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ABSTRACT
We recently presented a new statistical method to constrain the physics of star formation and feedback on the cloud scale by
reconstructing the underlying evolutionary timeline. However, by itself this new method only recovers the relative durations of
different evolutionary phases. To enable observational applications, it therefore requires knowledge of an absolute ‘reference
time-scale’ to convert relative time-scales into absolute values. The logical choice for this reference time-scale is the duration
over which the star formation rate (SFR) tracer is visible because it can be characterized using stellar population synthesis (SPS)
models. In this paper, we calibrate this reference time-scale using synthetic emission maps of several SFR tracers, generated
by combining the output from a hydrodynamical disc galaxy simulation with the SPS model SLUG2. We apply our statistical
method to obtain self-consistent measurements of each tracer’s reference time-scale. These include H α and 12 ultraviolet (UV)
filters (from GALEX, Swift, and HST), which cover a wavelength range 150–350 nm. At solar metallicity, the measured reference
time-scales of H α are 4.32+0.09

−0.23 Myr with continuum subtraction, and 6–16 Myr without, where the time-scale increases with
filter width. For the UV filters we find 17–33 Myr, nearly monotonically increasing with wavelength. The characteristic time-
scale decreases towards higher metallicities, as well as to lower star formation rate surface densities, owing to stellar initial mass
function sampling effects. We provide fitting functions for the reference time-scale as a function of metallicity, filter width, or
wavelength, to enable observational applications of our statistical method across a wide variety of galaxies.
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1 IN T RO D U C T I O N

It is a challenging problem in astrophysics to characterize the time-
scales over which astrophysical processes take place, because most
of these processes take much longer than a human lifetime. For
this reason, star formation studies have struggled to identify the
physical processes governing the evolution of molecular clouds and
star-forming regions, which requires knowledge of the underlying
time-scales (e.g. Dobbs et al. 2014; Krumholz 2014; Chevance et al.
2020b). Traditionally, the age of the stellar population has been used
as a ‘reference time-scale’ to infer how long other phases of the star
formation lifecycle take, such as the molecular cloud lifetime and the
time over which gas and young stars are associated (e.g. Leisawitz,
Bash & Thaddeus 1989; Elmegreen 2000; Kawamura et al. 2009).
However, the time-scales measured to date span a wide range of
durations (e.g. Scoville, Solomon & Sanders 1979; Koda et al. 2009;
Meidt et al. 2015), which is largely caused by the heterogeneity of the
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methods used (see the discussion in the methods section of Kruijssen
et al. 2019). Clearly, a systematic framework is needed for placing
the lifecycle of molecular clouds, star formation, and feedback on an
absolute, empirically determined evolutionary timeline.

In Kruijssen & Longmore (2014), we put forward a new statistical
method, titled ‘an uncertainty principle for star formation’ (hereafter
KL14 principle), formalized in the HEISENBERG code (Kruijssen
et al. 2018). This analysis method enables the use of pairs of
high-resolution emission maps tracing successive phases of the
evolutionary cycle between cloud evolution, star formation, and
feedback (e.g. CO tracing molecular gas and H α tracing recent star
formation) to infer the relative durations of these phases on the cloud
scale. Specifically, this method can be used to measure the relative
duration of the ‘cloud lifetime’ and the relative duration over which
a molecular cloud is disrupted by stellar feedback, compared to the
characteristic ‘H II region lifetime’.

To turn these resulting relative durations into an absolute timeline,
it is critical to normalize the timeline using a known ‘reference time-
scale’. Without this reference time-scale, observational applications
of the KL14 principle cannot be used to obtain meaningful constraints
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on the cloud lifecycle. The most direct way of providing a reference
time-scale is by following the example of previous work in this
area and characterizing the time-scales of star formation rate (SFR)
tracers. Indeed, our new methodology is preceded (and partially
inspired) by a wide variety of literature aiming to observationally
characterize the cloud lifecycle, which all used the approximate
lifetimes of H II regions or the ages of young stellar clusters as a
reference time-scale (e.g. Blitz et al. 2006; Kawamura et al. 2009;
Miura et al. 2012; Corbelli et al. 2017). In this paper, we calibrate this
approach for use in observational applications of the KL14 principle.
Doing so requires a controlled experiment, in which the duration of
one phase is known exactly and the duration of the other phase is
measured from its emission map using HEISENBERG. This requires
the use of galaxy simulations rather than real galaxies. Since the
reference time-scale likely depends on metallicity and is affected by
the sampling of the stellar initial mass function (IMF), the experiment
must also be repeated for different tracers, such as H α and various
ultraviolet (UV) filters, metallicities, and degrees of IMF sampling.

Even though it is the goal of this paper to define the tracer
time-scales within the context of the KL14 principle, measuring the
characteristic emission time-scales of SFR tracers is also important
in other contexts. For instance, this characteristic time-scale is an
indicator of the duration for which photoionizing feedback can act
on the surrounding interstellar medium. Deriving absolute SFRs from
observed line or broadband emission flux also requires calibration
by the time-scale over which a young stellar population emits at that
given wavelength. The emission in different wavebands is dominated
by different types of stars (Hao et al. 2011) and so it is possible to
determine relationships between the luminosity at a given wavelength
and the SFR based on the lifetimes of these stars (e.g. Calzetti et al.
2007; Hao et al. 2011; Murphy et al. 2011; Kennicutt & Evans 2012).
For example, producing H α emission requires ionizing photons from
very massive stars, which have lifetimes <10 Myr (Leitherer et al.
1999; Murphy et al. 2011), such that the emission itself should fade
on a characteristic time-scale that is of a similar magnitude.

We emphasize that by describing the duration of SFR tracer
emission with a single time-scale, we do not assume that the SFR
tracer emission sharply drops at some particular age. Instead, we
describe the gradual fading of emission in terms of a single time-
scale that is meaningful in the context of our statistical method.
Conceptually, this can be regarded as analogous (but not equal) to
the e-folding time of an exponential decay, or the time at which
50 per cent of the total H α luminosity that will be produced by
a young stellar population has been emitted. This defines a single
number for the time-scale of emission for that population. Since the
emission fades gradually, it depends on the physical context what
definition of a single time-scale is correct. Therefore, our goal is
not to provide a general definition of the time-scale of SFR tracer
emission, but to provide the right definition of an SFR tracer time-
scale for use in observational applications of the KL14 principle.

Previous work attempting to derive characteristic time-scales for
different SFR tracers has revealed that the major problem obstructing
a conclusive measurement is that there is no obvious definition
of the time-scale that should be adopted. Instead, there exists a
range of possible definitions, such as a luminosity-weighted mean,
a percentage intensity change, or a percentage of the cumulative
emission. The choice of definition can result in differences of up
to an order of magnitude in time-scale (Kennicutt & Evans 2012;
Leroy et al. 2012). In view of this strong dependence on the precise
definition of the reference time-scale, we opt to use a self-consistent
approach for determining the SFR tracer time-scale; that is, we
measure the emission time-scales of SFR tracers by applying the

KL14 principle itself to synthetic emission maps, which have been
generated by combining the output from a hydrodynamical disc
galaxy simulation with the stellar population synthesis (SPS) model
SLUG2 (da Silva, Fumagalli & Krumholz 2012, 2014; Krumholz et al.
2015). The reference time-scales obtained this way critically enable
observational applications of the KL14 principle, which provides
measurements of a wide variety of physical quantities as part of
a single analysis (Kruijssen et al. 2018), such as the molecular
cloud lifetime, the time-scale for cloud destruction by feedback,
the separation length between independent star-forming regions, the
integrated cloud-scale star formation efficiency, and the feedback
outflow velocity. The method has also been extended to also provide
physically motivated measurements of the diffuse gas fraction (e.g.
of molecular, atomic, or ionized gas; Hygate et al. 2019). For the first
applications of the method measuring these quantities across nearby
star-forming galaxies, we refer the reader to Kruijssen et al. (2019)
and Chevance et al. (2020c).

