinity of fg4qc, the value of 5 (0) becomes exquisitely sensitive to
fraa- This is visible in the upper panel of Fig. 1, where our solution
for frad ~ fradac has s’(O) ~ 0.05, but if we increase fgqg by even
1 per cent, then solutions cease to exist entirely.

3.2 Ceritical curves

We show sample values of frgq. determined via the procedure
described in Section 3.1 and Fig. 2; the top panel shows fgqq. as
a function of 74 for fixed Tgyeam at several values of fy,, while
the bottom panel shows fgaqc(Taps) for fixed fyas at several values
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Figure 2. CR Eddington limit fg4qc as a function of effective optical depth
Tabs- Upper panel: frqqc Versus Tups at fixed Tgream = 1 and for a range
of gas fractions fg,s as indicated in the legend; a higher fy,s renders the
column (somewhat) less stable (i.e. reduces fgqq,c ). While a higher 7 s renders
the column more stable once we are in the optically thick regime (because
hadronic collisions reduce the steady state CR pressure). Lower panel: fgdq.c
as a function of 7.y for fixed fgas = 0.5 and a range of Tyyeam values as
indicated in the legend; a higher tgyeam renders the column more stable
(again because losses — in this instance due to the streaming instability —
reduce the steady state CR pressure).

of Tyream. Qualitatively, the behaviour of the solution with respect
to Taps 1S that, at small Ty, fraae approaches a fixed, O(1) value.
At large 7., we find that fgqa. begins to scale X t,,,. We also
find that, at low 7., we have a rough scaling fegde X Tstream
scaling (cf. lower panel of Fig. 2). Finally, we find that increasing
feas renders the column less stable for other parameters held fixed;
this is as expected given that gas self-gravity must vanish in the
mid-plane.

We can understand the observed scalings of fgqac With fou, Tabs,
and Tgpeam Via some straightforward analytical considerations. Of
these, fqqs is the simplest. We note that, in the limit fzqq < 1, the
equation of hydrostatic balance (equation 3) has the usual solutions
S'(€) = (1/¢p)e 5/ for fuu = 0 and s'(€) = 1/(25) sech® (& /2p5)
for foas = 1; at & = 0, these solutions have s = 1/¢p and 1/2¢3p,
respectively, so the density at the mid-plane is twice as high with
Jeas = 0 as with fy, = 1. In between these limits, the mid-plane
density scales as approximately 1/[¢p(1 + fas)]. Since the critical
fiaa corresponds to the point where s'(0) — 0, we expect that
configurations starting with a larger value of 5 (0) at low fgqq should
have higher fraqc, a8 frade X 8 (0)| o<l This suggests a scaling
Seaae X 1/[¢p(1 + feus)], which is consistent with our numerical
results.
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The scalings for T, and Tgyeum require only slightly more con-
sideration. We expect our system to approach the critical limit when
the mid-plane CR pressure, P, becomes significant in comparison to
the pressure required to keep the column in hydrostatic equilibrium,
P.. In steady state, the mid-plane CR pressure (or energy density,
which differs just by a factor of 3), in turn, will be set by the
product of the CR energy injection rate — set by star formation
— and a dwell time 7. for CRs injected into the galaxy. Thus,
we have
(E) N (Fe0/z:)te ol

=0

= K. fedd. 32
P, P - « JEdd (32)

where F.( is the energy injected per unit area, and we write the
energy injected per unit volume as F o/z, under the assumption that
the CRs are distributed over a height of order z.. In the second step,
we made use of equation 17 to rewrite F in terms of the Eddington
ratio.

The dwell time for a CR will be set by the minimum of the time
required for it to be lost to a collision, 7, to have its energy sapped
by streaming losses, fyream, OF to escape from the galaxy via diffusion,
Lesc, diff*
te ~ (teal + fogeam T Tesc.aitr) g (33)
We can rewrite each of the three ratios appearing inside the parenthe-
ses in the above equation in terms of our dimensionless parameters.
The collisional loss time is (cf. equation 11 of Paper I)

1 1 Zs
feol ~ ~ (%), (34)
T o/ mpmp)opptyy  KiTas \ O

where we have dropped factors of order unity, and in the second
step we have made use of equations (10) and (13). Similarly, the
streaming loss time is (cf. equation 49 of Paper I)

z 1 z

Tstream ™ T (i) s (35)
US K*rslream g

where in the second step we have used equation (9). Finally, the

diffusive escape time is (cf. equation 47 of Paper I)

2
z 1 (z*)
fsedif ~ %~ — (X)), 36
esc, diff K, K* o ( )
where we have used equation (11). Inserting these factors
into equation (33) for 7., and hence into equation (32),
we find

P _
<7> ~ fEdd (1 + Tabs + fslream) ! . (37)
P, z=0

Thus if we expect the mid-plane ratio P./P, to be of order unity when
fEda 1s at the critical value, it follows immediately that
Srdde & M, (38)
¢B(1 + f gas)

where we have now re-inserted the scaling with ¢ and fy, derived
above. This is not, of course, an exact expression, but its scalings are
qualitatively correct, as we have seen, and account for the following
phenomena: CRs exert a pressure which is (i) enhanced by the
diffusive nature of their propagation (cf. Socrates et al. 2008) — this
leads to the constant term on the RHS — but attenuated by (ii) their
collisional and (iii) their streaming losses; these lead to the o(T s
and T gyeam terms, respectively.

