Monthly Notices

MNRAS 498, 3023-3042 (2020)
Advance Access publication 2020 August 21

doi:10.1093/mnras/staa2546

Dynamics of small grains in transitional discs

Mark R. Krumholz “,"234* Michael J. Ireland “' and Kaitlin M. Kratter’

Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia
2ARC Centre of Excellence in All-Sky Astrophysics (ASTRO-3D), Canberra, ACT 2611, Australia

3 Zentrum fiir Astronomie, Institut fiir Theoretische Astrophysik, Universitit Heidelberg, D-69120 Heidelberg, Germany
4Max Planck Institute for Astronomy, Kénigstuhl 17, D-69117 Heidelberg, Germany

3Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721, USA

Accepted 2020 August 19. Received 2020 July 31; in original form 2019 December 10

ABSTRACT

Transitional discs have central regions characterized by significant depletion of both dust and gas compared to younger, optically
thick discs. However, gas and dust are not depleted by equal amounts: gas surface densities are typically reduced by factors
of ~100, but small dust grains are sometimes depleted by far larger factors, to the point of being undetectable. While this
extreme dust depletion is often attributed to planet formation, in this paper we show that another physical mechanism is possible:
expulsion of grains from the disc by radiation pressure. We explore this mechanism using 2D simulations of dust dynamics,
simultaneously solving the equation of radiative transfer with the evolution equations for dust diffusion and advection under the
combined effects of stellar radiation and hydrodynamic interaction with a turbulent, accreting background gas disc. We show
that, in transition discs that are depleted in both gas and dust fraction by factors of ~100-1000 compared to minimum mass
Solar nebular values, and where the ratio of accretion rate to stellar luminosity is low (M /L < 107" Mg yr~' L"), radiative
clearing of any remaining ~0.5 pm and larger grains is both rapid and inevitable. The process is size-dependent, with smaller
grains removed fastest and larger ones persisting for longer times. Our proposed mechanism thus naturally explains the extreme
depletion of small grains commonly found in transition discs. We further suggest that the dependence of this mechanism on
grain size and optical properties may explain some of the unusual grain properties recently discovered in a number of transition
discs. The simulation code we develop is freely available.
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planetary systems.

1 INTRODUCTION

Transitional discs are so-named as the stage in evolution of a single
star’s protoplanetary disc in-between the optically thick Class II and
the optically thin Class III stage, within the framework of inside-out
disc clearing (Alexander et al. 2014). Although sometimes confused
with circumbinary discs (Espaillat et al. 2007; Ireland & Kraus
2008), these discs remain an important stage in single star evolution
(e.g. Ruiz-Rodriguez et al. 2016) and may be a signpost for giant
planet or multiple giant planet formation (Dodson-Robinson &
Salyk 2011; Zhu et al. 2011). Even if they are not a sign of planet
formation in all systems, the phase when the disc is transitioning
from optically thick to thin in the giant planet formation region
is generally when giant planets are at their most detectable from
high contrast surveys, as the recent example of PDS 70 has shown
(Keppler et al. 2018; Wagner et al. 2018).

However, many disc features are ambiguous, and the planetary
nature of such features remains highly debated in numerous discs
including T Cha (Huélamo et al. 2011; Cheetham et al. 2015), the
infrared emission in LkCa 15 (Kraus & Ireland 2012; Thalmann
et al. 2016), HD 100546 (Quanz et al. 2013; Rameau et al. 2017)
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and HD 169142 (Biller et al. 2014; Reggiani et al. 2014; Ligi
et al. 2018). Much of the confusion surrounding these features is
attributable to the inadequacy of simple dust models to explain the
observed scattered light emission. T Cha had very bright emission
from forward scattering, LkCa 15 had both bright and red emission
appearing in a forward scattering geometry (Ireland & Kraus 2014;
Thalmann et al. 2015; Currie et al. 2019), and HD 169142 required
emission from extremely small or quantum heated grains in a disc
where micron sized grains were largely absent (Birchall et al.
2019). These observed complex grain distributions motivates this
paper, which considers grain segregation processes in transitional
discs.

It is imperative to place the systems we model in the broader
context of the entire class of transition discs. Even when classified
exclusively via their SEDs (the original definition), they comprise
a heterogeneous set of sources (Espaillat et al. 2014; Ercolano &
Pascucci 2017). They contain inner cavities of a range of sizes that
do not show up uniformly in multiwavelength observations (e.g.
millimetre, or IR polarized emission). Disc masses inferred from
dust continuum observations also vary greatly. Finally, they exhibit
a wide range of accretion rates, from upper limits of order M <
10~ "M, yr~! up to detections of accretion rates similar to those of
Class I-II discs, M = 10~"Mg yr~! (Najita, Andrews & Muzerolle
2015). It is thus likely that the SED-identified sample of transitions
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discs is not described by a single evolutionary channel. Our use of
the term ‘transition disc’ is not meant to represent the entire class,
but is a stand-in for a subset of these objects that are undergoing
the final stages of disc dispersal, with low gas and dust masses, and
small accretion rates.

Most previous work on grain segregation in gaseous discs consid-
ers the effects of either settling or gas pressure gradients combined
with variable dust stopping times. For example, Takeuchi & Lin
(2002) considered the radial flow of dust particles in a disc where
radiation pressure was neglected, and the disc evolved viscously with
a constant « prescription. In transition discs, the lower gas densities
mean that significantly smaller grains settle to the mid-plane, and
as the disc becomes optically thin, radiation pressure on grains can
become important. Takeuchi & Artymowicz (2001) considered the
joint effects of a gas pressure gradient and radiation pressure in a
disc that is optically thin throughout, neglecting the effects of gas
accretion. They found that radiation could remove <100 wm dust
grains from the inner 10s of au of a 10 Mg disc on ~kyr time-scales,
and segregate grains according to their size. Takeuchi & Lin (2003)
modelled the combined effects of radiation pressure and accretion,
focusing on discs similar to a minimum mass solar nebula, where
surface outward dust motion was almost negligible compared to
the motion of the bulk of the disc inwards with the gas accretion.
Tazaki & Nomura (2015) considered the motion of grains with a
large radiative cross-section in the surface layers of a minimum mass
solar nebula (10 M; disc). They found that compact grains were not
efficiently transported by radiation pressure, while smaller grains
could be. Kenyon, Najita & Bromley (2016) considered a variety
of mechanisms to remove dust from transition discs, and concluded
either that planet formation must leave behind far fewer small grains
than one might naively expect, or that some other mechanism, for
example drag-induced accretion, must be available to clear dust from
discs. Owen & Kollmeier (2019) suggest that radiation pressure
operating on dust grains that reach the edge of a photoevaporation-
driven cavity might efficiently remove them.

In this paper, we extend previous work by jointly considering the
effects of gas pressure gradients and gas flows, stopping times that
depend on grain radius, radiation and turbulent diffusion in order to
study the dust temporal evolution during the transitional disc period
of a protoplanetary disc.

2 DUST EVOLUTION MODEL

We are interested in modelling the evolution of a population of
dust grains orbiting a central star of mass M and luminosity L in
a background gas disc. We will treat grains as simple spheres of
radius a and density p; &~ 1 g cm™>, and we ignore coagulation
and shattering, so that the total mass of dust grains of any given
size is conserved. The grains move in response to radiation forces
and to drag forces exerted by the gas; below we will assume that
the stopping time of grains is small, so that these forces are always
in balance and the grains are at their terminal velocity. We further
separate grain motion into two types: systematic drift at a terminal
velocity determined by force balance considering only the bulk
velocity of the gas, and random motions as a result of local drag
forces due to turbulent motions in the gas, which we approximate
as a diffusion process. Under these assumptions, the density p4,
of dust grains of radius a evolves following an advection—diffusion
equation,

8/0d,a
ot

+ \ (ptl,avd,a + jd,a) = O (])
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Here, v, , is the bulk velocity and j,;, is the flux due to turbulent
diffusion. This formulation of the evolution equations is identical to
that proposed by Takeuchi & Lin (2002).

We now proceed to calculate the bulk velocity and diffusion
coefficient. In the following discussion, we use @ and z to denote
the radial and vertical position in a cylindrical coordinate system
centred on the star, and r = v/@2 + z2 and = sin ~!(z/r) to denote
the corresponding radius and angle in a spherical coordinate system.
We assume that the system is symmetric in the azimuthal angle. In
the equations that follow, we aim to differentiate between radial
and cylindrical components; a novel aspect of our model is the
full treatment of two-dimensional drift in the presence of radiation
pressure.

2.1 Gas disc model

As a first step, we specify our model for the gas disc through which
the grains flow. We treat the gas disc as constant in time. The run
of surface density and temperature through the disc are described by
power laws,

Eg(w) = €XMMSN (%)p, (2)
nw)=n(g)? 3)

where € is a dimensionless factor that scales the mass in the disc to
that of the minimum mass Solar nebula (MMSN), X ymsn = 2200 g
cm™2, Ty is the disc temperature at 1 au (7 =~ 120 K for a Sun-like
star), and p and ¢ are constant. We are interested in transition discs,
for which € < 1. Standard values for us are p = —3/2 and g = —3/7,
as expected for a Chiang & Goldreich (1997) passive disc profile,
but we will also consider the case of discs that have been depleted
at small radii, and thus have p = 0. Our temperature profile neglects
the effects of dust settling, and we further simplify the situation by
assuming that the gas is vertically isothermal. Under this assumption
the sound speed c; is constant with zo, and the scale height &, follows
the usual relation i, = ¢,/Q2g mia, Where

GM\ 2
QK mid = =y , 4)

is the Keplerian angular velocity at the mid-plane
Assuming the gas disc is in hydrostatic equilibrium, we have

GM 1 9P
0=-235 -~ 5)
3
r Py 0z
X, z?
Pg = —€Xp|—57
£ hy 2h?
—39/14 2
=27x%x10"% (g) exp <_2th> gem™3, (6)
au :

where P, = p,kpT/jumy is the gas pressure under the reasonable
approximation of an ideal gas, p is the mean molecular weight in
units of the hydrogen mass my, p, is the gas volume density, and the
final equation contains fiducial MMSN values and scalings (Chiang
& Youdin 2010). Also assuming hydrostatic equilibrium in the radial
direction, we have (Chiang & Youdin 2010)

GMw 1 9P,

o - —— - — £ =0, 7
8 r3 0y 0T ™
where €, is the gas angular velocity. Expanding this equation in
powers of z/r and keeping terms up to order (z/r)*> (Takeuchi & Lin
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2002), we have

Qg = QK.mid

1 (he\ qz
1+2<r)< (q+3)/2+q+2h2>}(8)

This is conveniently expressed as

3z
Qr ~ Qrmial 1 —=— 9
K K,d( W) ©)
Q, = Qx(1 — '/, (10)
he\’ q+3 q+32
=—(-2 - . 11
n (r> (p T h2 (1)

Here, Q is the Keplerian speed a height z above the mid-plane and
2, is the gas angular velocity, which is smaller than the Keplerian
velocity by a factor of /T — 7 due to the effects of pressure support.