The structure of this paper is as follows. In Section 2, we summa-
rize the KL14 principle and the practical application of the associated
HEISENBERG code. We outline our approach for constraining the
characteristic time-scales of different SFR tracers with well-sampled
IMFs in Section 3. For solar metallicity, the resulting time-scales
are presented in Section 4. In Section 5, we demonstrate how the
time-scales depend on metallicity. In Section 6, we demonstrate the
effects of incomplete IMF sampling, which is expected to change the
results in environments of low SFR surface density. In Section 7, we
carry out a brief test of the obtained time-scales, by comparing them
to observations of H α and UV emission in NGC 300. Finally, we
summarize the results and present our conclusions in Section 8.

2 UNCERTAI NTY PRI NCI PLE FOR STAR
F O R M AT I O N

The analysis presented in this paper is based on the KL14 principle
and its specific realization in the HEISENBERG code (Kruijssen et al.
2018). The statistical method presented by Kruijssen & Longmore
(2014) and Kruijssen et al. (2018) enables the characterization of the
cloud-scale physics of star formation and feedback in a systematic
way, based on the spatial distribution of emission in pairs of maps
tracing particular evolutionary stages of the star formation process.
We briefly describe the concept of the method and summarize
its specific application in this work, aimed at constraining the
characteristic time-scales of SFR tracers.

The KL14 principle has been primarily used to determine the
lifetime of giant molecular clouds in nearby galaxies, by comparing
the spatial distributions of the emission of a molecular gas tracer
(e.g. CO) and SFR tracer (e.g. H α). The first applications of this
method (Kruijssen et al. 2019; Hygate et al. 2020; Chevance et al.
2020a, c; Ward et al. 2020a; Zabel et al. 2020) demonstrate that
clouds are highly dynamic and, once they host unembedded massive
stars, are dispersed on time-scales shorter than the typical supernova
delay time, implying that early feedback by photoionization or stellar
winds plays a critical role in disrupting molecular clouds. However,
the applicability of the method is not restricted to maps of molecular
gas or young stellar emission. Depending on the combination of
tracers used, it is possible to constrain the durations of different
stages of the star formation timeline using HEISENBERG, such as the
atomic cloud lifetime (Ward et al. 2020b) or the duration of the
embedded phase of star formation (Kim et al. 2020).

In basic terms, the KL14 principle represents a galaxy as a collec-
tion of independent (e.g. star-forming) regions, where each region is
evolving along its timeline independently of its neighbouring regions.
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Star formation rate tracer lifetimes 237

The number of regions that are emitting in each of the two tracers
(with the possibility that some regions are in a transition phase and
emit in both tracers) is roughly related to the duration of that phase
– the shorter the duration of a phase, the less likely it is to observe a
region in that phase.

Most importantly in the context of this paper, this method funda-
mentally derives the duration of one phase relative to another one.
The duration of one of the two phases must therefore be known
a priori in order to derive absolute time-scales. In practice, this
‘reference time-scale’ can often be associated with the duration of
the emission of the SFR tracer, owing to the absolute clock provided
by stellar evolution (e.g. Leitherer et al. 1999, 2014). In this paper, we
use this clock to measure the reference time-scale of SFR tracers and
thereby provide a calibration of the evolutionary timeline between
molecular clouds, star formation, and feedback that can be measured
observationally using HEISENBERG. Throughout this work, we call
‘reference map’ the emission map associated with the phase of known
duration, and we refer to this duration as the ‘reference time-scale’.

We briefly summarize the procedure used by HEISENBERG and
refer the reader to Kruijssen et al. (2018) for the specific details.
The method relies on the findings of Kruijssen & Longmore (2014),
where it is shown that the gas-to-young stellar flux ratio changes
relative to the galactic average when focusing apertures on peaks of
gas or young stellar emission, and that this relative change is a direct
function of the underlying evolutionary timeline describing how gas
is converted into stars on the cloud scale. The procedure is as follows:

(i) We use two emission maps of the same galaxy, tracing two
successive evolutionary phases (hereafter phase 1 and phase 2). The
phase 2 map is used as the reference map, with its duration equal
to the reference time-scale, tR. In this work, we construct a map of
star particles within a given age range as the phase 2 map of known
duration (see Section 3) and provide a synthetic SFR tracer map as
phase 1, of which we measure the duration (see below).

(ii) Each map is convolved using a top hat kernel for a series of
aperture sizes (ranging from ∼ the cloud scale to ∼ the galaxy scale).

(iii) For each of these convolution scales, apertures of corre-
sponding sizes are placed on the emission peaks of both convolved
maps. The enclosed phase-1-to-phase-2 flux ratio (F12) within these
apertures is then measured in units of the galactic average flux ratio
(F12,gal). On the small scales, the measured flux ratio in apertures
centred on phase 1 peaks (respectively, phase 2 peaks) deviates from
the galactic average value, as visible in Fig. 1.

(iv) The models describing the shapes of the two branches of this
‘tuning fork diagram’ (see Kruijssen et al. 2018, equations 81 and
82) are fitted to the measurements in order to constrain the following
three free parameters: the typical separation length between identified
peaks (λ), the relative temporal overlap between the two phases
(tover/tR), and the relative duration of phase 1(t1/tR).1 The absolute
time-scales t1 and tover require a reference time-scale tR.

The reference time-scale is a key ingredient for retrieving the
absolute time-scales t1 and tover. In this paper, we use the above
method to calibrate the duration of emission for a variety of SFR
tracers, which can then be used as the reference time-scale in

1These quantities represent flux-weighted averages across the population of
emission peaks (see sections 3.2.9 and 3.2.11 of Kruijssen et al. 2018 and
equation 1 of Kruijssen et al. 2019). In addition, λ describes the typical
separation length in the vicinity of peaks, not the area-averaged value across
an entire galaxy, making it relatively insensitive to morphological features
such as spiral arms (Kruijssen et al. 2018, 2019; Chevance et al. 2020c).

Figure 1. Example tuning fork diagram produced by the HEISENBERG code.
The figure shows the relative change of the phase-1-to-phase-2 flux ratio
(F12) when placing apertures of size lap at the locations of emission peaks in
the phase 1 map (top branch, in red) or the phase 2 map (bottom branch, in
blue), compared to the galactic-scale phase-1-to-phase-2 flux ratio (F12,gal)
as a function lap. The best-fitting model is indicated by the two green curves.

observational applications. In Section 3, we describe how we use
a simulated galaxy to create reference maps from stars within a
known age bin (the duration of which is used as tR), and synthetic
SFR tracer emission maps. By adopting one of the synthetic SFR
tracer emission maps as the phase 1 map and a reference map with a
known age interval as the phase 2 map, we have (by definition) two
maps that trace successive phases of an evolutionary timeline. We
then use HEISENBERG to constrain their relative lifetimes as well as
the absolute duration of phase 1, t1.