It will be convenient for the remainder of this paper to use
our understanding of the scaling behaviour of fraq. to derive an
approximate analytical fit that we can use in lieu of the full,
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Figure 3. Relative error between the analytical approximation and the full
numerically determined CR critical Eddington ratio. From top to bottom, the
panels are for 7 gyeam = {13, 1.33, 1.53}; gas fractions are as labelled in each
panel’s legend.

numerically determined solution. We adopt the functional form given
by equation (38), and after some numerical experimentation to find
coefficients that minimize the error, we arrive at the approximate
relationship

1

24¢'B(1 + fgas)

We plot the relative error in this fit, defined as

.Cﬂ S .CS ream
Sedd.e X fradc fic = (0.26 4y ) . (39

2.5 0.31

rel. err. = R (40)

f Edd,c

in Fig. 3. The figure demonstrates that our approximation is accurate
to <20 percent for 7,5 < 10 and fy,s = 0.01-0.99.
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3.3 The cosmic ray stability limit for star-forming galaxies

The final step in our calculation is to translate our stability limit from
dimensionless (fgad, Tabss Tsweam) tO the physical variables describing
a star-forming galactic disc. In particular, we are interested in the
highest star formation rate (since star formation produces supernovae
that are the primary source of CRs) that a disc can sustain before it
becomes unstable to the development of CR-driven outflows.

The conversion from dimensionless to physical variables is
straightforward. Given a gas surface density X4, velocity dispersion
o, gas fraction fg,s, Alfvén Mach number M, and either (depending
on our choice of CR transport model) an ionization fraction x
or CR energy Ecgr, we can compute the corresponding 7 ye,m and
Taps Values from equations (22) and (23) (for our fiducial streaming
model), equations (26) and (27) (for the scattering transport model),
or equations (30) and (31) (for the constant model). From these
values plus fgs we can compute the critical Eddington ratio fggq,c
using either the numerical procedure outlined in Section 3.1, or, with
much less computational expense, our approximate fitting formula
(equation 39).

We can obtain a corresponding star formation rate per unit area 3.,
from this as follows. First, following Paper I, we write the CR flux
as

Feo= Ec.l/zz*, (41)

where €., is the energy injected into CRs in each galactic hemi-
sphere per unit mass of stars formed. We adopt a fiducial value €. j»
5.6 x 10*” erg M, which corresponds to assuming Chabrier (2005)
initial mass function, that all stars with mass > 8 M, end their lives
as supernovae with total energy 10°! erg, and that 10 per cent of this
SN energy is eventually injected into CRs. Substituting equation (41)
into the definition of fg4q (equation 17), we have

. F, 7G 220
X, = KB feaa = £ K. fraa
€c,1/2 €c,1/2 fgas
2 o
=49 %107 2T g i Mo pe? Myr . (42)

gas

By plugging our value of fgqq. into equation (42), together with the
appropriate value of K,, for our chosen CR transport model (equations
20, 24, or 28), we obtain the critical star formation rate )':*,C above
which galaxies become unstable to CRs.

In order to actually plot %, versus X, we require values of
0, feas» and x, which vary systematically with Xy, on average
(e.g. higher surface density galaxies tend to have higher velocity
dispersion), but which are not single-valued functions of X, either.
To avoid a proliferation of curves, we adopt the same strategy as in
Paper I: we interpolate between plausible values of these parameters
as a function of X4,. Specifically, we adopt

fgas(zgas) =0.11 Ega?l (43)
X(Zgas) = 0.013 Zg_a(:’{g (44)
0(Xgas) = 8.5 Zgﬁf’l kms™'. (45)

We emphasize that these are not intended to be accurate fits; they are
simply intended to provide smooth functions we can use to reduce
the multidimensional parameter space of X, 0, fus. and x to a
single dimension so that we can represent it on a plot.

With this understood, we plot Z*_C as a function of X4 in Fig. 4.
We show curves for the cases of (i) our fiducial streaming model
for CR transport (blue), (ii) the alternative scattering (yellow), and
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Figure 4. Thick coloured lines show critical stability curves 3, ., i.e. the star formation rate per unit area at which CR pressure precludes hydrostatic
equilibrium, computed assuming one of three different CR transport modes as indicated (with streaming constituting our fiducial model), and for My =2
(solid) and M = 1 (dashed) together with fiducial parameter choices for all models, and using the fits for fyas, X, and o as a function of X g,5 given by equations
(43)—(45). The dashed, diagonal, purple line is the Kennicutt (1998) star formation scaling. The dotted red line is the critical star formation rate surface density
obtained for radiation pressure feedback. This curve smoothly interpolates from the single-scattering case (adopting a critical Eddington ratio 0.6 on the basis
of the calculation by Wibking et al. (2018) and assuming a fixed flux-mean dust opacity per mass of dust-gas mixture of x = 1000 cm? g~!) into the regime
where the atmosphere is optically thick to FIR radiation due to the dust opacity (Crocker et al. 2018a) with a cross-over at X g, >~ 103 Mo pc_2 (and we have
assumed a young, <7 Myr old, stellar population for the optically thick part of the curve). Finally, points show observations drawn from the following sources:
local galaxies from Kennicutt (1998), z ~ 2 sub-mm galaxies from Bouché et al. (2007), and galaxies on and somewhat above the star-forming main sequence
at z ~ 1—3 from Daddi et al. (2008, 2010b), Genzel et al. (2010), and Tacconi et al. (2013). The red data points show the solar neighbourhood (‘MW*) and the
Central Molecular Zone (‘CMZ’) of the MW, and three, local starbursts whose y-ray emission is modelled in Krumholz et al. (2020). The observations have
been homogenized to a Chabrier (2005) IMF and the convention for ¢co suggested by Daddi et al. (2010a); see Krumholz, Dekel & McKee (2012) for details.