In order to solve for the dust velocity we will require an expression
for the gas radial velocity. Specifically we require a height-dependent
velocity to be self-consistent. For simplicity we choose a simple
model consisting of an «-disc plus an optional constant inflow rate
for this purpose. We begin with a pure «-disc case, starting with the
azimuthal component of the momentum equation:

d d
27'[,Og (Ug’wg + vg'zaiz) (w2S2g)

3 9, 3 a0
=2n|— ( &? — (@2pv—2) ], 12
”{aw(w‘)" e >+3z(w'0gv8z)} (12)

where v is the kinematic viscosity. The term v g,z(alaz)(wzﬂg) is
smaller than v, ., by h,/z0, and so can be neglected (Takeuchi & Lin
2002). Solving for radial gas velocity, and retaining terms up to order
(hg/r)Z, we find

h 3
Vg, turb = _(ITng |:3 (p — %) + 2q +6

5¢+9 (z)°
+= (hg)] (13)

where a = v/(cshy) is the usual dimensionless viscosity (see also
Keller & Gail 2004), and the subscript ‘turb’ indicates that this is
the radial velocity associated with the turbulent flow. Equation (13)
gives the gas radial velocity as a function of cylindrical radius @
(implicitly, through r and z) and height z above the mid-plane

The dominant driver of accretion in transitional discs remains
uncertain. The exposed inner rims and low surface density regions
might be sufficiently ionized via cosmic rays or stellar photons
to sustain magnetorotational instability-driven turbulence (Chiang
& Murray-Clay 2007; Mohanty et al. 2018). Alternatively, other
mechanisms such as wind-driven accretion may dominate (e.g. Bai
& Stone 2013; Turner et al. 2014). These tend to produce laminar
rather than turbulent flows, which we add to our model simply by
adding a laminar inflow velocity vg o 1am to the turbulent one. This
laminar velocity depends only on @ (i.e. it is constant with height
within the disc), and is parametrized by the accretion rate M, which
we take to be constant with radius. Thus, our net model for the gas
velocity is

M
Vg,o = Vg, turb — M7 (14)
8

where v, o b 1S given by equation (13), and the dimensionless
viscosity a and mass accretion rate M are left as free parameters that
we will vary below. While simplified (either the MRI or disc-winds
might well produce height-dependent inflow rates), we expect our
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model to nevertheless capture the overall trends associated with an
extra source of radial drift for the gas and dust.

2.2 Dust velocity

Now consider a dust grain, working in a reference frame co-rotating
with the grain at azimuthal velocity v,4. In this frame, the equation
of motion in the (z, z) plane, considering only the bulk velocity
of the gas and not its small-scale turbulent motion, and neglecting
Poynting—Robertson drag, is

d vg, GM

3Fdrag
= 425 —1)— ,
dr FTRCE o @+ ) P 47ta’ pg

(15)

where g is the ratio of outward radiation pressure force to inward
gravitational force and F 4, is the force exerted by gas drag. The first
term here represents the centrifugal force, the second is the radiative
minus gravitational force, and the third is the gas drag force. We
omit the Coriolis force because it exerts forces only in the azimuthal
direction.

2.2.1 Radiation force

In general the radiation pressure force must be determined by
integrating in frequency. Following Wolfire & Cassinelli (1987), if
the central star has specific luminosity L, and we neglect the scattered
and dust-reprocessed component of the radiation field compared to
the direct stellar field, then the radiation pressure force on a grain is

L, _
Fraa = 76 Tvﬁ [Qu vt (1 — &a, v) ng] dv, (16)

where Q7 and Q3 | are the absorption and scattering efficiencies
for grains of size a at frequency v, and Zav 15 the cosine of the
mean scattering angle (with g,, = 1 indicating complete forward
scattering). The optical depth from the stellar surface at radius r, to
the radial distance r of the grain is

//w S Pia (04 408 ) dadr, (17)
da ps

where p; is the density of the grains. Evaluation of equation (16)
in general must be done numerically, and is numerically expensive
if one requires high-frequency resolution. However, the simplest
application and one with broad applicability is for grains of size
a much larger than the wavelength of photons at the peak of the
stellar spectral energy distribution. Specifically, if the stellar effective
temperature is 7T, yielding a wavelength of peak emission per unit
wavelength A, =~ hc/(4.965kgT,), grains will be in the limit of
geometric optics, Q2 + (1 — g,,,)Q3 , = 1, if their size obeys

D T,

— ~0.077 18
™ <6000K> H 1%
For such grains, the radiation force and optical depth reduce to

L _. a2
Fog = —€¢ "— (19)

C
T:/ /p“ da=r. (20)
0 Ty

With this simplification, it is convenient to express the ratio of
radiation pressure force to gravitational force as simply

B = Baoe ™", 2n
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where
3L
ﬁa,() = T s
16nGMcp;a
LIM ) —1 -1
_os57( - P a 22)
Lo/Mg I gem™3 1 um

is the ratio of radiative to gravitational force for a grain of size a
exposed to the full, unshielded luminosity of the star.

2.2.2 Drag force

We compute the drag force under the assumption that the grains are
small enough to obey the Epstein drag law,

4
Flg = —gﬂpgazcsAv, (23)

where p, is the gas density, ¢, is the gas sound speed, and Av is the
relative velocity of the gas and dust. Combining the radiative and
drag terms, the total equation of motion for a single grain of size s
is

d Vi GM_ Av

—vy = B -1 F——, 24

prld o 0T . (24)

where

t, = Psa (25)
PgCs

is the usual stopping time. Below it will be more convenient to work
with the dimensionless stopping time

T, = 1,Q. (26)

Note that, although we will not write this out explicitly for reasons
of compactness, it is important to recall that 7 is a function of the
grain size a.

If we limit ourselves to considering grains of size a such that 7
<« 1 near the mid-plane, then over time-scales longer than an orbit
the left-hand side of equation (24) approaches zero in the radial and
vertical direction as the grains reach terminal velocity. The condition
for this to hold is that
a < LS gg0e (2 e, @7

Ps S2K ,mid au
where p, g is the mid-plane gas density, and in the second step
we have taken M = Mg and inserted our fiducial value for p,
(equation 6). Thus, our approximations that grains can be treated
in the geometric optics limit and that they reach terminal velocity
quickly are valid over a wide range of grain sizes — from ~0.1 um
up to cm to m, depending on the value of €.

In the vertical direction we find the dust terminal velocity to first
order is

Av, =1, (f — 1)v§§, (28)

va.: = Ts (B — 1) Qz, (29)

where we have taken v,, = 0 to arrive at the second equation. To
obtain an expression for the radial drift, first consider the azimuthal
component of the dust momentum equation. Because the dominant
source of angular momentum is simply Keplerian motion, we can
relate the rate of angular momentum change to the drift rate of solids
(Pinilla & Youdin 2017):

dwvgy)  dwog) I
— ~ = dow = —= - 30
dr do 2 VK. (30)
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We can use this relation to replace the LHS of the ¢ component of
equation (24), which simplifies to

T

(Va,p — Vg.p) = _Evd,m- (€29)

We can use this relative velocity in the azimuthal direction to solve
for the dust terminal velocity in the (cylindrical) radial direction.
From equation (24) we have

Av, = 1

2
Yao B - 1)9@;] . (32)
w

We require a linearized expression for the dust azimuthal velocity
V44 Following Takeuchi & Lin (2002) and Pinilla & Youdin (2017),
we can remove higher order terms by relating v, and vg

Ufw — v = (Vap + V&) (Vap — k), (33)
> 20k [(Va,p — Vg¢) — (Vg — Vg.0)], (34)
> 2vk [(va,p — vgp) — MIvk /2. (35)

Solving for vﬁ,d) and inserting back into equation (32), we finally

arrive at the cylindrical terminal velocity:

Ve I+ [B(T) —n] w
T,+ T

Vi, = , (36)
where vg = @ Qk is the Keplerian velocity at the position of the
grain. We note that the terminal velocity approximation we have
adopted breaks down as v,, approaches vk, and that, for g > 1,
this is possible for grains whose dimensionless stopping time T
is of order unity. However, in the numerical calculations we carry
out below, the largest values of 8 we consider are a few, and for
the grains with the largest values of 8, the stopping time 7y <
1 in all cells that are included in our calculation (see Section 4.1
for details). Consequently, the maximum grain velocities we find
are less than 1 per cent of vk, in which regime equation (36) is
valid.

2.3 Turbulent diffusion

Having solved for the bulk velocity of the gas, we next calculate
the rate of turbulent mixing. Following Takeuchi & Lin (2002), we
model the diffusive flux of dust as

; L s, v( DaapeV /. 37
= - —_— = — N
Jd.a 1 + TSZ QK pg ,Og d,apg d

where « is the dimensionless viscosity, and we have defined f;, =
Pdal pg as the dust mass fraction for grains of size a, and

c? 1
Dy, =a— 38
d., aQK(l—i-TSz) (38)

as the diffusion coefficient for dust grains of size a. Note, however,
the D, is the diffusion coefficient for grain concentration, rather
than grain density.

3 SIMPLIFIED 1D SYSTEM

3.1 Derivation

Before proceeding to full numerical solution of equation (1), it is
helpful to gain insight by considering a simplified system that we
can solve semi-analytically. We do so by making the following
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approximations. First, we neglect the vertical structure of the disc,
and focus on a small radial section so that we can neglect curvature
(i.e. we treat the coordinate system as Cartesian, with the x direction
aligned with the radial direction), and can treat the initial dust
density distribution, background gas disc, and Keplerian speed as
uniform (i.e. p,, vk, and ¢, are all constant). Secondly, we consider
only a single size of dust grain a, with constant stopping time .
Thirdly, we neglect both the radial inflow of the gas and the slow
inward drift of dust compared to gas as a result of drag, i.e. we
set Vg = 0 and n = 0. While these assumptions are obviously
oversimplifications, they retain the essence of the problem: the radial
evolution of the dust will be determined by the competition between
radiation pressure forces, which attempt to sweep the dust up into
an outward-moving shell, and diffusion, which attempts to force the
dust distribution back towards uniform. The simplified system that
we solve is very similar to that considered by Dominik & Dullemond
(2011), though our treatment is somewhat more general in that we
will not assume, as they do, that the dust is swept into an infinitely thin
wall.