The above approach implicitly assumes that the method is com-
mutative and transitive, i.e. we can use stars in a known age range
(A) to calibrate an SFR tracer time-scale (B), which then is used in
observational applications to characterize e.g. the molecular cloud
lifetime (C), so that effectively the known age range (A) is used to
calibrate the cloud lifetime (C). Both the commutativity (Kruijssen
et al. 2018) and transitivity (Ward et al. 2020b) of the method have
been demonstrated in other papers, which justifies its use in this
work. The fact that the method is transitive and commutative follows
somewhat trivially from its ability to predict correct lifetimes, as
demonstrated by Kruijssen et al. (2018). If the method correctly
predicts a time-scale ratio tA/tB, then it must also correctly predict
the time-scale ratio tB/tA. Likewise, if the method correctly predicts
the time-scale ratios tA/tB and tB/tC, then it must also correctly predict
the time-scale ratio tA/tC.

3 M E T H O D F O R C A L C U L AT I N G TH E
CHARACTERI STI C EMI SSI ON TI ME-SCALES
OF SFR TRACERS FOR A FULLY SAMPLED
I MF

We present here the steps we take to find the characteristic time-
scales for H α and UV SFR tracers (see Table 1 for details) using
synthetic emission maps and the HEISENBERG code. As we described
in Section 2, HEISENBERG can determine the duration of the first
input map from the second by using the latter as a reference map (i.e.
the map showing the evolutionary phase of known duration). This
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Table 1. We derive characteristic time-scales for the SFR tracers listed here.

Telescope Instrument Filter λw [nm]

(a) The UV filters we consider. λw is the response-weighted mean
wavelength of the filter. The normalized filter response curves are presented

in Section 4.
GALEX FUV 153.9
GALEX NUV 231.6
Swift UVOT M2 225.6
Swift UVOT W1 261.7
Swift UVOT W2 208.4
HST WFC3 UVIS1 F218W 223.3
HST WFC3 UVIS1 F225W 238.0
HST WFC3 UVIS1 F275W 271.5
HST WFC3 UVIS1 F336W 335.8
HST WFPC2 F255W 259.5
HST WFPC2 F300W 297.4
HST WFPC2 F336W 335.0

(b) The H α filters we consider.
Filter Details
H α − H α emission with continuum subtraction. This is not a

true filter but a direct measurement of the
hydrogen-ionizing photon emission, see Section 3.3 for
details.

H α+W A narrow band filter including H α and the continuum as
defined in equation (3). The total filter width is indicated
by W; we consider W = {10, 20, 40, 80, 160} Å.

means that if we provide HEISENBERG with a galaxy map of one of
the SFR tracers (e.g. H α) along with a reference map, HEISENBERG

can provide us with the time-scale associated with that SFR tracer.
This approach to measure the SFR tracer time-scales ensures that
the obtained reference time-scales are self-consistent within the
context of our method. After all, the SFR tracer will be applied
as the reference time-scale in future observational applications of
HEISENBERG.

We generate both the SFR tracer maps and the reference maps
using a numerical simulation of a flocculent spiral galaxy. Funda-
mentally, we only require some (preferably physically motivated)
correlation of positions and ages of star particles to carry out the
experiments of this paper, implying that we could have used any
(e.g. randomly generated) distribution of points or Gaussian-like
regions. However, the use of a galaxy simulation is more physically
appropriate, as it contains some imprint of galactic morphology
and the positional correlation of star formation events as a result
of self-gravity and stellar feedback. Using a galaxy simulation
still carries the advantage that we have complete control over
the duration of the reference map, by using stellar particles of
a specified age range. The SFR tracer maps are generated using
an SPS model. This approach allows us to additionally quantify
the effects of metallicity (see Section 5) and IMF sampling (see
Section 6) on the SFR tracer time-scale. In turn, this will facilitate
observational applications of HEISENBERG to a variety of galactic
environments.

We discuss the adopted galaxy simulation in Section 3.1, the
method for generating the reference maps in Section 3.2, and the
method for generating the synthetic SFR tracer maps in Section 3.3.

3.1 Galaxy simulation

The results in this paper are based on the ‘high-resolution’ simulated
galaxy from Kruijssen et al. (2018). We set up the initial conditions

for this galaxy using the methods described in Springel, Di Matteo &
Hernquist (2005). The simulation has a total of 4.95 × 106 particles:
1 × 106 in the dark matter halo, 2.31 × 106 in the stellar disc,
1.54 × 106 in the gas disc, and 1 × 105 in the bulge. The dark matter
halo particles have a mass of 9 × 105 M� and the star and gas particle
types both have a mass of 2.7 × 103 M�. This gives us a 9 × 1011 M�
halo, 1.05 × 1010 M� disc (60 per cent in stars and 40 per cent in
gas), and 2.7 × 108 M� bulge.

We then evolve the initial conditions for 2.2 Gyr using the
smoothed particle hydrodynamics (SPH) code P-GADGET-3 (last
described by Springel 2005), which makes use of the SPHGAL

hydrodynamics solver. SPHGAL was implemented by Hu et al. (2014)
in order to overcome many of the numerical issues associated with
traditional SPH. To be considered for star formation, gas particles
require temperatures less than 1.2 × 104 K and hydrogen particle
densities more than 0.5 cm−3. Stars are formed from eligible gas
particles stochastically according to the method described in Katz
(1992). Supernova explosions return mass, momentum, and thermal
energy back to the ISM; these are distributed using a kernel weighting
to the 10 nearest gas particles. The result of the simulation is a near-
L� isolated flocculent spiral galaxy, forming stars at a rate of roughly
0.3 M� yr−1 with a stellar mass of 6.6 × 109 M� and a total cold
gas mass of 4.2 × 109 M�. These macroscopic galaxy properties are
consistent with those of the observed nearby galaxy population, as it
resides on the star formation main sequence (Saintonge et al. 2017;
Catinella et al. 2018), with a normal total gas depletion time (Bigiel
et al. 2008; Leroy et al. 2013). In addition, Fig. 2 shows a stellar
reference map (Section 3.2) and a synthetic H α − map (Section 3.3)
of this galaxy, demonstrating that its morphology is similar to that of
nearby flocculent spirals like M33 and NGC 300.

The star formation and feedback prescriptions used in the simu-
lation are certainly inadequate to describe the cloud-scale physics
governing the evolutionary cycling between molecular gas, star
formation, and feedback within galaxies (see e.g. Hopkins et al.
2018; Kruijssen et al. 2019; Chevance et al. 2020b). However, this
is not a concern in the context of the problem at hand. The goal
of this work is not to accurately model cloud-scale star formation
and feedback. Instead, we aim to determine how quickly SFR tracer
emission fades after the formation of a young stellar population, and
to do so self-consistently in the context of the KL14 principle. This
can be achieved with any simulation in which (1) the birth sites of star
particles approximately conform to a galaxy-like morphology and (2)
the formation of young stellar populations proceeds approximately
instantaneously.