(iii) the case of constant « (green); for all of these modes we show 4.1 For which galaxies can CRs drive outflows from the
both results for both M = 2 (solid) and M = 1 (dashed). For any star-forming ISM?

particular curve, the stable region is below and to the right, while
the unstable region is above and to the left. Fig. 4 also shows a
selection of observed galaxies culled from the literature (see Paper I
for details of the data compilation), with some particularly significant
galaxies shown by the red points: the MW datum, its Central
Molecular Zone (CMZ), and the nearby starbursts NGC 253, M82,
and Arp 220, whose y-ray emission we modelled in Krumholz et al.

We start by examining our fiducial CR transport model, indicated by
the blue lines in Fig. 4. An immediate conclusion we can draw is that,
for physically plausible scalings of the parameters, the CR stability
curve patrols a region very close to the top of the occupied part of
the (Xgqs, %,) plane for star-forming galaxies with low gas surface
densities typical of the Galaxy and local dwarfs. This correspondence
strongly suggests that CR feedback on the neutral gas may be an

(2020). important mechanism in such galaxies: it might limit the ability of
galaxies to make excursions above the locus where most of them like
4 IMPLICATIONS Fo be, or.it might be responsible for laun§hing winds and c?jecting gas
in galaxies that do wander upwards to higher star formation rates.
Fig. 4 is the central result of this paper. Here, we discuss its Conversely, it is evident that, at the higher gas surface densi-
implications, and explore the physical origin of the result and its ties encountered in local starbursts and high-redshift star-forming
sensitivity to a variety of assumptions and parameter choices that we galaxies, all the critical curves (not just the one for our fiducial
have made. model) diverge away from the observed distribution of galaxies.
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This implies that CRs cannot drive winds in these systems (cf.
Paper I). Mathematically, such a divergence must occur for the
following reason: from equation (42), for the range of 7, for which
Sfrdde ~ const at fixed Tyeam (cf. Fig. 2) we have shown that the
critical star formation rate surface density scales approximately as
%, X i, o« T2 On the other hand, the observed surface density
of star formation rises with gas surface density with an index <2.
Physically, the divergence occurs because the high gas number
densities in starburst systems kill CRs quickly, meaning that the
energy density/pressure they represent cannot build up to be anything
comparable to hydrostatic pressures (cf. Lacki et al. 2011; Thompson
& Lacki 2013; Crocker et al. 2020). On the other hand, such a
situation constitutes a recipe for CR calorimetry, so these systems
are expected —indeed, directly inferred, in a limited number of cases —
to be good hadronic y-ray sources (cf. Torres et al. 2004; Thompson,
Quataert & Waxman 2007; Lacki, Thompson & Quataert 2010; Lacki
etal. 2011; Yoast-Hull et al. 2016; Sudoh, Totani & Kawanaka 2018;
Peretti et al. 2019; Krumbholz et al. 2020).

4.2 Instability of galaxies under scattering

A second significant point that is evident from Fig. 4 is that, for
the case of scattering, the critical curves cut well into the occupied
region of parameter space for lower surface gas density galaxies;
many such galaxies, including the MW, are unstable under this
scenario. This is surprising. We remind readers that this model for
CR transport applies in an environment where there is an extrinsic
turbulence cascade that reaches down to the gyroradius scale of the
energetically dominant ~GeV CRs. We have shown Krumbholz et al.
(2020) that this is not the case for the neutral medium that dominates
the mass and forms the stars. On the other hand, the long-standing
classical interpretation of the totality of the CR and diffuse gamma-
ray emission phenomenology is that the spectrum of the MW’s steady
state, hadronic cosmic ray distribution is informed by exactly this
process of scattering on extrinsic turbulence (e.g. Jones et al. 2001).

This is not necessarily a contradiction: unlike the situation for
starbursts (Krumholz et al. 2020), the MW mid-plane ISM is not
single phase. Rather, the filling factors of the dense, neutral phase,
and the more diffuse, ionized phase are similar in the mid-plane
(Kalberla & Kerp 2009). Moreover, the ionized gas filling factor
increases towards unity as we rise away from the mid-plane and
individual SNRs or stellar cluster superbubbles form chimneys into
the hot, ionized halo. Thus some — potentially large — fraction of
CRs accelerated by SNR shocks in MW-like conditions may never
encounter a large grammage of matter in escaping the mid-plane,
i.e. they experience an effective 7,,s < 1 and, incidentally, also
Tyream << 1 given that streaming losses are generically small, in
relative terms, for the scattering mode. These CRs — provided that
the classical picture of scattering on an extrinsic turbulent cascade is
roughly correct — will render the ionized gas column hydrostatically
unstable. This applies for MW conditions according to Fig. 4. Of
course, an assumption here is that the classical picture of scattering
on extrinsic turbulence is essentially the correct one for the ionized
phase, and this may not actually hold (e.g. Zweibel 2017; Blasi 2019).
On the other hand, recognizing that the ionized gas column for most
low surface-density galaxies will only constitute some <10 per cent
of the total column, Fig. 4 may actually tend to exaggerate stability
with respect to cosmic ray feedback in the ionised phase for such
galaxies.