Under the approximations we have described, equation (1) reduces
to the one-dimensional PDE

3& + Bovk
ot Ty +T,!

2
) g = DS <0, (39)
where we have dropped the subscript a’s since we are considering
only a single grain size, and we orient our coordinate system so the
star lies at x < 0. As an initial condition we take p, = 0 for x < 0
and pg = pgo for x > 0, i.e. the dust initially occupies the positive
half-plane. With this initial condition, we can write the optical depth

to position x as

2 / pa(y)dy. (40)
aps Jo

The first step in solving equation (39) is to non-dimensionalize
it. We normalize the density to the initial density, measure length in
units of the optical depth at the initial density, and measure time in
units such that the diffusion coefficient is unity. Mathematically, this
amounts to making a change of variables p), = pg/pa0, X = x/x,,
t = t/ty, where

4P X

= —d N
3 pao

=D,

X4 (41)

Here, x, and #, are the characteristic length and time-scales for the
problem. This allows us to rewrite equation (39) as

0y ¥y
— 4 =0, 42
ot +X8X’ (pde ) 9x? ( )
where
T =/ Py () dy', (43)
0

4 B o\ ray? (v’
=3 () () ) () (a4

Here, we have used equations (26) and (38) for D, and Ty, respec-
tively, r = vg/Qk is the radial location of our region of interest,
and f;0 = pao/p, is the initial dust fraction. The interstellar dust
abundance is f;o ~ 0.01, but the transition discs in which we are
interested have undergone considerable grain agglomeration into
larger bodies, and have observed dust abundances that lie more in
the range ~107> to 10™* (e.g. van der Marel et al. 2016).

Thus, we see that our simplified 1D system represents a single-
parameter family of PDEs. The parameter x characterizes the relative
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importance of advection by radiation forces (the second term in
equation 39) and diffusion by the gas (the third term). Intuitively,
we expect that radiation forces on the exposed face of the dust at
x = 0 will begin to sweep dust into an advancing wave, which
will be spread out to a characteristic width determined by diffusion.
The parameter x controls the characteristic speed with which the
wave moves, sweeping up dust as it goes. The value of yx in
a real disc obviously varies significantly depending on the local
properties, as we discuss in further detail in Section 3.4, but for the
cases of greatest interest to us we will have y in the range tens to
thousands.

3.2 Semi-analytic solution

We cannot obtain an exact analytic solution even to equation (39), but
we can derive some analytic constraints on the asymptotic behaviour
of the solution, which we can use to derive a semi-analytic model.
First note that for material at high optical depth, i.e. any dust that
begins at x’ > 1, the advection term is negligible because it is
proportional to e~ *. Thus, the equation reduces to

oy, 3%p)

ot ax’2

=0, (45)

which can we can solve via the usual similarity transformation for
diffusion problems, ¢ = x’/2+/r'. This reduces the problem to an
ODE, which has the solution

oy =ci+cerf(g). (46)

The two constants of integration ¢; and ¢, are determined by the
boundary conditions. One of them can be fixed by requiring that
oy — 1 as ¢ =x'/24/f' — oo, i.e. that the density approach the
initial density far upstream of the advancing dust wave. Applying
this condition, the analytic solution at large T must approach

/ x/
py =1+ kerfc (2ﬁ) , 47)
where k is a constant that depends on x, and erfc(x) = 1 — erf(x) is
the complementary error function.

Thus, the solution will consist of a low-optical depth, low-density
downstream region over which the dust wave has already passed, a
transition zone where t ~ 1 located at position s(¢), and an upstream
region where the solution approaches equation (47). At late times,
when s(#') >> 1, the great majority of the dust mass that was initially
at X' < s(¢') must be in the upstream region, since by definition the
downstream and transition regions contain a mass per unit area of
order unity in our dimensionless variables. Thus, conservation of
mass requires that for s(z') > 1 we have

oo x/
st ~ / k erfc (—) dx’
(') N

— kLt |22 1+\ﬁ7f&(ﬂ)2/4ﬂ 48
—kder L\/FJ— T (48)

This equation can be satisfied for arbitrary ¢ only if we have

s(t) = 201, (49)

)2 -1

erf(M) — 14 S —

k= N

(50)
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Figure 1. Top: Dimensionless density o/, as a function of position x” at five
different times, for the case log x = 1.5 at a resolution Ax = 1/128. Note that
the region plotted is larger than the domain size L due to our sliding grid; see
Appendix A for details. Bottom: Position of the dust front s() as a function
of dimensionless time 7. The blue points show the simulation results, where
we define the front location as the position of maximum dust density (every
5th time plotted, to avoid clutter), while the black dashed line shows the
best-fitting semi-analytic solution, s(r') = 2A+/7'.

Thus, we learn that the position of the dust wave at late times must be

proportional to +/¢/, with a constant of proportionality that depends
1

on x.

3.3 Numerical solution

We can verify this analytic calculation, and calibrate the dependence
of A on x, using numerical solutions to equation (42). We solve the
system using a 1D finite volume method that is second-order accurate
in both space and time; we give a full description of the method in
Appendix A. In Fig. 1, we show an example solution to equation (42)
forlog x = 1.5. The parameters for this run are included in Table 1. As
predicted, the position of the dust front (defined here by the location
of maximum dust density) as a function of time is fit extremely well

1Although equations (47) and (50) are exact, they are inconvenient for practi-
cal computation when A > 5 because k becomes very large and erfc(x’/2+/1")
very small. In this case, it is preferable to evaluate p; = 1 + kerfc(¢) via
the series expansion p/; =1+ 223 +3x =321 4+ 0()\_3)]#2_52, where
C=x'/2J1.
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Table 1. Parameters and results for simulations of the simplified 1D system.
Here, x is the dimensionless advection to diffusion ratio, fp, is the
dimensionless time ¢ for which we run the simulation, L is the dimensionless
size of the simulation domain, Axp, is the spatial resolution of the best-
resolved run, k is the estimated order of convergence (error o<Ax‘k), A is
our best estimate for A based on Richardson extrapolation, and Err() is the
estimated fractional error on A. See the main text for details of how Axpin, k,
A, and Err(1) are computed.

log x fmax L AXmin k A Err(A)

1.0 20.0 16.0 1/32 1.40 1.96 7.3 x 1073
1.25 12.0 16.0 1/64 1.33 276 59 x 1073
1.5 8.0 8.0 1/128 1.32 380 5.0x 1073
1.75 4.0 8.0 1/256 1.25 516 4.0 x 1073
2.0 2.0 4.0 1/256 1.36 694 73 x1073
2.25 2.0 4.0 1/512 1.24 931  65x 1073
2.5 2.0 4.0 171024 1.13 1246 55x 1073
2.75 1.6 4.0 1/1024 1.03 1659 9.1 x 1073
3.0 1.0 4.0 171024 0.87 2203 2.1x1073

by s(#) o £1%; a simple least-squares fit to the solution shown in
Fig. 1 gives A = 3.81.

In order to determine the dependence of A on x, we solve the
system numerically at a range of x values. We list all the simulations
we carry out in Table 1; the domain sizes L and simulation times fpmax
are chosen to ensure that the width of the dust wave is <L at all times,
and that the dust wave advances to x &~ 20, by which point the wave
position as a function of time has always converged very well to the
asymptotic s o< #''? behaviour we predict analytically. We ensure that
our results are converged in resolution by carrying out a convergence
study: for every case, we first run the simulation at a resolution of
64 cells and then 128 cells, compute X via a least-squares fit to the
front position as a function of time at both resolutions, and compare
the results. If they differ by more than 1 per cent, we double the
resolution again, to 256 cells, and repeat the process. We continue
doubling the resolution until either (1) we reach a resolution of 4096
cells or (2) for the highest two resolutions, the two values of X that
emerge from our fit differ by <1 per cent. We then use a Richardson
extrapolation of the resolution-dependent results to generate our final
estimate for A for that value of x; we do this in two steps. First, we
estimate the order of convergence by fitting the difference between
the outcome at a given resolution at the maximum resolution as
a function of resolution.> Secondly, we use this estimate for the
extrapolation. We list the final, extrapolated value of A, the order of
convergence, and the maximum resolution we use in Table 1. We
also give our estimated fractional error in A, which we take to be the
difference between the final two Richardson extrapolates, normalized
by our final estimate of A.

Fig. 2 shows A as a function of x from out study. Clearly over
the range we have studied, the data are consistent with a simple
power-law relationship between A and x. A least-squares fit to the
data in Table 1, including our estimated uncertainties returned by the
Richardson extrapolation procedure, is

A~ 0.64x03". (51)

2Formally our method is second-order accurate for smooth flows. However,
the flow is not smooth in the vicinity of the maximum dust density, where t ~
1. Since the behaviour in this region is critical to determining the solution, the
actual accuracy will be worse than second order. We find typical convergence
orders of 1—2 depending on x.
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Figure 2. Dust front speed parameter 2 as a function of advection to diffusion
ratio . Blue circles show the numerical results from Table 1 (error bars are
too small to be seen), while the black dashed line shows the best-fitting power
law.

3.4 Astrophysical implications

We are now in a position to consider the astrophysical implications
of this finding. For any specified dust and gas distribution in a disc,
we can compute x from equation (44) at any point in the disc, and
then from our semi-analytic solution s(') = 244/1', we can compute
the characteristic time ¢ that would be required for radiation pressure
to move the dust at that position a distance comparable to its current
distance from the star. To be precise, at any point a radial distance r
from the star, we define the dimensionless radiative dust clearing
time ¢ by the condition that r/x; = 2A+/t’. The corresponding
dimensional time is

2 2 2
17 r 14+ Ts VK 1
tr=—-—1|— 1) = — ) Q. 52
T a2 (xd> 4ar? <cs> K (52)

which is the (dimensional) time that would be required for a dust wave
following the semi-analytic solution derived in the previous section
to move a distance r. For small grains, 75 < 1, in a thin, moderately
accreting disc, vg/c; ~ 10% and & ~ 1072, significant dust sweeping
in <10° orbits is expected for A ~ 1—10, corresponding to x of tens
to hundreds.