As shown by the images in Fig. 2, the former of the above
conditions is indeed achieved by the simulation used here. The
additional condition that the stellar population within a cloud forms
approximately instantaneously is important, because we aim to
measure the SFR tracer emission time-scale for a simple stellar
population with a single age. In observational applications of the
method, it is certainly possible that the young stellar population
generating the SFR tracer emission has a non-zero age spread. For
this reason, observational applications include an ‘overlap’ time-
scale that is added to the SFR tracer emission time-scale. This
overlap time-scale represents the time for which gas and SFR
tracer emission coexist, and is assumed to roughly correspond to
the age spread of the stellar population. As a result, the total
emission time-scale of the SFR tracer in observations is the sum
of the time-scale measured in this paper and the overlap time-scale
that is observationally inferred with HEISENBERG. As discussed in
Kruijssen et al. (2018, Section 4.3.3), the first 1–2 star particles to
form in a simulated cloud typically destroy it, such that the cloud-
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Figure 2. Example maps we use as input for the HEISENBERG code. Left: A reference map generated using the mass surface density of star particles in the
age range 10–15 Myr, implying a reference time-scale of 5 Myr in this example. See Section 3.2 for details. Right: A synthetic H α emission map without the
continuum (H α−) generated by performing SPS on the simulated galaxy. See Section 3.3 for details.

scale star formation in the simulation is effectively instantaneous, as
desired.

In summary, the simulation satisfies the above requirements
for reliably constraining SFR tracer time-scales. In turn, this will
enable observational applications of our method that themselves will
motivate a future generation of star formation and feedback models,
capable of describing cloud-scale evolutionary cycling in galaxy
simulations (see Kruijssen et al. 2018 and Fujimoto et al. 2019 for a
discussion).

3.2 Generation of the reference maps

The role the reference map plays in the HEISENBERG code is to
calibrate the absolute evolutionary timeline of the star formation
process. In the context of this paper, it is used to calibrate the
characteristic time-scale of the synthetic SFR tracer emission maps.

In our experiments aimed at measuring the SFR tracer emission
time-scales, we need to know the reference time-scale exactly. For
this reason, we use simulated rather than real galaxies. We produce
reference maps from the simulation by generating mass surface
density maps of the star particles in a specific age bin. This age
bin is chosen to cover a relatively narrow and young age interval that
is similar in duration to (but temporally offset from) the stellar age
interval at which the SFR tracer emission is generated (see below).
The width of this age bin acts as the reference time-scale, tR. We
smoothen the selected star particles using a Wendland C4 kernel
(Dehnen & Aly 2012) (the same kernel SPHGAL introduces into P-
GADGET-3) over the 200 nearest neighbouring particles; this produces
a realistic reference map (i.e. not a map of point particles).

As long as the galaxy-average physical conditions do not evolve
significantly, and the galaxy is large enough to contain a statistical
sample of star-forming regions (�35, see Kruijssen et al. 2018),
the above approach provides a reliable reference time-scale. In that
case, the number of star-forming regions in a given age interval is
simply proportional to the width of that age interval, irrespectively
of the absolute age. This is exactly the setup that we require. The
reference maps considered in this work contain well over 35 regions
(see Fig. 2 and Kruijssen et al. 2018) and do not experience any
significant macroscopic evolution over the time-scales considered.

In principle, we have a free choice over the age bin we use.
However, for the best results and the most realistic set-up there are a
few restrictions. In Section 2, we note that HEISENBERG is designed
such that the reference map corresponds to the second phase of the
evolutionary timeline. To avoid any overlap between the evolutionary
phases, the minimum age of the star particles used in the reference
map (tM) must therefore be at least the duration of the first (SFR
tracer emission) phase (tE,0, we include the subscript ‘0’ to indicate
that this is for a well-sampled IMF: this distinction is necessary in
Section 6) of the evolutionary timeline. This defines the lower limit
of the stellar age bin used to generate the reference map:

tM � tE,0. (1)

This maximizes the diagnostic power of the fit by minimizing the
temporal overlap between both phases, thereby avoiding strongly
flattened tuning fork diagrams (see Fig. 1). At the same time, it is
undesirable to select a value of tM much larger than the galactic
dynamical time because groups of star particles formed in the same
clouds may have dispersed. We therefore prefer using tM ≈ tE,0.

Kruijssen et al. (2018) show that HEISENBERG provides the most
accurate measurement of the underlying time-scales if the duration
associated to both of the input maps is similar (within a factor of 10,
but ideally within a factor of 4). This finding sets the preferred width
of the age bin:

tR ≈ tE,0. (2)

This maximizes the diagnostic power of the fit by favouring similar
durations of both phases, thereby avoiding strongly asymmetric tun-
ing fork diagrams (see Fig. 1). To summarize the above definitions,
Fig. 3 shows a schematic timeline of how tM, tR, and tE,0 are related.

To quantify (and avoid) any systematic biases of the measured
SFR tracer time-scale, we investigate the dependence on the choice
of stellar age bin used to generate the reference map. In practice, this
means we vary the values of tM and tR. We present the range of values
we use for tM and tR in Table 2. These are guided by the range of
possible characteristic time-scales for H α and far-ultraviolet (FUV)
emission found in Leroy et al. (2012). Leroy et al. use the results
of STARBURST99 calculations to determine a characteristic time-
scale using several methods: a luminosity-weighted average time,
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Figure 3. Schematic diagram showing how the different time-scales we
define within the paper are related. Time starts at the birth of the star particle.
The emission map shows the particles formed within a time-scale tE,0 prior
to the simulation snapshot, where tE,0 represents the characteristic time-scale
of the SFR tracer. The time over which the reference map runs is defined
by tM and tR, where tM sets the minimum age of the star particles used to
create the reference map and tR defines the width of the age bin and therefore
reference time-scale. The structure of the HEISENBERG code is such that, the
duration of second evolutionary phase is used to calibrate the duration of the
first. This means that to calibrate the SFR tracer time-scale (tE,0), the SFR
tracer map must be the first evolutionary phase (i.e. tE,0 ≤ tM); this is unlike
observational applications, where it is usually the second.

Table 2. We create input reference maps from the star particles that fall
within a particular age bin. The age bin, for a given reference map, is defined
through tM ≤ Age ≤ tM + tR. We show here all the values used in this paper
for tM and tR when defining these age bins. This results in a 9 × 9 array of
reference maps (see Fig. 4). See Section 3.2 for more details.

Emission type tM and tR [Myr]

H α 1 3 5 7 10 15 20 25 30
UV 5 10 15 20 25 30 50 70 100

as well as the times at which the tracer emission reaches a particular
limit in terms of the total cumulative emission or its instantaneous
intensity.

3.3 Generation of the emission maps

In order to perform our analysis, we need to produce synthetic
emission maps of each SFR tracer. The simulation that we base
this work on (see Section 3.1) contains no information about the
expected emission spectrum. We therefore use SLUG2 (da Silva et al.
2012, 2014; Krumholz et al. 2015), a stochastic SPS code, to take the
age and mass of the star particles and predict the associated emission
for the filters specified in Table 1.