In summary for the scattering case, as has long been recognised
(Jokipii 1976; Breitschwerdt etal. 1991; Ko, Dougherty & McKenzie
1991; Everett et al. 2008; Socrates et al. 2008), it is hard to escape the
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conclusions that for local galaxy conditions, CRs will likely drive
winds in the ionized gas phase. This will lead to mass-loss over
cosmological time-scales. However, none of these considerations
preclude the existence of a hydrostatic equilibrium in the dense,
neutral phase that allows it to sustain the star formation process.
Overall, the picture we thus arrive at here is that there are effectively
two transport regimes operating for CRs in MW-like galaxies
(according to the ISM phase within which CRs are propagating).
Qualitatively this agrees with the long-standing argument (Ginzburg,
Khazan & Ptuskin 1980) that the correct interpretation of local
CR phenomenology® is that there are distinct disc and halo CR
propagation zones, with the halo diffusion coefficient significantly
(i.e. 3—10x) larger than the disc one (while the characteristic matter
density in the disc is, of course, substantially larger than that in the
halo).

4.3 Transport with a constant diffusion coefficient

In numerical simulations, it has been common practice to adopt
a constant diffusion coefficient, and it is therefore interesting to
consider the implications of such a choice. Examining Fig. 4, we see
that, for the case of constant diffusivity and adopting a fiducial value
of i, mw = 10?® cm? s7! for the dominant ~GeV CRs, the neutral
phases of essentially all star-forming galaxies would apparently be
hydrostatically stable with respect to CRs. Moreover, if we were to
revise k., mw upwards by the ~ one order of magnitude suggested by
some recent determinations of the global MW diffusion coefficient at
~GeV energies (e.g. Jéhannesson et al. 2016; Hopkins et al. 2020a),
a similar increase to the critical star formation rate surface density
across the run of star-forming galaxies would result: CR feedback
would apparently be rendered completely irrelevant. We illustrate this
further in Fig. 5, which is analogous to Fig. 4, but shows the results
with a range of other choices of constant diffusion coefficient.
Given that the constant model is not physically well-motivated, this
serves as a caution to numerical modellers that assuming a constant,
large diffusion coefficient everywhere, i.e. also in the neutral gas, may
lead to a — potentially severe — underestimation of the importance of
CR feedback, assuming, of course, that the neutral gas distribution
is well resolved. In the context of this discussion and Fig. 5 in
particular, we remark on some recent findings in FIRE-2 numerical
galaxy formation simulations by Hopkins et al. (2020a, b, 2021)
that incorporate CRs and which seem, prima facie, to be somewhat
in tension with our fiducial choice «, mw = 102 c¢m? s~! for the
constant diffusion coefficient case. In particular, Hopkins et al. claim
on the basis of their results on modelled hadronic emission from
nearby star-forming galaxies — and independent work by others
on CR transport in the MW (e.g. J6hannesson et al. 2016) — that,
for models that adopt a constant diffusivity, k > 10* cm? s7! is
required; on the basis of Fig. 5, this would seem to imply CRs play
no dynamical role. However, the mass resolution of AM ~ 10* Mg
achieved in these simulations is far from sufficient to resolve the
neutral gas disc in star-forming galaxies: at the mean density n &
1 cm~3 found in the MW’s neutral ISM, the characteristic (as opposed
to maximum) resolution in these simulations is Ax ~ (AM/nmy)"?
~ 70 pc, so the ~140 pc scale height of the neutral ISM (Boulares

9Specific aspects of CR phenomenology that support the existence of a CR
halo include (i) the very low levels of CR anisotropy and (ii) the difficulty
encountered in otherwise reconciling CR age measurements obtained with
unstable ‘clock’ nuclei (like '°Be) with the grammage encountered by typical
~GeV + CRs as inferred from secondary to primary CR nuclei ratios.
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Figure 5. Critical stability curves for CR transport with a constant diffusion
coefficient as nominated in the legend; other parameters and data points are
identical to those used in Fig. 4 (M = 2 is adopted). The red, dashed curve
shows the stability curve in the low « limit, where it is completely determined
by hadronic losses.

& Cox 1990) is effectively unresolved. Thus, the results of Hopkins
et al. really apply to CR transport in the much more extended ionized
gas distribution around each model galaxy and, indeed, it is in this
phase that they claim to find the main impact of CR feedback (which
is to suppress gas accretion from the CGM on to galaxies). Similarly,
determinations of the effective, global diffusion coefficient in the
MW are mostly dependent on CR transport conditions within the
ionized gas phase (because this fills most of the volume subtended
by the Galaxy’s CR diffusion halo) and may tell us very little about
CR transport in the (largely) neutral ISM phases. Thus there is no
tension between our fiducial choice and the findings of Hopkins et al.
because we are effectively considering CR feedback in different ISM
phases between which transport is also different.