We can also write the clearing time-scale in terms of the classical
viscous accretion time-scale #,.c = /v, where v = acf / Q2 is the
kinematic viscosity. Then we simply have

1+ 7?2
leacu
and we again see that we expect grains to be cleared faster than they
accrete only for A 2 1, meaning x 2 10.

Finally, it is instructive to insert our best-fittng scaling for A as a
function of x, equation (51), into equation (52), and then to substitute
for x using equation (44). Doing so gives

1.02 2.04 1.06
far ~ 046 (1 4 T7) o2 (@) (ﬁ> (i> Q5.
' Bo aps vk :

(54)

Ier = (53)

Thus, we see that the dust clearing time-scale is very sensitive to both
the grain size (roughly #.; o a~2) and the background dust density
(ter X pg). Thus, smaller grains in denser gas are much more resistant
to clearing, while larger grains are easier to clear. This time-scale is
notably very insensitive to our choice of .
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To give a sense of the numerical values implied by equation (54),
let us consider a disc in which the dust and gas are initially in
equilibrium in the absence of radiative forces or radial transport (i.e.
with Vg 4 » = 0, jua. » = 0, and B = 0 in equation 1). Takeuchi &
Lin (2002) show that the steady-state vertical distribution of size a
in such a disc has a steady-state solution

2 2
z Sc Ty, mia z
Pd.a(2) = pa.a(0) exp {_Zhg - T |:eXP <2h§,> - 1:| } s

(53)

where T a is the stopping time evaluated at the mid-plane gas
density, Sc = 1 + T2, is the Schmidt number for a particular grain
size a, and the mid-plane density p,,(0) is set by requiring that

2/ Pd.a dz = fduslzg~ (56)
0

Here, X, is the gas column density at cylindrical radius @, and fqus
is the dust to gas mass ratio for grains of the considered size. For any
given choices of parameters describing the star (M, L) and the disc
(€, faust» To, o, p, g) and the dust (a, p), we can use this expression to
compute the dust and gas densities at every point, and then use these
to compute x and 7.

In Fig. 3, we show an example map of x and ., for a transition
disc with € = 1072, f3, = 10~*. In the example shown, the mid-plane
is quite resistant to dust clearing (., > 1 Myr, but above the mid-
plane significant clearing is possible on time-scales well under a Myr.
Recall, however, that we have the near-proportionality 7., o f,,yopg.
Thus, we expect clearing to become much more rapid as we move
to discs that are more dust- or gas-depleted than the example shown
in Fig. 3. Conversely, for richer discs clearing will be much slower.
In this context, it is interesting to compare our results to those of
Dominik & Dullemond (2011), who also investigated the fate of an
advancing dust wall driven outward by radiation. They concluded that
radiation pressure would be ineffective, because the dust wall would
quickly slow to tiny velocities that would easily be overwhelmed
by even a small amount of inward gas accretion. However, this is
not surprising, because they considered discs with properties close
to the MMSN (e ~ 1, faust ~ 1072); in terms of the dimensionless
parameters, such discs have values of y that are smaller than those
shown in Fig. 3 by a factor of ~10*, and values of 7, that are larger
by ~102. Thus, their conclusion that radiation pressure is ineffective
in such a disc is entirely consistent with our finding that radiative
clearing is effective only in discs that are significantly depleted in
both gas and dust compared to the MMSN.

4 2D SIMULATIONS

Armed with the general understanding provided by the simplified
1D system solved in Section 3, we now proceed with full numerical
solutions to equation (1) in 2D, including the full spatial dependence
of the background gas disc. We summarize the properties of the runs
we carry out in Table 2. Motivated by Fig. 3, we take € = 1072,
faust = 107" as our most gas- and dust-rich case, and explore from
those values downward. Note that for an evolved disc, fy,s does not
represent the total dust to gas ratio, only the dust to gas ratio for those
grains that fall into the size range we simulate (0.18—18 pm); we omit
larger grains, since these are expected to have settled to the mid-plane
by the transition phase, and radiative effects are unimportant for
them in any event. Similarly, Ercolano & Pascucci (2017) find that
observed transition discs span accretion rates from ~107% Mg yr~!
down to <1071 Mg, yr~!. We are interested in discs nearing the ends
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Figure 3. Values of x (left) and 7., (right) in a transition disc characterized by the properties M = Mg, L = Lo, € = 0.01, fyuse = 1074, Tg = 120 K, o =
1073, p=32,g=3/7T,a=01um,p;=1¢g cm~3. The top row shows these parameters in true position (zr, z), with the axes sized to reflect the true disc
aspect ratio. In the bottom row, we show the same data, but in coordinates (log @, ;t = z/r), so that the inner disc is more clearly visible, and radial rays from the
central star correspond to horizontal lines. White lines are contours of dust density pg, starting with pg = 1072* g cm™3 for the lowest contour and increasing

by factors of 100 for each successive contour. We do not show y and f.j; for pg <

Table 2. Summary of 2D simulation parameters.

10730 g em=3.

Parameter Meaning Value

Fixed values

Fmin»> Fmax Inner, outer radii 0.1,50 au

max = SiN @ max Angular grid extent 0.1

N, x Ny Grid resolution 512 x 256

N, # grain size bins 4

log (a1 2,3.4/1m) Grain sizes —0.5,0,0.5,1

M Stellar mass 1 Mg

L Stellar luminosity 1Lg

q Temperature index =3/7

To Temperature at 1 au 120 K

o Viscosity parameter 1074

Ps Grain density 1.0gem™3

qad Grain size index —11/6

Variable values Case: Al A2 A3 B1 B2 B3 Cl1 Cc2 C3 D1 D2 D3
p Gas density index -1.5 —1.5 —1.5 0 0 0 —1.5 -1.5 -15 0 0 0
loge 2/ mmsn at 1 au -2 -2 -3 -2.5 -25 -25 -2 -2 -2 -25 =25 =25
log faust Initial D/G ratio —4 -5 —4 -3 —4 -5 -5 -5 -5 —4 —4 —4
log(M /Mg yr—") Laminar inflow rate - - - - - - -9 -10 11 -9 -10 11

of their lives, so we explore laminar accretion rates at the moderate
to low end of this range, 107° Mg yr~' and down. Note that while
we refer to runs without laminar flow as ‘non-accreting’, our chosen
« does produce minimal accretion, M < 1072 Mg yr~!.

4.1 Numerical method

We solve equation (1) using a conservative finite volume method
that we fully describe in Appendix B. Our method is second-order
accurate in time, second-order accurate in space for the diffusion
terms, and third-order accurate for the advection terms. The calcu-
lation operates on a 2D spherical polar grid defined by coordinates

MNRAS 498, 3023-3042 (2020)

(r, 9), which we divide in N, x Ny cells. For convenience, since we
will go back and forth between polar and cylindrical coordinates, we
will use = sin@ = z/r as our coordinate rather than 6; z and p
both increase in the same direction, and p = 0 corresponds to z = 0.
The inner and outer radial edges of the grid lie at 7 = ry, and 7y,
respectively, and in the polar direction the edges of the outermost
cells are at £ = 0 and p = pmax. We assume symmetry about the
mid-plane at & = 0. All the simulations we present here use N, =
512, Ng = 256, rmin = 0.1 au, ripa = 50 au, and ppax = 0.1.

In each computational cell we track the density of N, logarithmi-
cally spaced grain size bins, each with mean grain size a;. That is, the
density of grains in size bin k represents the total density of grains
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with sizes from ,/a;_ja; to (/agaiy,, where k = 1...N,, and ap
and ay, 4 are set so that bins 1 and N, contain the same logarithmic
range of grain sizes as all other bins. For all simulations we present
here, we adopt N, = 4 with a; = 10*~1/2 um, so mean grain sizes
go from 107%°~10 um in steps of 0.5 dex, and grain size bins go
from 107°7 — 10"2° um, with bins 0.5 dex wide.

We adopt zero flux boundary conditions across both the mid-plane
at & = 0 and the top of the disc at 6 = 6,,,. At the inner and
outer radial boundaries of our computational domain we adopt diode
boundary conditions. At the inner edge we set the diffusive mass flux
to zero, and we set the mass flux across the boundary to zero in any
location where the velocity is into the computational domain, but we
allow mass to flow inward radially if the velocity at the domain edge
is inward. For the outer boundary, we similarly set the diffusive mass
flux to zero, and anywhere the radial velocity is out of the domain
we allow mass to flow out freely, but no mass to enter.

4.2 Initial conditions

We initialize all simulations using the analytic solution derived by
Takeuchi & Lin (2002), given by equation (55). However, unlike in
Section 3, we now consider multiple grain size bins, and thus the
constraint on the initial mid-plane density p,,(0) becomes

2/ Pd,a dz = fdustfazga (57
0

where X, is the gas column density at cylindrical radius @, fquy is the
initial total dust to gas ratio summed over all grain sizes, and f;, is the
fraction of the total grain mass found in grains in the size bin whose
mean size is a. We set the initial fractional masses f, in each grain size
bin by assuming that grains follow a size distribution consistent with
a collisional cascade, dn/dm o< m?, where m o< a® is the mass of an
individual grain and ¢, &~ —11/6, as expected for a collisional cascade
after larger bodies have started to form (Dohnanyi 1969). From this
choice, we have f, i o (ar1a;)>@9072 — (apar_,)>+40/2 for size
bin k, which together with the constraint > f,x = 1 fully specifies
the initial mass in each bin.

We carry out 12 simulations, broken into four series of three each,
using the parameters shown in Table 2. The first series, A1-A3,
uses our fiducial p = —1.5 density profile for the initial gas and
dust disc (Chiang & Youdin 2010), with varying amounts of gas and
dust depletion. Observational disc modelling gives a range of density
profiles from flat through to p = —1.5, with a mean around p = —0.9
(Williams & Cieza 2011), so our series A runs are at the centrally
concentrated end of the observed range. The most gas- and dust-rich
of these cases (case 1 in the table, with € = 1072, fiuq = 107%)
corresponds to the parameters shown in Fig. 3, and roughly to the
highest column density inner transition disc in the sample of van der
Marel et al. (2016); case 2 has a lower initial dust-to-gas ratio by a
factor of 10, while case 3 has the same dust-to-gas ratio as case 1, but
a factor of 10 lower disc mass overall. The series A simulations have
no laminar inflow, and thus are appropriate to represent transition
discs that have nearly ceased gaseous accretion. They are intended
to explore how the results depend on the properties of the disc in the
case where the disc is centrally concentrated but non-accreting. Note
that the total disc mass modelled in the series A runs is significantly
lower than inferred for typical transition discs (Najita et al. 2015)
based on continuum mm observations, a fixed opacity, and dust to
gas mass ratios based on an unevolved disc. Although the purpose
of these models is to describe a plausible mid-point between known
discs and cleared discs (i.e. while ‘transition’-ing), this fact none the
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less inspires a series of models with less steep density profile power
laws.