With the SLUG2 model, we predict the expected rest-frame emis-
sion spectrum for every star particle within the simulation.2 The
code first samples an IMF to construct a simple stellar population
of total mass matching that of the star particle and then uses stellar
evolution tracks along with the age of the star particle to determine
the combined emission of this simple stellar population. SLUG2
then converts the full combined emission spectrum into a single
luminosity value for each of the SFR tracers in Table 1 using filter
response curves. These single luminosity values are what we assign to
our star particles when we produce our synthetic rest-frame emission
maps. We use the same smoothing procedure as we described in
Section 3.2. This means that, even though our star particles are treated
as simple stellar populations, the star-forming regions themselves,

2We note that the age binning described in Section 3.2 is not used for the
emission maps.

which are a collection of multiple particles, will have an age spread.
An example of a synthetic H α − map is shown in Fig. 2.

The adopted UV response filters are all included by default
in SLUG2 (see Krumholz et al. 2015 for more details). The H α

SFR tracers, however, require different steps. For H α − we use
the hydrogen-ionizing photon emission, Q(H0), directly3 and for
H α+W we define the narrow band filter, FH α+W , as

FH α+W =
⎧⎨
⎩ 1 6562 − W

2
Å ≤ λ ≤ 6562 + W

2
Å

0 Otherwise
. (3)

The emission spectrum produced by SLUG2, includes the H α emis-
sion line but does not calculate the underlying absorption feature
from the stellar continuum. In Appendix A we use STARBURST99
simulations to investigate when the absorption can no longer be
neglected. We find that for the time-scales we are considering the
absorption is negligible.

For the analysis in Section 4, we use a Chabrier (2005) IMF with
Geneva solar-metallicity evolutionary tracks (Schaller et al. 1992)
and STARBURST99 spectral synthesis. The SLUG2 model samples
the IMF non-stochastically4 (i.e. we use a well-sampled IMF) and
no foreground extinction is applied. The surrounding material has
a hydrogen number density of 102 cm−3. We assume that only
73 per cent of the ionizing photons are reprocessed into nebular
emission, which is consistent with the estimate from McKee &
Williams (1997); this could be because those photons are absorbed by
circumstellar dust, or because they escape outside the observational
aperture (the observational effects of these two possibilities are
indistinguishable).

We choose to produce our synthetic emission maps without
extinction for a number of reasons. In observational applications
of the KL14 principle, there is often some overlap between the first
and second phases of the evolutionary timeline. For instance, when
applying the method to a molecular gas map (e.g. CO) and an ionized
emission map (e.g. H α), there will be some non-zero time for which
both tracers coexist. When a region resides in this ‘overlap’ phase,
the star-forming region may be partially embedded in dust and gas;
during this phase the region suffers the most from extinction. We can
therefore define the duration of this second phase, t2, as

t2 = to + ti, (4)

where to is the duration of the second phase that overlaps with the
first, and ti the duration that is independent. The characteristic time-
scales we define in this paper are for this independent part, ti, of the
second phase. This is where the region is no longer embedded in
dust and gas and therefore not suffering from significant extinction.
We motivate this by the notion that molecular gas correlates with
star formation: as long as CO emission is present, star formation is
likely to be ongoing. The ‘clock’ defined by the SFR tracer lifetime
only starts when the last massive stars have formed. This does mean
that the application of HEISENBERG to tracers other than CO may
require a different definition of the reference time-scale. To facilitate
this, the HEISENBERG code enables the user to specify if the reference
time-scale includes or excludes this overlap phase (see section 3.2.1
Kruijssen et al. 2018).

3A true H α luminosity can be calculated from Q(H0) using da Silva et al.
(2014, equation 2); however, using the required scaling factor will not change
the results we recover here (see Kruijssen et al. 2018) and so the conversion
is unnecessary.
4In Section 6, we will use the stochastic IMF sampling mode of SLUG2 to
investigate its effect on the inferred SFR tracer time-scales.

MNRAS 498, 235–257 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/1/235/5893341 by Australian N
ational U

niversity user on 10 Septem
ber 2020



Star formation rate tracer lifetimes 241

Figure 4. Two examples showing the range of characteristic time-scale values (and associated uncertainties) as determined using HEISENBERG for different
reference maps. Top: H α emission excluding the continuum (H α −). Bottom: UV emission (WFC3 UVIS F225W). The reference maps are characterized by
the age bin used to select the star particles which are included in the reference map. tM denotes the minimum age of the star particles and tR the width of the age
bin. The colour coding is based on the weighting, W , used when calculating the weighted average. All values within the tables are given in Myr.

In addition, it is desirable to exclude extinction for two further
reasons. First, the effects of extinction can, in most cases, be signifi-
cantly reduced if not completely corrected for (e.g. James et al. 2005),
meaning in practice the input maps provided to HEISENBERG can be
corrected for extinction. Secondly, if we perform our analysis with
extincted maps, the results would no longer be generally applicable
and would only apply to galaxies that suffer from the same amount
of extinction. Our current approach therefore enables constructing a
‘universal’ baseline of extinction-corrected SFR tracer lifetimes. In
future work, we aim to consider extinction using galaxy simulations
covering a range of gas surface densities (Haydon et al. 2020).

4 C HA R AC TER ISTIC TIME-SCALES FOR A
FULLY SA M P LED IMF AT SOLAR
META LLICITY

We constrain the characteristic time-scales for several SFR tracers
by applying the HEISENBERG code to the synthetic SFR tracer
maps and reference maps described in Section 3. The reference

maps show the star particles in a chosen age interval. Since there
is some freedom in choosing this interval, we measure the SFR
tracer time-scale for a wide variety of age intervals rather than
picking a single one. Appendix B demonstrates this improves the
accuracy of the measurements relative to using a single age interval.
Mathematically, we change the values of tM and tR, which define
the age interval as tM ≤ Age ≤ tM + tR. This approach generates
an array of SFR tracer time-scales, spanned by tM and tR. We now
first describe how we reduce these ‘time-scale arrays’ (see Fig. 4
for examples) into a single characteristic time-scale for each SFR
tracer. To achieve this, we use the complete probability density
function (PDF) of each measured time-scale, which is provided by
HEISENBERG.

4.1 Mathematical procedure

In principle, HEISENBERG allows any pair of values to be used for
generating the reference map, but the accuracy of the method is
highest when the durations of both evolutionary phases (tE,0 and
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tR) are similar (Kruijssen et al. 2018). In that case, the tuning fork
diagram of Fig. 1 is symmetric, allowing the method to retrieve the
underlying time-scales with a precision of better than 30 per cent.
We additionally prefer numerical experiments with a minimal time
offset between the reference map and the SFR tracer, to mimic
the close evolutionary correspondence between molecular gas and
(massive) star formation. We therefore also prefer solutions in which
the temporal offset of the reference phase (tM) is similar to the
duration of the SFR tracer (tE,0). Since we do not know the latter
a priori, it is not possible to choose an optimal pair of tR and tM in
advance.

In order to condense an array of SFR tracer time-scale mea-
surements (e.g. Fig. 4) into a single characteristic time-scale, we
must design a simple weighting scheme that accounts for the above
behaviour of HEISENBERG. This scheme should favour solutions with
tM ∼ tR ∼ tE,0. Additionally, it should weigh each measurement by
the inverse-square of its uncertainty, as is common when calculating
the average across a sample of measurements.