One other interesting thing to note from Fig. 5 is that, while it
is true that dialling the diffusion coefficient (in constant diffusivity
models) down to arbitrarily low values will push the CR energy
density into the loss-dominated or thick target regime, whatever the
surface gas density, it is not true that being in this regime implies
CR stability. In fact, the red dashed line marking this limit shows
that below ~100 M, pc~2 the large majority of normal spirals and
dwarfs would still have CR-unstable neutral gas columns even in
this ‘calorimetric’ limit. In such systems, the CR pressure assumes
its minimum value (which is set by accumulation of injected CRs
for the shortest time-scale, the hadronic loss time), but this still
exceeds the pressure determined by the hydrostatic equilibrium
condition.

4.4 The role of the Alfvénic Mach number

One of the important parameters that appears in our models is the
Alfvénic Mach number of the turbulence. This parameter controls the
streaming speed and thus the strength of streaming losses directly,
and also affects the overall diffusion rate — weakly for the scattering
or constant models, strongly for the streaming transport model. We
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Figure 6. Critical stability curves for the streaming mode of CR transport
with M4 as given in the legend. Parameters and data points are identical to
those used in Fig. 4, except for M. The red, dashed curve shows the stability
curve in the high M, limit, where it is completely determined by hadronic
losses.

have argued based on dynamo theory that M, will always be in the
range ~1—2 in galactic discs (Federrath et al. 2014; Federrath 2016),
but it is important to investigate to what extent our conclusions are
dependent on this argument.

We first investigate this in the context of the streaming model,
where the M-dependence is greatest. In Fig. 6, we show critical
stability curves for this model computed with various value of M.
In the high M, limit the stability curve becomes universal (i.e.
independent of the transport mode) because the CR energy density
is set purely by hadronic losses right across the range of gas surface
density; the critical curve in this limiting case is shown as the dashed
red line in the figure. Note that, were ordinary, local disc galaxies
operating in this limit, their neutral ISM phase would be unstable
and driving a strong outflow, something that we do not observe. This
implies, minimally, that magnetic fields in such galaxies are not too
far below equipartition with respect to turbulent energy density (as
expected in the case that a local turbulent dynamo is operating, and
as we see directly in the MW). More speculatively, it may be that
gas motions induced by CRs in the case that the atmosphere is CR
unstable help to drive magnetic fields towards equipartition at the
lower surface gas density end of the distribution.

The difference between M, = 1 and 2 is far smaller for the
scattering and constant models. This occurs because, for these modes,
the streaming loss time-scales are relatively long while the diffusive
escape or collisional time-scales are either mildly dependent or
completely independent of M,. The critical curves for the scattering
and constant « cases also become identical at high X ,,. This occurs
because the collisional time-scale formula is universal and collisional
losses are solely responsible for setting the CR energy density in
this regime. The streaming curve does not exhibit this behaviour
because here streaming losses remain comparable to collisional
losses even up to very high X.. The streaming case approaches
the streaming and constant curves at high Xy only in the limit
My > 1.
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4.5 Unimportance of convective transport

On the basis of equation (42), X'J,,C & K fedd.c. SO it might seem
that we should expect that there should be clear structures in the
critical curves where K, becomes equal to unity and the CR transport
mechanism changes between convection and some other process.
The K. = 1 regime occurs for Eg,s < 10 Mg pe~? for the streaming
transport model, and for Zg,s > 10° Mg pc™ for the starburst and
scattering transport models, yet there are clearly no sharp features
visible in the critical curves. Indeed, even if we explicitly ignore
convection (i.e. we allow K, < 1 when computing 2*‘0), we find
critical curves that are essentially identical.

We can understand the reason for this both mathematically and
physically. Mathematically, for a scattering or constant x model
of CR transport, the diffusive transport rate only becomes smaller
than the convective rate in galaxies with very high surface densities.
However, these galaxies also have 7, > 1, and in this limit we have
JEdde O Taps. Since Taps = Tpp/K, B, we arrive at 3, X Top/ B, With
no dependence on K,; this is why a sharp change in the value of K,
does not generate a corresponding sharp change in X,. Physically,
the origin of this behaviour is that the only galaxies in which the
rate of diffusive CR transport becomes smaller than the rate of
convective transport are those with very high gas densities, and
thus high 7,,. In these galaxies, the dominant CR loss process is
no longer diffusive escape, it is pion production. In this regime, the
rate of transport — diffusive or convective — is irrelevant to setting
the CR energy density. Instead, the CR energy density is simply set
by the competition between injection and pion loss, and it is the
balance between these two processes that determines the location of
the critical curve, the point at which the CR pressure becomes too
high to permit hydrostatic balance.

For the streaming model, the transition to convective transport
happens at low gas surface density. However, in these galaxies we
also have Tyyeam = 1, and thus figqec X Tstream- SINCE Tgream X 1/K,,
the dependence of 3, on K, again disappears, and thus there is again
no sudden change in the critical curve when we reach the convective
limit. The physical origin of the behaviour in this place is that, for
this transport model, CRs are lost primarily to streaming rather than
to escape. We again therefore have a situation where the CR energy
density is set by the balance between streaming and injection, a
balance that does not depend on the effective diffusion coefficient.