The next series of three simulations, B1-B3, uses a flat gas density
profile p = 0, as might be expected to prevail late in disc evolution
after the majority of the gas in an inner disc accretes on to the host
star. These are interesting both because they potentially represent the
evolution at such late stages of accretion, and because the choice p =
0 implies that there is no radial drift of grains into the star, and thus
no other grain removal mechanism operates. For these cases we fix
the ratio of mass relative to the MMSN at 1 au to € = 10727, and
use three dust abundances fy, = 1073, 107*, and 107; note that,
since the gas surface density is normalized at 1 au, our choice € =
10723 implies that, at the outer disc edge at 50 au, the gas surface
density is in fact 10 per cent larger than that of the fiducial MMSN at
that radius. Furthermore, the total gas mass in these discs is ~6 My,
which is typical of observe transition discs (Najita et al. 2015). As
with the first three models, these cases have zero laminar accretion
rate.

The remaining two simulation series, C and D, use initial condi-
tions identical to those in cases A2 (p = —1.5, € = 1072, fuug =
10~%) and B2 p=0,¢e= 10_2'5,fd‘JSI = 107%), respectively, but
also include laminar inflow rates of 10~°, 1071°, and 10~!"" Mg, yr~'.
Thus, in these series we consider our intermediate cases of centrally
concentrated and flat-profile discs, and probe how the results change
over the moderate to low range of accretion rates found by Ercolano
& Pascucci (2017).

4.3 Simulation results

4.3.1 Non-accreting cases with a radial gas gradient

We show snapshots of our simulation results for cases Al, A2, and
A3 in Figs 4, 5, and 6, respectively. Comparing the runs, we see
some common features and some differences. As expected, our initial
distribution of grains places the largest grains at the smallest scale
height. Because of their small scale height, the largest grains at the
outer edge of the disc are completely shielded from radiation by the
dense inner disc. As a result the grains drift inward from the outer
edge of the disc at 50 au, leaving a void behind them; this is the
usual result of gas drag, and is fastest for the largest grains because
they are nearest to be being critically damped, 7, &~ 1. At smaller
radii, where grains are exposed to radiation pressure, the situation is
very different. In case A1, which is our most gas- and dust-rich, the
inner disc is close to static over the duration of our simulation. This
is simply a consequence of the small values of x for the inner part
of the disc shown in Fig. 3: due to the strong drag forces imposed by
high gas densities, the net rate of grain drift is small. The smallest
grains that are lofted well above the disc plane and that are exposed
to radiation can drift at appreciable speeds, but the mass of grains in
regions that are subject to drift is negligible compared to the much
larger mass in regions where drift is negligible. Consequently any
grains that are pushed outward by radiation are immediately replaced
as turbulence causes the much larger reservoir of low-altitude grains
to diffuse upward.

In cases A2 and A3, on the other hand, the outcome is very
different. Case A2 has lower shielding against radiation due to its
lower dust mass, while case A3 has both lower shielding and reduced
drag. Both lead to a substantially higher value of x, and a shorter dust
clearing time, such that dust is driven back from the disc inner edge
on time-scales of ~100 kyr. The smallest grains are swept up most
rapidly, because their greater height within the disc leaves them both
more exposed to stellar radiation, and less slowed by gas drag. Larger
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Figure 4. Snapshots of the dust distribution in our simulation with € =
1072, fause = 107, and p = —1.5 (case Al in Table 2). Each column
shows the distribution at a different time, as indicated at the top of the
column. The top four rows show the density p,, of grains of radius
a=10793 1,105, 10 um, as indicated by the white labels on each row, as a
function of position; we use log zr and v = sin € as our position coordinates,
so in this projection radial rays from the star correspond to horizontal lines.
The bottom row shows the vertically integrated column density X, for each
grain size bin, and summed over all grain sizes (see legend), as a function of
log radius. An animated version of this figure is included in the Supplementary
material (online).

grains that sit lower in the disc move outward more slowly, and form
a sharper ring of dust due to the stronger drag forces in the regions
where they reside. Consequently, radiation sorts the grains by size;
this sorting is especially apparent for case A3 (Fig. 6). However, the
entire structure of sorted grains moves outward over time, eventually
colliding with the outer edge of shielded grains drifting inward
due to gas drag. At this point all the grains are collected into
rings that radiation pushes outward. If we allow the simulation to
run long enough, eventually all the dust leaves the computational
domain.

4.3.2 Non-accreting cases without a radial gas gradient

In Figs 7, 8, and 9, we show the results for cases B1, B2, and B3,
respectively, our three cases without an initial radial gradient in the
gas or dust surface density. These runs show a qualitatively different
evolution from the previous cases, in that there is no inward migration
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Figure 5. Same as Fig. 4, but for the run with € = 1072, faust = 1072,
p = —1.5 (case A2 in Table 2); note that the colour scales in the two figures
are not the same. Due to the higher x value, the dust is efficiently pushed
outwards on time-scales of 100 kyr. An animated version of this figure is
included in the Supplementary material (online).
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of dust caused by drag. Instead, there is only outward flow of the dust
caused by radiation pressure, which sweeps up an outward-moving
front. Grains sort by size, but by a smaller amount than in the cases
withp = —1.5.

Moreover, the radius of the front versus time is quite different than
in series A. In the cases with p = —1.5, the most difficult part of
the disc to evacuate is the centre. Once the central regions are clear,
however, the process tends to run away: the declining density with
radius, and thus the decrease in both mass to be swept up and strength
of diffusive mixing, makes it relatively easy to clear the entire disc
inside a few hundred kyr. For the cases with p = 0, neither the amount
of material nor the strength of diffusive mixing decrease with radius,
and thus the inner part of the disc becomes easier to clear than the
outer part. In the cases with fy, = 10~* and 10~ (Figs 8 and 9), the
inner 1 au of the disc is evacuated in only ~50 kyr, but the front does
not reach 10 au until hundreds of kyr. Thus, in this configuration we
expect to find a long-lived dust hole in discs. By contrast in the case
with fy = 1073, the smallest grains are only evacuated to ~1 au
after 200 kyr, while the largest grains stall: after moving outward
for ~150 kyr, they cease to be pushed back from the star, and after
some time even begin to re-occupy the central region from which
they were at first expelled.
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Figure 6. Same as Fig. 4, but for the run with € = 1073, fyuq = 1074,
p = —1.5 (case A3 in Table 2); note that the colour scales in the two figures
are not the same. The order of magnitude reduction in gas density compared
to case 2 facilitates the collection of dust into rings, whose location and shape
are grain-size dependent. An animated version of this figure is included in
the Supplementary material (online).

4.3.3 Cases with laminar inflow

Our series with laminar inflow, series C and D, use the same initial
conditions as cases A2 and B2, respectively, but add laminar inflow
at rates of 107'-107° My, yr~'. These cases therefore represent
intermediate choices for initial disc properties, with inflow rates
that range from the low to the moderate end of observationally
inferred values for transition discs. We show the results of series
C, for which the initial disc is centrally concentrated, in Figs 10—
12, and the corresponding results for series D, with an initially flat
surface density distribution, in Figs 13-15.

Qualitatively, we see that cases C3 and D3, with accretion rates
of 107" Mg yr~!, are almost identical to their analogues without
laminar inflow, cases A3 and B3 — for example compare Fig. 5
with Figs 12, and 8 with Fig. 15. Such a low accretion rate has
no significant effects on the system. By contrast, at a laminar
accretion rate of 107 Mg yr~!, the differences are much larger.
Comparing cases A2 (Fig. 5) and C1 (Fig. 10), which have identical
initial conditions, we see that accretion prevents the formation of a
radiation-driven cavity, as happens in the non-accretion run. Instead,
the flow pattern is that small grains circulate: near the mid-plane
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Figure 7. Same as Fig. 4, but for the run with € = 10725,fdust = 1073,
p = 0 (case B1 in Table 2); note that the colour scales in the two figures are
not the same. The absence of radial density (and pressure) gradients inhibits
the formation of rings and an inner hole when the gas mass is non-negligible.
An animated version of this figure is included in the Supplementary material
(online).

where density is high and radiation force is limited by shielding, drag
forces win and grains move inward. Above the mid-plane, however,
the drag force and shielding rapidly diminishes, and radiation pushes
grains outward, whereupon they diffuse back towards the mid-plane.
This circulation is most efficient for the smallest grains, which sit
highest in the disc, and leads to a pattern whereby the outer disc
becomes dominated by small grains because they are replenished
more efficiently than larger grains. On the other hand, when compare
cases D1 (Fig. 13) and B2 (Fig. 8), we find that radiation pressure
is ineffective at all radii, and the disc simply maintains a steady
state, other than some minor depletion of the outer disc caused by
accretion. The difference between cases C1 and D1 is driven by the
initial surface density profile, which implies differing radial variation
of the gas inflow velocity Vg & 1/ X, For case C1 we have p =
—1.5,50 Vg @ %3, while for D1 wehavep Oand vy, !
Case DI thus features significantly higher gas velocities at small
radii, explaining why radiation pressure is ineffective in this case.
Our two cases with an inflow rate of 1071 Mg yr~!, C2 and D2,
and intermediate between the more and less rapidly accreting cases.
Examining C2, Fig. 11, we see that radiation is able to flow the inflow
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Figure 8. Same as Fig. 4, but for the run with € = 1072‘5,fdus1 =104,
p = 0 (case B2 in Table 2); note that the colour scales in the two figures are
not the same. The time-scale for clearing the outer disc increases markedly
when compared to similar systems (cases Al and A3) with a radial pressure
gradient. An animated version of this figure is included in the Supplementary
material (online).

at small radii, leading to the buildup of a region of enhanced surface
density near the star, unlike in case C1. However, it is unable to push
this ring back from the star, as happens in case C3. Similarly, in D2,
Fig. 14, we see that radiation has little on the larger grains, except
for creating a small density bump at the smallest radii, but efficiently
repels grains in our smallest size bin from the star, leading to a central
hole in small grains only. Thus, the outcome in case D2 is similar to
that in D1 for large grains (i.e. radiation has no effect and the disc
remains steady), and similar to that in D3 for small grains (i.e. a hole
opens).