First, we weight each measurement simply by the inverse of its
geometric distance from tR and tM in logarithmic space:

Wd
ij =

{[
log10

(
tij

tM, i

)]2

+
[

log10

(
tij

tR, j

)]2
}− 1

2

. (5)

This is the simplest possible approach to performing a proximity-
based weighting. It favours more strongly elements that satisfy the
criteria we describe in equations (1) and (2) (i.e. the closer tij is to
tM, i and tR, j , the better).

Secondly, we weight each measurement by the inverse-square of its
uncertainty, which accounts for asymmetric uncertainties by taking
the mean of the lower and upper uncertainty:5

Wu
ij =

(
σ−

ij + σ+
ij

2

)−2

. (6)

The weights Wd and Wu are then combined and normalized as

Wij = Wd
ijWu

ij∑
ij Wd

ijWu
ij

. (7)

The above weighting scheme appropriately combines all mea-
surements in the time-scale array into a single SFR tracer time-scale.
However, it does not propagate the individual measurement uncer-
tainties into the final measurement. To accomplish this, we adopt a
simple Monte Carlo approach. We produce 106 realizations of the
time-scale array, where the value of each element of each realization
of the time-scale array has been randomly sampled from its associated
PDF. For each of the 106 realizations of the time-scale array we calcu-
late the weighted mean according to equations (5)–(7). This process
results in 106 characteristic time-scales, from which we take the me-
dian to define the characteristic time-scale and the 16th and 84th per-
centiles to define the uncertainties. These uncertainties contain both
the uncertainties on the individual measurements and the systematic
uncertainty associated with choosing a combination of tM and tR.

With the above procedure, we condense the array of time-scales
into a single number that most strongly weighs the values that are
the most accurate (based on Kruijssen et al. 2018) and those that
have the smallest measurement uncertainties. In practice, we find

5Using the average of the lower and upper uncertainty is not technically
correct; however, the methods as suggested by Barlow (2003) would have
little impact on the final result and so are neglected.

that the typical standard deviation of all SFR tracer time-scales is
∼0.15 dex, over a dynamical range of 1.5 dex in tM and tR. This
demonstrates that the inferred time-scales are not extremely sensitive
to the choice of reference map, but the full array of reference maps
does allow us to optimize the accuracy of the SFR tracer time-scales.
In Appendix B, we demonstrate that our weighting scheme indeed
performs better than the approach of choosing a single measurement
by simply minimizing the difference in geometric distance between
tE,0, tM, and tR (or maximizing Wd

ij ).

4.2 Measured SFR tracer time-scales

When applying HEISENBERG to the pairs of reference and SFR tracer
maps, we use the default input parameters specified in tables 1 and
2 of Kruijssen et al. (2018). The only exceptions are as follows.
We set tstar incl = 1, to indicate that the reference time-scale
(i.e. the width of the age bin) also includes the overlapping phase.6

As we are not making any cuts in galactocentric radius, we also set
cut radius = 0. Finally, we define the range of aperture sizes
using a minimum aperture size of lap, min = 25 pc and a number of
Nap = 17 apertures, to produce 17 logarithmically spaced aperture
diameters from 25 to 6400 pc.

In Fig. 4, we present the time-scale arrays obtained for H α − and
WFC3 UVIS F225W SFR tracers. These time-scale arrays only serve
as examples, since the elements show the output of HEISENBERG and
are not from the 106 Monte Carlo realizations. Fig. 5 shows the PDFs
of the defined characteristic time-scale for H α − and WFC3 UVIS
F225W, as obtained by applying the weighting scheme described in
Section 4.1 to 106 different Monte Carlo realizations of Fig. 4.

Reassuringly, the best-fitting numbers in Fig. 4 show relatively lim-
ited cell-to-cell variation, which means that stochastic SFR variations
in the simulation (which would affect different age bins differently)
do not strongly affect our results. This is to be expected – Kruijssen
et al. (2018) show that the SFR varies by less than 30 per cent over
the typical age intervals considered. This may not always hold in
observational applications of our methodology, and should therefore
not be applied to systems with strongly varying SFRs, such as galaxy
mergers or other starbursts (also see sections 4.2.4.3 and 4.4 of
Kruijssen et al. 2018).

Table 3 lists the characteristic time-scales and associated uncer-
tainties obtained for each of the different SFR tracers. The complete
set of SFR tracer time-scales spans a range of 4–34 Myr. We use
these measurements to define age bins that we will use to generate
reference maps when investigating the impact of metallicity and IMF
sampling in later sections. These are listed in the final column of the
table and are calculated as tE,0 ≤ Age ≤ 2tE,0.

Fig. 6 shows the UV-based SFR tracer time-scales as a function of
the response curve-weighted mean wavelength, λw. The figure shows
both are closely correlated, such that similar response-weighted mean
wavelengths give similar characteristic time-scales. We perform a
weighted least-squares minimization to obtain a relation between λw

6At first glance, this may seem to contradict the discussion in Section 3.3,
but this is not the case. In Section 3.3, we explain that the characteristic
time-scales of the SFR tracers we define do not include the overlap phase;
and so, when using the characteristic time-scales we present here, one should
use tstar incl = 0. The analysis we perform to define the characteristic
time-scales, uses a reference map produced from star particles in a specific
age bin. The width of this age bin is used as the reference time-scale and is
the total duration of that phase: this includes any overlap.
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Figure 5. Two examples showing the PDFs associated with the defined characteristic time-scales. Left: H α emission excluding the continuum (H α −).
Right: UV emission (WFC3 UVIS F225W). The vertical line shows the selected time-scale (the median of the distribution); the shaded region, the uncertainty
defined by the 16th and 84th percentiles.

Table 3. The characteristic time-scales, tE,0, obtained for the different
SFR tracers (see Table 1 for details) and the corresponding age bins
(tE,0 ≤ Age ≤ 2tE,0) for producing reference maps in later sections of this
paper. These results are for a well-sampled IMF at solar metallicity. The filter
order is in increasing filter width (W) for H α + and increasing response-
weighted mean wavelength (λw) for UV. This table is an extract of Table D1,
which includes the characteristic time-scales and age bins for different stellar
metallicities (Z/Z� = 0.05–2).

tE,0 [Myr] Age bin [Myr]

H α − 4.3+0.1
−0.3 4.3–8.6

H α + 10 Å 5.6+0.2
−0.1 5.6–11.1

H α + 20 Å 7.3+0.4
−0.2 7.3–14.6

H α + 40 Å 9.3+0.2
−0.3 9.3–18.6

H α + 80 Å 10.7+0.2
−0.2 10.7–21.4

H α + 160 Å 16.4+0.6
−0.3 16.4–32.7

GALEX FUV 17.1+0.4
−0.2 17.1–34.2

UVOT W2 19.0+0.3
−0.2 19.0–38.0

WFC3 UVIS1 F218W 19.4+0.2
−0.2 19.4–38.9

UVOT M2 19.5+0.2
−0.2 19.5–39.0

GALEX NUV 19.6+0.2
−0.2 19.6–39.1

WFC3 UVIS1 F225W 19.6+0.2
−0.2 19.6–39.3

WFPC2 F255W 22.4+0.2
−0.2 22.4–44.7

UVOT W1 21.8+0.2
−0.2 21.8–43.5

WFC3 UVIS1 F275W 23.5+0.2
−0.2 23.5–47.0

WFPC2 F300W 27.7+0.6
−0.3 27.7–55.4

WFPC2 F336W 33.1+0.4
−0.3 33.1–66.3

WFC3 UVIS1 F336W 33.3+0.4
−0.4 33.3–66.6

and the UV characteristic time-scale, tUV
E,0 :

tUV
E,0 [Myr] = (

3.00+0.29
−0.31

)( λw

225 nm

)(
4.34+0.24

−0.20

)

+ (
16.42+0.36

−0.31

)
. (8)

The uncertainties on the parameters are calculated using a Monte
Carlo approach. This analytical expression enables finding the
characteristic emission time-scales for UV filters other than the
specific ones that we have considered here.