4.6 Cosmic rays versus radiation pressure as wind launching
mechanisms

CRs are of interest as a feedback mechanism partly because they
are much less efficiently lost to cooling than hot gas produced by
SN explosions. However, a second appealing aspect of CR feedback
is that CRs are ‘cool’, in that they can accelerate gas without the
need for a shock, and thus naturally explain the presence of low-
temperature species in galactic winds. It is therefore interesting to
compare CRs to radiation pressure, which is another cool feedback
mechanism. Radiation pressure can be delivered either by the direct
stellar radiation field or by radiation that has been absorbed by
dust and reprocessed into the infrared (cf. red dotted line in Fig. 4
which interpolates between these limits). At galactic scales, the latter
mechanism is only important in the densest starbursts (Thompson,
Quataert & Murray 2005; Crocker et al. 2018a, b), precisely where
we have shown that CR feedback is ineffective. The more interesting
comparison is therefore in the regime of low surface density galaxies,
where direct, or ‘single scattering’, radiation pressure dominates
(e.g. Scoville et al. 2001; Murray, Quataert & Thompson 2005; Fall,
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Krumholz & Matzner 2010; Andrews & Thompson 2011; Skinner &
Ostriker 2015; Thompson et al. 2015; Thompson & Krumholz 2016;
Wibking et al. 2018).

For a region of a galactic disc with areal star formation rate ,,
the momentum per unit area per unit time delivered by the radiation
field per hemisphere in the single scattering limit is

1

Il = ;2*4’1/2, (46)
where
@]/2 ~ 6.0 x 1050 erg Mgl 47)

is the efficiency for conversion of gas mass into radiation (into one
galactic hemisphere) via the star formation process (Kennicutt &
Evans 2012). Note that we are assuming that all of the direct stellar
radiation is absorbed. This is an upper limit, but cannot be wrong by a
large factor, since, as pointed out by Andrews & Thompson (2011),
~1/3 of the radiation momentum budget is in ionizing photons,
which will be absorbed even by a tiny column of neutral gas. By
comparison, the momentum per unit area per unit time in the upward
direction delivered by CRs into each hemisphere, integrating over
the gas column, is

M, =—P /wd”“dg (48)
Y

To evaluate the integral, we can make use of equation (1)

o ch 1 |:/c>o ( Tstream dJ:c) :|
dé = Tabs? Pe + d
/0 df S Tstream 0 TP ﬁs ds E

| cad fin
= L o) - R0y + LR St (49)
ﬁs TS[rCam
where
Tabs 0
fou = / rpe d (50)
fEdd 0

is the ‘calorimetric fraction’, i.e. the fraction of all CRs that are lost
to pion production (cf. equation 64 of Paper I), and F.(0c0) is the flux
at & = oo.

Therefore, we find that the ratio of CR to single-scattering radiation
momentum is

l.;[c _ (&;,1/2) 1 [1 e ]:c(oo):|

l-Iss q>1/2 ,Bs -7:0(0)
~93x 1041 {1 — o — f‘:(oo)}
Bs Fe(0)
28 Fuoo)
— Ver [1 fczll ]_-C(O):| (51)

where vg » = v/(100 km s~!) and we have made use of equations
(9, 17, and 41) to simplify. This expression has a straightforward
physical interpretation. The leading numerical factor of ~10~* in
the second line represents the ratio of energy injected into photons
versus energy injected into CRs. The second term, 1/8, which is
always >1, accounts for the fact that CRs transfer momentum to
the gas much more efficiently than photons, due to the fact that
their propagation speed is limited to a value <c by scattering off
Alfvén waves. Finally, the factor in square brackets just represents
the reduction in CR momentum transfer due to loss of CRs by pion
production (the f,; term) and due to the escape of some fraction of
the injected CRs from the disc without interaction (the F.(c0)/F.(0)
term). It approaches unity if all of the CR energy is lost to streaming,
and becomes smaller if there is significant CR energy loss into other
channels. This term can be evaluated numerically from our solutions,
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and, for the low surface density galaxies with which we are concerned
here, is generally in the range ~0.1—1 — see section 4.3 of Paper 1.

The implication of equation (51) is that CRs deliver more mo-
mentum to the gas than single-scattering radiation pressure if the CR
streaming speed satisfies vs < 100 km s~!; the exact condition will
depend on details such as the fraction of photon momentum that is
actually absorbed, which is likely close to unity in spiral galaxies, but
below unity in dust-poor dwarfs. Regardless of the exact numerical
limit on v, the condition is certainly met if the CRs propagate through
ionized gas, for which the streaming speed is nearly equal to the total
gas Alfvén speed, which, for M ~ 1, is comparable to the ~10 km
s~! velocity dispersion in the ISM. Thus in the scattering or constant
k « CR propagation scenarios, CRs are more important than photons.