5 DISCUSSION

5.1 Astrophysical implications

First consider the results in the absence of a laminar accretion flow. In
our simplified one-dimensional case, we found that grains clear faster
than they accrete for a dimensionless parameter x = 10 (equation 44).
Considering now the 2D models of Section 4, it is helpful to keep in
mind that the accretion time-scale #,.. in physical units was ~3 Myr
for our relatively low-viscosity parameter « = 107, so a more
relevant criterion for whether radiative dust clearing is significant is
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Figure 9. Same as Fig. 4, but for the run with € = 1072‘5,fdu>l = 1079,
p = 0 (case B3 in Table 2); note that the colour scales in the two figures
are not the same. The absence of a radial pressure gradient inhibits ring
formation because grains do not experience inward drift. Instead a wide and
long-lived inner hole forms. An animated version of this figure is included in
the Supplementary material (online).

arguably whether the clearing time-scale 7, is on the same order of
magnitude as the ~0.1 Myr time-scale for the transitional disc phase
as constrained by population studies (Alexander et al. 2014). This
time-scale 7, has no dependence on « for high x, and is proportional
to €2f; (equation 54, noting that p ¢ o< €). For our case with gas surface
density power-law index p = —1.5, in our most gas- and dust-rich
case, case Al, we have €2(f;/0.01) = 10~*, while the values are
1073 for case A2 and 107 for case A3. The simulations show that
a transition to rapid dust clearing occurs around €2(f;/0.01) ~ 1075,
For our p = 0 cases, models B1-B3, we also find a transition to
efficient clearing around €2(f,;/0.01) ~ 107>, corresponding to case
B2 (cf. Table 2). Thus our simulations, together with our analytical
calculation of time-scales and their dependence on disc dust and
gas properties, support the general hypothesis that radiative dust
clearing is a significant process in any non-accreting disc satistying
€2(£4/0.01) < 1073 in the inner ~1 au from the star.

If we now add a laminar accretion flow to this picture, this adds
an additional condition. Since we expect the ratio of drag force to
radiation force to scale as roughly M/L, we phrase this condition
in terms of the value of this parameter. When we add such a flow
to cases that lie on the boundary of dust clearing, A2 and B2, we
find that an accretion-luminosity ratio of M /L = 10" Mg yr ' LZ!
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Figure 10. Same as Fig. 5 (case A2), but for the run with M = 107 Mg yr~!

(case C1 in Table 2); note the very different evolution in the two cases. An
animated version of this figure is included in the Supplementary material
(online).

leaves the results qualitatively unchanged. An accretion rate two
orders of magnitude larger suppresses or completely negates the
effects of radiation pressure, depending on the disc density profile,
while an accretion rate of M/L = 107" Mg yr~! L5] produces an
intermediate result, whereby radiation has strong effects on smaller
grains, but weaker effects on larger ones. In this regime radiation
pressure is relatively unimportant in terms of the total grain mass
budget, but is likely to be very important in terms of observed
properties: small grains have a steep negative opacity power law
(k ~ A7"), and thus depleting sub-micron grains by a factor of
~10—100, as happens in runs C2 (Fig. 11) and D2 (Fig. 14), will
likely reduce the influence of warm dust on the SED, decreasing the
~2-5 pum disc flux significantly. This is an obvious topic for future
work including multigrain species Monte Carlo radiative transfer.
Thus, a rough summary of our findings is that radiative clearing is a
significant effect, at least for sub-micron grains and the parts of the
SED that are most sensitive to them, if the ratio of accretion rate to
luminosity is <1070 Mg yr~! La' , but that a wide range of outcomes
are possible near the boundary, depending on details such as the disc
density profile. In all cases where radiation has any effects, however,
we find strong sorting of grains by size.

Finally, we note that, in the critical inner ~10 au, gas power-
law densities have not been carefully measured for Class II objects,
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Figure 11. Same as Fig. 5 (case A2), but for the run with M=
10719Mg yr~! (case C2 in Table 2); note how the outcome in this case
is intermediate between that of case C1 (M = 10~° Mo yr’]) and A2 (no
laminar accretion). An animated version of this figure is included in the
Supplementary material (online).

although it appears possible to do so in the coming years with ALMA
(Miotello et al. 2018). For transitional discs, gas density models
that combine spectra with partially resolved observations in CO
isotopologs result in only moderately satisfactory fits (van der Marel
etal. 2016), but clearly indicate very significant depletion of CO in the
inner ~10 au. This CO depletion is further supported by simultaneous
modelling of spectra and spectro-astrometry (Pontoppidan et al.
2008), where the complete lack of CO gas at high velocities is strong
evidence of cleared CO within ~5 au of SR 21 in particular. Typical
values of € around 1072 and power-law indices between 0 and —1.5,
i.e. precisely the range spanned by our simulations, are consistent
with those papers. Small dust grains are also severely depleted in
these discs, with depletions in the very inner disc between 102
and 10°; indeed, spectral energy distribution modelling is consistent
with there being no dust at all at moderate radii (~10 au; van der
Marel et al. 2016). The mechanisms we have explored in this paper
provide a natural explanation for these results, since we show that
the combination of radiative acceleration, gas drag and turbulent
viscosity could start from the small grain dust distribution of a Class
II T Tauri star and produce an inner hole largely cleared of small
grains, so long as some grain growth (f; ~ 10~*) and accretion-based
gas clearing (¢ ~ 10727) occurs during the Class II phase.
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Figure 12. Same as Fig. 5 (case A2), but for the run with M =
107" Mg yr~! (case C3 in Table 2); note that the two figures are nearly iden-
tical, indicating the minimal effect of laminar accretion at 10~!! Mg yr~!.
An animated version of this figure is included in the Supplementary material
(online).

5.2 Model limitations

We end this discussion by pointing out some of the limitations of
the models we have explored thus far, which point to the directions
required in future work. First, our calculation is limited to grains
whose interaction with radiation can be approximated by geometric
optics. Although this is an excellent starting point, since it applies
to almost all grains larger than a few tenths of a micron, it does not
represent the situation in the most evolved of discs, where for example
there is evidence for very small grains (Oph IRS 48 and HD 169142,
Birchall et al. 2019) or unusually bright scattering indicative of
unusual optical properties (LkCa 15, Thalmann et al. 2016). Indeed,
the mechanism proposed in this paper provides a natural explanation
for clearing out grains with a ‘normal’ optical properties, and
thus high ratio of radiative to gravitational acceleration B, leaving
unusually low g grains behind.

A second limitation of our models is that we considered a static
background disc, rather than one whose structure is self-consistently
generated as a result of viscous accretion and similar processes
that shape the gas distribution. This makes it difficult to directly
relate our model parameters to the stellar accretion rate, which is
a key measurable parameter of real star—disc systems. We chose
not to evolve a model where the gas was in a viscous steady state
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Figure 13. Same as Fig. 8 (case B2), but for the run with M = 107 Mg yr~!
(case D1 in Table 2); note that in this case the laminar inflow overwhelms the
effects of radiation pressure, so the disc remains in steady state. An animated
version of this figure is included in the Supplementary material (online).

because although turbulent diffusion is certainly a key driver of
the evolution of the dust density distribution, turbulent viscosity
(Shakura & Sunyaev 1973) is not the leading candidate for driving
gas accretion in cool, evolved discs approaching or in the transitional
phase (Bai & Stone 2013; Turner et al. 2014). Ideally, the work in this
paper could be coupled with a plausible gas accretion mechanism. We
note that gas clearing may be coupled with dust clearing, as the dust
density distribution directly feeds back to the true gas scale height
and dynamics — another physical mechanism beyond the scope of
this paper.

A third limitation worth mentioning, which is related to the previ-
ous one, is that real discs will also likely have inflow velocities and
turbulence properties that vary somewhat with height, due to either
disc winds, partial MRI active layers, or even hydrodynamic effects
such as the vertical shear instability (Nelson, Gressel & Umurhan
2013; Bai 2017; Mohanty et al. 2018; Gressel et al. 2020). Thus, it is
possible that a high accretion rate might be maintained through the
mid-plane, while radiatively driven dust evolution substantially alters
the dust distribution in the disc atmosphere, as in our non-accreting
simulations. Such shear, in the absence of a strong stabilizing
temperature inversion, could produce circulation and mixing between
layers. A full accounting of the impact of highly vertically dependent
accretion is beyond the scope of this work.
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Figure 14. Same as Fig. 8 (case B2), but for the run with M=
10719Mg yr~! (case D2 in Table 2); note how the outcome in this case
is intermediate between that of case D1 (M = 10~ Mo yr’]) and B2 (no
laminar accretion). An animated version of this figure is included in the
Supplementary material (online).

6 CONCLUSIONS

We have shown in this paper that as grain growth and accretion
processes naturally clear a protoplanetary disc, there is a transition
point where the combination of radiation pressure and gas drag can
rapidly remove small (~micron) sized grains from the inner disc,
leaving a transitional disc structure behind. The physical mechanism
for this clearing is a reduction in the effective gravity of small grains,
resulting in a smaller orbital velocity so that gas drag can move the
grains outwards. Using 2D simulations in which we simultaneously
include radiative forces, turbulent diffusion of dust by gas, and inward
flow of dust due to gas accretion and radial pressure gradients, we
show that the disc clearing is not simply a surface effect, and can
affect the entire small grain dust disc structure. This process had not
been studied in depth before, because the mechanism alone is not
effective for a minimum mass solar nebula, and requires the disc to
already have evolved significantly and to have substantially reduced
its gas accretion rate compared to that during earlier evolutionary
phases. Conversely, however, once these evolutionary processes drive
the accretion rate and the gas and dust density low enough, radiative
clearing becomes both unavoidable and rapid.