Figure 6. Top: The normalized response curves of the UV filters considered
in this paper (also see Table 1a). The vertical lines indicate the response-
weighted mean wavelengths, λw. Bottom: Characteristic emission time-scales
for UV filters as a function of response-weighted mean wavelength. The grey
curve shows the fit described in equation (8) and the shaded regions indicate
the associated uncertainty.
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Figure 7. Characteristic emission time-scales for H α + filters as a function
of the filter width. The grey curve shows the fit described in equation (9) and
the shaded region indicates the associated uncertainty.

Similarly, we derive a relation between the H α + characteristic
time-scale and filter width:

tHα+
E,0 [Myr] = (

4.8+1.3
−1.3

)( W

40 Å

)(
0.65+0.20

−0.13

)

+ (
3.8+1.1

−1.1

)
. (9)

This relation is compared to the measurements in Fig. 7. Note that
the increase in characteristic time-scale with filter width is not due to
a change in the H α emission, but results from a change in flux from
the long-lived continuum emission.

The characteristic time-scales that we recover (4.3–16.4 Myr for
H α; 17.1–33.3 Myr for UV) fall within the ranges often quoted in
the literature (2–10 and 10–50 Myr, respectively, Kennicutt & Evans
2012; Leroy et al. 2012). In part, the large variation in literature values
reflects the broad range of criteria used for defining the characteristic
time-scale of an SFR tracer. With the approach taken in this paper,
we have remedied this problem for future observational applications
of the KL14 principle by adopting a specific definition of the SFR
tracer time-scale.

The heterogeneous situation in the previous literature is nicely
illustrated by Leroy et al. (2012), who present a table of characteristic
time-scales for H α and FUV (at 150 nm). Multiple time-scales are
listed for each SFR tracer; these time-scales are defined by the
duration required to reach a given percentage (50 or 95 per cent)
of the cumulative emission, or of the emission intensity at 1 Myr.
These choices are arbitrary, but it is reasonable to ask whether any
single percentage of the 1 Myr intensity or cumulative emission
can be defined that would correspond to our measured SFR tracer
time-scales. To verify this, we take the emission evolution from
Leroy et al. (2012, fig. 1) and find which percentages correspond to
the characteristic emission time-scales we determine for H α − and
GALEX FUV. We list these percentage limits in Table 4. We find that
no single percentage limit corresponds to the measured time-scales.7

As there is no consistent limit, the characteristic time-scale for each
SFR tracer must be determined individually. This further validates
the approach taken in this study.

7This also holds when we perform the analysis for the other metallicities
considered: Z/Z� = 0.05, 0.20, 0.40, 2.00 (see Section 5 for more details).
There is also no consistent percentage for a single tracer across the metallicity
range.

Table 4. Percentages of the emission intensity relative to its instantaneous
value at 1 Myr and of its cumulative value over 100 Myr, evaluated at the
characteristic time-scales of the SFR tracers presented in Table 3, based on
fig. 1 of Leroy et al. (2012).

H α − [per
cent]

FUVa [per
cent]

Per cent of intensity at 1 Myr 19.4+2.8
−0.7 8.6+0.1

−0.2

Per cent of cumulative
emission

92.4+0.6
−1.5 76.5+0.3

−0.2

aGALEX FUV.

Figure 8. The relation between metallicity and characteristic time-scale for
a well-sampled IMF for H α − filters. The grey curve gives the fits described
by equation (10). The shaded region indicates the associated uncertainty.

In summary, our SFR tracer time-scales fall in the range of
commonly reported literature values. These do not correspond
to any fixed percentage of the initial or cumulative emission in
each tracer. For this reason, each SFR tracer time-scale must be
determined individually using the presented method. We provide
analytic functions (see equations 8 and 9) relating the characteristic
emission time-scales for UV and H α + filters to their filter properties,
allowing our results to be extended to any UV or H α + filter.

5 THE EFFECTS O F METALLI CI TY

So far, we have only considered stellar populations of solar metal-
licity. However, it is well-known that the metallicity affects stellar
lifetimes (e.g. Leitherer et al. 1999) and thus the characteristic emis-
sion time-scales of SFR tracers. In order to facilitate observational
applications of the KL14 principle to the broadest possible range
of galaxies, we therefore quantify how the SFR tracer time-scales
depend on metallicity. In this section, we repeat the experiments
performed in Section 4 but this time we produce synthetic SFR tracer
emission maps using evolutionary tracks of metallicities Z/Z� =
0.05, 0.20, 0.40, 2.00 (Schaller et al. 1992; Charbonnel et al. 1993;
Schaerer et al. 1993a, b).

In Appendix D, we list the resulting characteristic time-scales for
a well-sampled IMF for all metallicities (also including the solar
metallicity results from Table 3) and the age bins we select for
producing reference maps. We show the Z − tE,0 relation in Fig. 8
for H α −, in Fig. 9 for H α + filters, and in Fig. 10 for the UV filters.
For all tracers, we find that the characteristic time-scale decreases
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Figure 9. The surface described by equation (11), which relates the metal-
licity and filter width, W, of an H α + filter to the associated characteristic
time-scale for a well sampled IMF. The data points show the measurements
coloured using the same colour bar. The surface fits best when it matches the
colour of the data points.

Figure 10. The surface described by equation (12), which relates the
metallicity and response-weighted mean wavelength, λw, of a UV SFR tracer
to the associated characteristic time-scale for a well sampled IMF. The data
points show the measurements coloured using the same colour bar. The
surface fits best when it matches the colour of the data points.

with metallicity. We also include empirical fits described by

tHα−
E,0 [Myr] = (

4.32+0.09
−0.23

)( Z

Z�

)(
−0.086+0.010

−0.023

)

, (10)

for H α −,

tHα+
E,0 [Myr] = (

8.98+0.40
−0.50

)
W0

(
0.265+0.028

−0.051

)
+ (

0.23+0.15
−0.11

)
Z0W0

− (
0.66+0.12

−0.19

)
Z0 + (

0.55+0.46
−0.29

)
W0, (11)

for H α +, and

tUV
E,0 [Myr] = − (

0.40+0.11
−0.16

)
Z1λ1 + (

4.5+1.3
−0.9

)
Z1 + (

0.70+0.26
−0.18

)
λ1

− (
3.11+0.14

−0.13

)
Z0 + (

10.98+0.46
−0.48

)
λ0 + (

7.6+1.2
−1.6

)
, (12)

for the UV filters, where

Z0 ≡ Z

Z�
; λ0 ≡ λw

225 nm
; W0 ≡ W

40 Å
;

Z1 ≡ Z

(
−0.313+0.051

−0.048

)

0 ; λ1 ≡ λ

(
6.52+0.73

−0.71

)

0 . (13)

As before, we determine the free parameters using a weighted least-
squares minimization and the uncertainties through Monte Carlo
methods. With these relations, it is straightforward to recover the
characteristic time-scale for any combination of metallicity and filter
properties, without needing to repeat the analysis of this paper.