For our favoured streaming scenario, the question of whether
CRs or photons are more important is more subtle because the
streaming speed in this case is close to the ion Alfvén velocity,
which, in a weakly ionized medium, is much larger than the total
Alfvén velocity or the velocity dispersion. Since we are concerned
here with low surface density galaxies whose interstellar media are
predominantly atomic, we expect the ionization fraction x ~ 1072
(Wolfire et al. 2003), and thus the ion Alfvén speed to be ~10 times
the bulk gas velocity dispersion. This suggests that CRs and single
scattering radiation are of roughly comparable importance, and both
may contribute to the launching of galactic winds in such galaxies (cf.
Fig. 4). CRs are probably somewhat more important than photons in
low-metallicity dwarfs, where the absence of dust will render galaxies
more transparent and thus reduce ITg, though only by a factor of ~3
as noted above; on the other hand, it is possible that the equilibrium
ionization fraction is also slightly higher in low-metallicity dwarfs.'?
For denser galaxies whose interstellar media are largely molecular, x
is smaller, and the ion Alfvén speed correspondingly larger. In these
galaxies photons deliver more momentum than CRs; however, this
changeover likely has little practical importance, since both direct
photons and CRs are generally unimportant in these galaxies.

Finally, we note that our equation (51) is somewhat different from
the analogous expression (their equation 21) of Socrates et al. (2008).
We discuss the reasons for this difference in Appendix A.

5 CONCLUSIONS

In this paper, we analyse the stability of the neutral, star-forming
phase of galactic discs against CR pressure. We use an idealized
model where such discs are taken to be plane-parallel slabs of
gas confined by stellar and gas self-gravity, and supported by a
combination of turbulent and CR pressure. Such a system is char-
acterized primarily by three dimensionless numbers: the effective
optical depths of the disc to CR absorption (via 7w production) and
to CR streaming, and the CR Eddington ratio (defined by the ratio
of the CR momentum flux to the gravitational momentum flux).
The primary result of our analysis is that such a system possesses
a stability limit: for a given effective optical depth, there exists a
maximum CR Eddington ratio above which the system cannot remain
hydrostatic. While the nature of the non-linear development of the
resulting instability is uncertain, studies of the analogous instability
driven by radiation suggest that the result is likely to be a outflow

10Also note that, though the (red, dashed) Pr,q, ss line in Fig. 4 falls above the
locus of points at low surface densities, Thompson & Krumholz (2016) argue
that radiation pressure in a turbulent medium will be most important along
low-column density sightlines not representative of the mean gas surface
density.
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that removes mass until the system is driven back below the stability
limit.

Given standard estimates for the efficiency with which SNe inject
CRs into galaxies, together with characteristic numbers describing
the magnetohydrodynamic turbulence in the ISM and a model for
CR transport in a turbulent medium, we can translate our stability
limit directly into a line in the space of gas surface density and
star formation rate, the so-called Kennicutt—Schmidt (KS) plane.
We find that the stability limit projected on to the KS plane is
close to a line of slope 2, which, for our favoured model of CR
transport closely matches the upper envelope of observed systems
with the surface densities characteristic of modern spiral and dwarf
galaxies, S < (10>-10%) M, pc~2. While a scaling o Eéas for the
critical star formation rate density with gas surface density is generic
to feedback mechanisms (e.g. Andrews & Thompson 2011), the
fact that our calculation should have produced such a coincidence
between the normalization of the critical curve and the upper range of
the occupied KS parameter space is surprising: In the dimensionless
parameter space Of Tyyeams Tabs, and frga that defines our system,
the critical value of frqq above which the gas column is rendered
hydrostatically unstable follows purely from the mathematical form
of our ODEs. The only astrophysical inputs required to map this to the
KS plane are then fundamental constants (e.g. the pp cross-section),
quantities describing general physical processes that are unrelated to
galaxies (e.g. the saturation field strength of turbulent dynamos), and
quantities describing microphysical processes such as the conversion
efficiency from supernova kinetic energy to CR energy. The only
complex modelling needed is that required to estimate the ionization
fraction, which is determined at least partly by the CRs themselves.
Given these inputs, the overall similarity of the CR stability limit to
the observed galaxy distribution seems unlikely to be a coincidence.
We suggest that the star-forming gas in modern and/or low surface
gas density galaxies is poised close to instability such that rather
small changes in ISM parameters imply the launching of CR-driven
outflows; CRs — possibly in concert with direct radiation pressure —
thus define the upper limit to the star formation efficiency of ordinary,
star-forming disc galaxies.