Our proposed physical clearing process has a number of appealing
features. It does not invoke planet formation directly, and can take
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Figure 15. Same as Fig. 8, but for the run with M = 107" Mg yr~! (case
D3 in Table 2); note that the two figures are nearly identical, indicating the
minimal effect of laminar accretion at 10" Mg yr~!. An animated version
of this figure is included in the Supplementary material (online).

place even in a disc that does not form planets. It leaves behind a
structure that is consistent with current transitional disc observations.
Notably, this process clears dust and not gas, so is consistent with
transitional discs still having moderately large gas discs while having
an inner cavity that is almost completely devoid of dust.

The primary limitation of our work thus far is that, while we
have considered a range of dust grain sizes, we have thus far limited
our calculations to grains whose interaction with starlight can be
described by geometric optics. Future work will involve relaxing
this assumption allowing us to consider not just grains smaller than
~0.1 um that are too small for geometric optics, but also grains with
differing radiative properties, for example high degrees of scattering
asymmetry. This will also enable radiative transfer models to see how
effectively the dust structures produced by this model can reproduce
real observations.
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APPENDIX A: NUMERICAL METHOD FOR 1D
SYSTEMS

Here, we describe the numerical method we use to solve the
simplified 1D system, equation (42). To avoid clutter in this appendix,
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we drop the primes on all the terms in this equation, but all the
quantities listed are the non-dimensonalized ones.

A1 Spatial discretization, initial conditions, and boundary
conditions

We use a uniform grid with constant cell size Ax, with the left edge
of cell 0 at x = 0 and the right edge of cell N — 1 at x = xp,c; We use
xi — 12 and x; 4 12 to denote the positions of the left and right edges of
cell i. We use a finite volume discretization on this grid; integrating
equation (42) over cell i, we have

a _ —z —
—pai = Ax7! {X [(Pa€ ™ iz1/2 — (a€  iz1/2]

ot
J 0
_ (ﬁ) N (ﬂ) , (Al
9x Jitip 0x /i1

Xit1/2
Xi-1/2

the subscripts i + 1/2 and i — 1/2 indicate that a particular quantity
is to be evaluated the corresponding cell edge.

We initialize the simulation with p,; = 1 in every cell, and adopt
boundary conditions whereby both the advective and diffusive fluxes
out of the domain are set to zero. To ensure that these choices do
not affect the result, we always choose the size of our domain large
enough so that the right edge of the domain is well beyond the dust
wave, and thus the flux through cells near it is negligibly small in
any event.

As the simulation evolves, and the dust front moves to larger x,
an increasingly large fraction of the computational domain becomes
filled with cells for which p,; & 0. To avoid expending CPU cycles
needlessly updating these nearly empty cells, at the end of each time-
step (see the next section) we shift our grid to the left, removing the
leftmost cells within which p,; < 107°. We keep the number of cells
constant by adding an equal number of new cells on the right-hand
side of the domain, all initialized to p,; = 1; since our domains
extend well past the edge of the dust wave at all times, the existing
cells adjacent to those being added also have p,; ~ 1, and thus the
newly added cells blend smoothly with the existing ones.

where pg; = Ax™! pq dx is the average of p, over cell 7, and

A2 Time discretization and time-stepping strategy

We advance the calculation in time using an implicit-explicit update
step with Strang (1968) splitting between the advective terms, which
we handle explicitly, and the diffusion terms, which we handle
implicitly. To advance the calculation from time 7, to time 7, | =1,
+ At, starting from the dust densities py’l) in every cell at time n, we

carry out the following steps:

(1) Advance the diffusion subsystem (the dp,/dx terms in equa-
tion A1) for a time A#/2 using an implicit method that is second-order
accurate in space and time (Section A3.1). We denote the state after
this step as p..

(ii) Advance the advection subsystem (the pye™" terms in equa-
tion Al), starting from state pf?, for a time At using an explicit
method that is second-order accurate in time and third-order accurate
in space (Section A3.2). We denote the state that results from this
procedure P;Ti) .

(iii) Starting from state p‘(,Tl) , carry out a final diffusion advance,
using the same method as in step 1, through time A#/2. This yields

the final state ;" at the new time.
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The overall scheme is second-order accurate in time. We set the
time-step based on a Courant—Friedrichs—Lewy (CFL) condition as
applied to the advection step, which we describe in Section A3.2. This
condition guarantees positivity during the first advection update, but
is not sufficient to guarantee positivity through the full Strang-split
time-step. Thus, on occasion our update scheme yields a negative
density. If this occurs, we simply reduce the time-step by factors of
2 and retry until the step succeeds.

A3 Subsystems

Here, we describe our procedures for advancing the advection and
diffusion subsystems.

A3.1 Diffusion

We evaluate the diffusion terms in equation (A1) using second-order
accurate centred differences,

% _ Pdi+1 — Pd,i (A2)
9% /i1y Ax ,

and similarly for cell edge i — 1/2. We discretize the diffusion
subsystem in time using a second-order accurate Crank—Nicolson
method. Defining ® = 1/2 as the time centring parameter, for
time-step At we obtain the usual second-order Cartesian diffusion
discretization:

n n At )
sz,?l) = /0,(1,) - (E) : [(1 - 0) (pd,i+1 —2pai + Pd,ifl)(n

+ O(oa,i+1 — 2pai + pai-D"], (A3)

where the superscript (n) indicates the state at the start of the update
and (n + 1) indicates the state after the diffusion update. This equation
can be rewritten as a linear system

Mot = p™ + Atplf), (A4)

where p, is an N-element vector containing the densities in all cells,

=20, i (n)
pf;,'f) —(1-0) (Pd,z+1 Pd.i + P, 1) (AS)

Ax?

is the rate of change of p, due to diffusion evaluated at the old time,
and the M is an N x N tridiagonal matrix whose elements are

At At
M;; = 1+2®AT2 a,-,-@A—xz (81,541 + 8ij-1) - (A6)
We solve equation (A4) using the standard Thomas algorithm for
tridiagonal matrices.

A3.2 Advection

Since the velocities are non-local functions of the density coupled
via the radiation field, we cannot obtain second-order accuracy in
time using standard predictor—corrector methods. Instead, following
Skinner et al. (2019), we use a Shu & Osher (1988) TVD time
discretization. Given a starting state pf,'fl?, we advance the calculation
fromt,tot, 1 =t, + Atvia

Pl = P+ Aty (A7)
win _ Loy Lo 1
Pai = Epd,i + Epd,i + EAt (/)adv),' s (AS)
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where
. n X —T —-T n
(padv)i.):E[(pde i1z — (pae  iz1/2]™ (A9)

is the rate of change in p,; evaluated using the density field pf"), and
similarly for ( padv)f.*)‘

We evaluate these terms in three steps. First, for the initial density
field pé’"? or ,0;_‘2 we compute a piecewise-parabolic method (PPM)
reconstruction of the density field (Colella & Woodward 1984).
Specifically, we approximate the dust density in cell i with a parabolic
function

pa(x) = co;i +c1ix + c2,x%, (A10)

where  the  reconstruction  has  the  property  that
Ax~! ::‘/22 pa(x)dx = pg;, and the function p4(x) is monotonic
for x € (x; _ 112, Xi + 12)- The reconstruction coefficients ¢y, ¢y, and
¢, are functions of pg;_ 1, pai, and pg;+ 1. Secondly, we calculate

the optical depths to cell edges as
Ti+1/2 :Zpd,i- (ALD)
j=0

From the optical depths we can derive the velocities vy, =
xe "i+1/2 at each cell face. Thirdly, we evaluate the mass per unit
area transported across cell face i + 1/2 over time Af, which is
At(pge )i+ 12, by evaluating the amount of mass contained in
the region between the cell edge and the position of a contact
discontinuity propagating at speed v; 4 1, away from that cell edge:

Xi+1/2

At(pge™ iy =/ pa(x)dx. (A12)

Xi+1/2—Vi1/2A1
This procedure allows us to evaluate (0,qv); 1n every cell.
We set the overall time-step as

. ri —Tri-1

At = C min (7) R (A13)
[Vit1 /2|

where the minimum is over all cells i, and C is the CFL number. The

scheme is stable for C < 0.5.

APPENDIX B: NUMERICAL METHOD FOR 2D
SYSTEMS

Here, we describe the full details of the method we use to solve the
advection—diffusion equation, equation (1). Our strategy here is a 2D
generalization of that described in Appendix A.

B1 Computational grid and discretization

We adopt a 2D spherical polar grid with (r, ) as our basic
coordinates, but we will specify our grid in terms of the radial and
angular variables x and u, where x = 10g 7/ryyin, i = sin6, and rp,
is the inner edge of the computational domain. The centre of cell
ij is located at coordinates x; and p;, and its upper right corner is
located at x; 1 12 and (4 4 2. In the radial direction the grid starts at
r_1/2 = I'min and ends at ry, _j 2 = rmax, and in the azimuthal direction
it extends from p_ip = 0 t0 (y,—1/2 = MUmax; the grid is N, x Ny
cells in size, and is uniformly spaced so that the sizes of cells are
Ax = (XNV,1/2 — )C,I/Q)/Nr and A/L = :U“NH*I/Z/NG- For this grld,
cell volumes and radial and angular cell face areas are

2
3™ ("z'3+1/2 _”{11/2) Ap (B

Ait12.j = 27T",-2+1/2Al/« (B2)

Vii =
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2 2
Aijrip =7 (= 1) (B3)

respectively.

We also discretize in bins of grain size, by defining a logarith-
mically spaced set of grain size bins. Specifically, we use N, grain
size bins, with a_j» = ay;, representing the smallest size grains
in the smallest bin, and ay,_;/, the largest grains in the largest
bin, Aloga = log(ai+1/ax) = log(ay,—1/2/a—1,2)/ N, constant, and
ay = \/ax—1,20x+1,2 representing the mean size of grains in the kth
size bin. We let p, represent the mean density of grains in the size
range from g — 12 L0 g 4 12

‘We adopt a finite-volume spatial discretization strategy. Integrating
equation (1) over the volume of cell ij, and making use of the
divergence theorem, we have

0 1
7p¢l.ijk ==V [Fadv.i+1/2,j,kAi+1/2.j — Faavic12.jkAi—12,)

d

+ Faavii j+1/2.5 A0 j+12 — Faavii j—172.6Ai j=172

+ Fuaitr.iv1/2. .k Aiv1y2.; — Fairi-12.j.6Ai-172,)

+ Fuitr.i,jr1/2.4Ai j412 — Fatri j—124Aij—12] ,  (B4)
where F,q, and Fgir are the advective and diffusive fluxes at the cell
faces, defined by

Faavix1/2.j6 = / Pavar dA, (BS)
Aix1)2,j
Faavi jt12k = Pava.p dA, (B6)
A jx1/2
dfa
Faigrit1/2.j0 = —/ Dd.apgTdA’ B7)
Ajx1/2.j r
F, / Dyupet 4 44 (B8)
diff.i,j+1/2.k = — daPg— — - dA.
Aj jx1/2 r do

Here, for each size bin k, py i is the mean dust density in cell ij, v4,,
and v, are the r and 6 velocities, and D, is the diffusion coefficient
evaluated for grains of size a;. Note that equation (B4) is exact. We
defer discussion of how we evaluate the fluxes to Section B2.

We discretize the equations in time and advance using the same
approach as in the 1D case, as described in Appendix A2. Specifically,
we break the problem into advective and diffusive subsystems,
and use Strang (1968) splitting to advance them alternately while
retaining second-order accuracy in time.

B2 Subsystems

Here, we describe our procedures for advancing the advection and
diffusion subsystems.

B2.1 Diffusion

The diffusion subsystem of equation (B4) is

0 1
57 Pk = =V [Faitr,i+1/2.jkAir1/2,5 — Faitrio1/2,7.6Ai-1/2,)

+ Fuaitrijr1/2k A jr12 — Fdiff.i,j—l/z,kAi,j—l/ﬂ . (B9
We evaluate the diffusive fluxes using second-order accurate centred
finite differences:

dfak
Faitti+12,j.& = —Daix12,).kPg.ix1/2,j 'xi/il/z,j (F s
i+1/2,)

(B10)
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Fiitri j1/2.6 = —Daix1/2,j,kPg.i,j+1/2

2
V1~ Biap <dfd,k)
i,jil/z’

ri du

(B11)

where X' = dx/dr is the derivative of the mapping between radius and
our radial variable x,

(dfd‘k) _ b <pd,iil,j,k _ /Od‘ijk)
dx v AX N\ Peixli Peij
and similarly for the p derivatives. The subscripts indicate the cell
face or centre at which all quantities are to be evaluated, and we note
that p, and D are known analytically at all positions.

We discretize the diffusion subsystem in time using a second-

order accurate Crank—Nicolson scheme. Defining, ® = 1/2 as the
time-centring parameter, for a time-step Az we have

(B12)

(n+1) (n)
Paijk ~ Paijk

At

_ b d(1-0) |F® A, ) A, ,
-V, diff,i41/2,j, k4 i+1/2,j diff,i—1/2,j,k 4 i—=1/2,j
ij

(n) (n)
+ Fdiff,i,j+1/2,kAi,j+l/2 - Fdiff,i.j—l/z,kAi,j—lﬂ]
® (n+1) (n+1)
+ 6 [Fdiff,i+l/2,j,kAi+1/2-.f = Fairri 212,50 Ai-172,)

(n+1) (n+1)
+ Fuiri jr126Aij+172 — Fdiff,i,j—l/z,kAi,.i*I/Z] } ) (B13)
where p(([’,) - and pf,";,l) denote quantities evaluated at the previous
and new times, respectively.
We can rearrange equation (B13) to obtain a sparse linear system
for each grain species k,

+1 .
Mip " = o + Atdi (B14)
Here, pfﬁkﬁ) is vector with N, Ny elements ordered so that element £

contains the dust density in cell (i, j) = (¢ mod N,, [¢/N,]),i.e.

(n+1) _ (n+1)
Pek = Pd tmod Ny, ¢/N, .k (B15)

and similarly for p;("). The term p;’féiﬁ represents the rate of change

in density due to diffusion evaluated at the old time, and is given by

1
——(1-0)

. (n)
(Pai)yy = v,

(n) ()
: [Fdiff,i+1/z./,kAi+|/2,j — Faitic1/0, .k Ai-172,)

(n) (n)
+ Fait i jo1poxdijen — Fd?ff,i,j—l/2,kAfJ—|/2i| . (B16)

We solve equation (B14) using a biconjugate gradient stabilized
solver (BiCGSTAB) as implemented in the EIGEN software package
(Guennebaud & Benoit 2010).

B2.2 Advection

The advection subsystem of equation (B4) is

d _
gpd,ijk = —V,«_,-1 : [Fadv,i+1/2._j,kAi+1/z,j = Faavi—12,jkAi-172,
+ Favij+124Ai 4172 — Faavijo124Ai j-12] - (B17)

We solve this subsystem using the same TVD approach described
in Appendix A3.2. Given a starting state ,of,'_'; x> we advance the
calculation from ¢, to t,, . | =1, + At via

Transitional disc dust dynamics 3041

p((ifz?jk = pg,ll?jk + At (padv)fi’gjk , (B138)

wry _ Loy L T
Paije = 5Pd.ijk + 5 Pd.ijk + EAZ (Paa)g iji » (B19)
where

. (n )
(padV)t(';l/)( = _? : [Fa‘i’v),i+1/2,j.kAi+l/2,j - Fa(gv,i—l/Z,j,kAi—l/z‘j

ij

) o
+ Favijr1pxAijri2 — Fagv,i,j-u/z,kAi,.f—l/z} (B20)

(n)

is the rate of change in p, evaluated using the density field p;;,

()

and similarly for (faav); e We evaluate these terms in three steps.

First, for the initial density field 101(713 or p,(f,z we compute a PPM
reconstruction of the density field using the generalized PPM method
of Skinner et al. (2019), which extends the classical (Colella & Wood-
ward 1984) PPM method to curvilinear, non-uniform coordinates.
Specifically, in the radial direction we approximate the density of
grains in size bin k as a function of position within cell ij with a
parabolic function
Pai(r) = coiji + C1ijex(r) + coijpx(r)’, (B21)
where the reconstruction has the property that the average of p,(r)
over the volume of cell ij is py ik, and the function p,4(7) is monotonic
for r € (r; _ 1, 1i + 112). The reconstruction coefficients cy, ¢y, and ¢,
are functions of pg;_ 1k, Pajjk> and pg;+ 1k and chosen via the
procedure described by Skinner et al. (2019). The reconstruction is
third-order accurate for smooth flows. We use the same procedure to
obtain a PPM reconstruction of the density field in the p direction.

Second, we calculate the velocities at cell faces. For each grain
size bin we define B by using g, in equation (22), and we discretize
equation (20) for the optical depth to cell edge i + 1/2 along angle j
as

3 i
Tiv1/2,j = Z@Z
k

i'=0

Til 4172
X / (co.jk + crinkx(r) + cojx(r)?) dr. (B22)

rir_12

The integrals are trivial to evaluate analytically in each cell, since
x(r) is a known function. Given Box and 7,4 1, along with the
local Keplerian speed 2k, gas velocity v, ,, and stopping time T
(computed from our analytic background gas model), we can use
equation (29) and equation (36) to evaluate the @ and z velocities
each face i + 1/2, j, which we can trivially transform into the
velocities vy 4 172, jx and vgg,; 4 112, jx that we require. Our strategy
for cell faces i, j + 1/2 in the 6 direction is similar, except that
we cannot use the PPM reconstruction of the density field for rays
along cell edges in the 6 direction because it is not guaranteed to
be continuous at cell edges. For this reason, we instead use an
appropriately modified version of equation (B22) to evaluate the
optical depth to cell centres ij, and then take 7;; 1 10 = (T + T 4 1)/2.
This then provides the velocities at the i, j 4+ 1/2 faces.

The third and final step is to calculate the rate of change terms.
Consider the upper radial cell face, i + 1/2, j, at which the velocity is
Ve = V4 112- After time At, the contact discontinuity between the
two cells adjoining the face will be displaced from its initial location
e = Ii4 1, to a new location r, = r. — v.At, and thus, using our
PPM reconstruction, the mass transported across the cell face during
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this time is
AMiy1p,jk = 2Ap-

{ S [eoiji + eripx(r) + e (r)?] 2 dr, ve >0

’

f,rf [Coitt,jk + Clict jax(r) + caipr jux(r)?] rdr, ve <0
(B23)

The corresponding mass flux is Faav,i+ 172, jx = AM; 112, jilAi 4 112, )-
The expressions for the other three cell faces are analogous.

This completes a specification of the spatial discretization of
equation (1); the full scheme we have described is second-order
accurate in space.

B2.3 Floors

In regions where the gas density is very low and the stopping time
is large, grains can reach very high velocities, leading to very
small time-steps in equation (A13). To avoid the computational
cost of evolving cells with high speeds but that contain negligible
mass, we apply a numerical floor. We first compute a floor density
Pricor DY requiring that the optical depth of a radial ray through
the computational domain encountering dust in every size bin with
density pgoor be 1079, ie.
-1

3 _
Pfloor = 1076 Z (rmax - rmin) Z ay ! . (824)
k

For the choice of grain size and domain size used in all simulations
presented in this paper, pgoor & 3.9 x 10726 g cm™3.

We modify the update cycle by setting the advective flux Fqy
(Section B2.2) to zero across any cell interface for which the upwind

density is below pgoor. We similarly set the velocity across such
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interfaces to zero for the purposes of computing the time-step
(equation A13), and we do not require convergence in floored cells
in our matrix solution in the diffusion subsystem (Section B2.1).

B3 Boundary conditions

Evaluation of the fluxes at the domain boundaries requires specifi-
cation of boundary conditions. In the angular direction, we enforce
zero advective and diffusive flux both across the mid-plane at u =
0 and out of the top of the disc at ;t = fma. In terms of our spatial
discretization, this amounts to setting vq g = 0 and Dy = 0 for
all j = —1/2 and j = Ny — 1/2. In the radial direction, we use closed
box boundary conditions for diffusion, and therefore set Dy = 0
foralli=—1/2andi =N, — 1/2.

The advective radial flux requires a more sophisticated treatment.
We wish to allow material to be advected inward across the inner
radial boundary by drag, and to be pushed outward through the outer
radial boundary by radiation. However, we do not wish new material
to be able to enter the domain. We therefore adopt diode boundary
conditions. At the inner boundary, we solve for the velocity across the
innermost cell face vy _1/, jx as described in the previous section,
butif vy _ip, jx, > O (i.e. if the velocity is radially outward, and thus
into the domain), we set vy 152, j,, = O so that no mass enters the
domain from smaller radii. We treat the outer boundary in the same
way: we compute Vg, y,—1,2, j k,r» but if the resulting value is negative,
indicating flow into the computational domain, we re-set the value
to zero.
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