In contrast, we find that galaxies with gas surface densities higher
than the (102—10%) M, pc ™2 transition (with attendant star formation
surface densities 3, > (107'-10') Mg pc~2 Myr~!) — i.e. modern
starbursts, high-redshift galaxies — are stable against the possibility of
catastrophic, CR-driven wind loss because they tend to lie well below
the CR stability limit. This divergence between the CR stability line
and the sequence occupied by observed galaxies has two related but
distinct causes. The first is simply that the fundamental scaling that
governs all considerations of feedback: the self-gravitational pressure
of a galactic disc rises as the square of the gas surface density,
whereas the available energy input from star formation, given that
the observed index of the Kennicutt—Schmidt relation is <2, rises
more slowly. However, this alone would not be enough to prevent
CRs from becoming significant at high surface densities, since, in the
absence of loss mechanisms, CRs would also become increasingly
well-confined in high surface density galaxies, and this would cause
a superlinear rise in the CR pressure. Indeed, it was precisely this
consideration that led Socrates et al. (2008) to conclude that CR
feedback dominates in high surface-density galaxies. That it does
not do so is due to the second factor that suppresses CR feedback in
gas-rich galaxies: the increasing importance of hadronic losses. We
show that the critical Eddington ratio above which CRs destabilize
a galactic disc scales as the sum of the optical depths of a galactic
disc to streaming and hadronic losses. While the former varies only
weakly across the star-forming sequence, the latter becomes very
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large in high surface-density galaxies. Consequently, despite the fact
that the discs are starburst galaxies that confine CRs quite well,
hadronic losses prevent the CR energy density from building up to
the point where CRs are able to launch outflows. Thus we conclude
that, speaking in gross terms, CRs cannot be dynamically important in
the star-forming ISM phase of these galaxies. Conversely, however,
due to the importance of pion losses, these galaxies are good CR
calorimeters and, therefore, y-ray sources (cf. Torres et al. 2004;
Thompson et al. 2007; Lacki et al. 2010, 2011; Yoast-Hull et al.
2016). We also caution the reader that — just as for radiation feedback
(Thompson & Krumholz 2016) — it may be that even in starburst
galaxies, low density patches in the gas distribution may be locally
unstable to CR wind formation so, even in these systems, CRs may
not be simply ignorable. Ultimately this needs to be assessed with
numerical simulation.

In future work, we intend to explore the consequences of the
picture set out here and in Krumholz et al. (2020) and Paper I for
understanding the far-infrared-radio continuum correlation and the
emerging far-infrared—y -ray correlation, and to delimit the possible
contribution of hadronic y-ray emission from star-forming galaxies
to the isotropic y-ray flux as predicted by our model.
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APPENDIX: COSMIC RAYS VERSUS
RADIATION: COMPARISON TO THE RESULTS
OF SOCRATES ET AL. (2008)

Our result for the ratio of CR to single-scattering radiation momen-
tum imparted to the gas, equation (51), is substantially different
at first glance from that derived by Socrates et al. (2008). In this
Appendix, we explain the reasons for this difference. Using our
notation, the basic result from Socrates et al. is

ﬁc ~ TCR€c,1/2 2*» (A1)

where 7cg is the effective optical depth of the galactic disc to CR
scattering, which Socrates et al. argue is ~103. This expression differs
from our equation (51) in that dimensionless factor on the right-hand
side is T, rather than [1 — f.y — Fc(00)/ fEdal/Bs-

The difference in the two expressions can be explained by noting
that the expression of Socrates et al. does not incorporate any loss
mechanisms for CRs, either streaming or hadronic.!! Thus they are
here implicitly taking the limits 7 yps — 0 and 7 gyeam — 0. We can first
verify that, if we adopt the same limit, our results reduce to theirs. In
this case, we cannot use equation (51) directly, because in this limit
feat = 0, Fo(00) = fgad, and Bg — 0, and thus the numerator and
denominator of the equation both approach zero. However, for the
case of zero losses, equation (1) immediately implies dF./dé = 0,
80 Fo = Fc(0) = frqq is constant. We then have, from equation (2)

o] ch . /oo . L r(o)q+| A2
/0 dédg_ fEddords— fEddq+1s (A2)
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where ¢ is the index describing the scaling of the diffusion coefficient
with the ambient density and 7(0) is the value of r at £ = 0, and we
have taken r — 0 as £ — oo. The quantity #(0)? /(g + 1) is of
order unity, and thus we recover, in dimensional terms

e ~ P, frad- (A3)

If we now rewrite frqq in terms of the injected CR flux F. o using
equations (11) and (17), and dropping factors of order unity, we
arrive at

I, ~ F“*OIZT*' (A4)

*

Note that Socrates et al. do consider CR losses elsewhere in their manuscript
(see for instance their Appendix C).

The quantity «./z, has units of velocity, and can be thought of as the
effective velocity which CRs diffuse, which is lower than the true
microphysical velocity by a factor of tcg. Thus if we further assume
that CRs have a microphysical speed of ¢ in between scatterings,
then it immediately follows that

. F.
M ~ Ter ;", (AS)

which is exactly the Socrates et al. result.

With this understood, we can now explain why Socrates et al.’s
results differ from our equation (51). In the absence of losses, the
CR pressure that can build up inside the disc is limited only by
considerations of hydrostatic equilibrium. If one considers only CR
transfer, then for a sufficiently small value of the CR diffusion
coefficient «, (or its dimensionless analogue K,), the Eddington ratio
frda can become arbitrarily large, allowing I, to become similarly
large. However, it is not self-consistent to retain the assumptions that
Tsweam ~ 0 and T4 ~ 0 as K, — 0 — from equations (9) and (10),
we see that Tgyeam and T, both scale as 1/K,. Thus if a galactic disc
has small K,, possibly allowing a large CR pressure to build up, it
necessarily also has large 7 gyeam and 7,5, Which reduce or counteract
that buildup. Mathematically, this effect manifests in the fact that
equation (51) has a coefficient of [1 — fea — Fc(00)/ fraal/Bs, Which
approaches Socrates et al.’s factor Tcr as Tups — 0 and Tgyeam — O,
but is smaller outside of these limits. Physically, the effect is that, if
one attempts to confine CRs by making their diffusion slow, then at
the same time this raises the importance of streaming and hadronic
losses, which set limits on the extent to which the CR pressure can
build up.
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