Fig. 8 shows that the characteristic time-scales of H α − change
by less than 2 Myr over the metallicity range [0.05 Z�, 2 Z�]. The
ranges of characteristic time-scales (3.9–5.5 Myr for H α −) fall
within the range of literature values (1.7–10 Myr, Kennicutt & Evans
2012; Leroy et al. 2012).

In Section 4, we describe a curve which relates the filter width,
W, to the characteristic time-scale of H α + filters, tHα+

E,0 , at solar
metallicity. Equation (11) now extends this relation to include
different metallicities, producing a surface in (tH α+

E,0 , W, Z) space.
As mentioned in Section 4, the measured H α + time-scales reside
at the higher end of (and partially exceeds) the literature range of
H α time-scales, because wider filters include more of the long-lived
continuum emission.

Analogously to tH α+
E,0 , we can extend the relation given for tUV

E,0

as a function of response-weighted mean wavelength (equation 8)
to also include metallicity. We obtain a good fit, with the strongest
deviations arising at long (λw > 290 nm) wavelengths. For UV filters
at these wavelengths, we recommend interpolating the data points
(provided in Appendix D) rather than adopting equation (12). The
range of characteristic time-scales found for the UV filters (14.5–
33.3 Myr) again fall within the range quoted in literature (10–
100 Myr, Kennicutt & Evans 2012; Leroy et al. 2012), but tend
towards the low end of this range. This is a direct result of the fact
that the UV emission from star-forming regions fades with time, and
the measured time-scales are naturally biased to the ages of regions
from which most UV photons emerge.

In Appendix C, we additionally provide figures showing the one-
dimensional projections of the data and fits. These show slices across
the two-dimensional distributions shown in Figs 9 and 10 for the H α

+ and UV filters, respectively. We include a projection for each
metallicity and each equivalent width or response-weighted mean
wavelength and use the fits given in equations (11) and (12). These
additional figures enable a direct assessment of how well the fits
describe the characteristic time-scales at a specific metallicity or
wavelength.

In summary, we see that the characteristic time-scales decrease
with increasing metallicity. Observational applications of HEISEN-
BERG should therefore use an SFR tracer time-scale appropriate for
the metallicity of the observed region. We define empirical relations
between the SFR tracer time-scale and the metallicity (for H α −,
equation 10) and the filter properties (for H α + and UV filters,
equations 11 and 12). For H α + and UV SFR tracers, these relations
enable the definition of time-scales even for filters that are not
explicitly considered here.
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6 THE EFFEC TS O F IMF SAMPLING

In the previous sections, we determine the characteristic time-scales
of SFR tracers using synthetic emission maps where SLUG2 fully
samples the IMF. In observational applications of the KL14 principle,
there is no guarantee (or requirement from HEISENBERG) that the
regions under consideration have a well-sampled IMF. It is therefore
important to investigate the impacts of stochastic IMF sampling on
the characteristic time-scales of the SFR tracers, in particular for
low-mass star-forming regions.

We describe in Section 2 how the abundance of regions in each
input map reflects the duration associated with that map. If the IMF is
not well-sampled, the SFR tracer flux is reduced. In the extreme case,
a region might not be able to form stars of sufficient mass to produce
the SFR tracer emission at all, and would thus be invisible in that
tracer. These effects are particularly important for the H α ± filters,
as H α emission requires high-mass stars (>8 M�) and is dominated
by stars of even higher masses. We therefore expect that as the IMF
becomes less well-sampled, the effective characteristic time-scales
of the various tracers will decrease, most strongly affecting H α.
In this section, we show how incomplete IMF sampling affects the
inferred SFR tracer time-scales.

6.1 Method for finding the characteristic time-scales for a
stochastically sampled IMF

We adapt the method we present in Section 3 to investigate the
effects of a stochastically sampled IMF. In Appendix E, we derive
how we expect the characteristic time-scales to change as a result
of incomplete IMF sampling using a purely analytical approach.
Specifically, we consider the probability of finding stars within the
star-forming region that are sufficiently massive to generate the
desired SFR tracer emission. In this section, we test experimentally
if we recover the same behaviour as described there.

We create the reference maps in the same way as before: the
reference maps are mass surface density maps of the star particles
within the age bins specified in Table 3. However, for the SFR tracer
emission maps, we first scale the star particle masses by some mass
scaling factor, Fm, before SLUG2 – now using it stochastic IMF
sampling module – predicts the expected emission. The values of Fm

range from 0.01 to 100, where a lower mass scaling factor means the
IMF will be less well sampled. We then use HEISENBERG to determine
the characteristic time-scale, as in Section 4. The characteristic time-
scale we associate to each mass scaling factor is the average of
three characteristic time-scales determined from three independently
generated stochastic realizations of the synthetic emission maps. This
accounts for the spread in time-scales that results from the stochastic
nature of the synthetic emission maps.

We aim to determine the relative change of the SFR tracer time-
scale as a function of IMF sampling. To express the latter, we define
a characteristic, average star-forming region mass, M r, as

M r = �SFR × τ × π

(
λ

2

)2

, (14)

which uses the SFR surface density, �SFR, and quantities that
HEISENBERG measures: the total duration of the evolutionary timeline,
τ , and the typical separation length of independent star-forming
regions, λ (for details see Kruijssen et al. 2018).

At a fixed total duration of the evolutionary timeline and region
separation length, the degree of IMF sampling is controlled by �SFR.

We calculate the value of �SFR as

�SFR =
∑

mi

tE,0πr2
× Fm, (15)

where
∑

mi is the total mass of all the star particles that fall within the
age bin appropriate for the filter, i.e. 0 ≤ Age ≤ tE,0 (see Appendix D
for the values of tE,0), which is then scaled by the mass scaling factor
Fm, tE,0 is the width of that age bin, and r is the radius of the galaxy
being studied (for our simulated galaxy r = 10 kpc, as determined
from a visual inspection of the synthetic emission maps).

In equation (15), we consider �SFR as the galaxy average SFR
surface density. If there are no strong large-scale morphological
features, as is the case here, this galaxy average SFR surface density is
appropriate to use in the calculation of M r. Otherwise, the expression
in equation (15) should account for a non-uniform spatial distribution
of star-forming regions across the galaxy by including a factor
Estar,glob, which indicates the ratio of the mass surface density8 on
a size scale of λ to its area average across the map (see section 3.2.9
Kruijssen et al. 2018 for more details).

By introducing a ‘mass scaling factor’, Fm, we are able to test
experimentally how the characteristic time-scale of different SFR
tracers change as a smooth function of IMF sampling. We will
use these experimental results to see if we observe the behaviour
predicted in Appendix E.

6.2 SFR tracer time-scales for a stochastically sampled IMF

We now present the results of our experiments to test how the
characteristic time-scales of H α and several UV SFR tracers change
as a result of incomplete IMF sampling. In Fig. 11, we present
the solar-metallicity results for H α − and WFC3 UVIS F225W as
examples of how the characteristic time-scales change as a function
of the average mass of an independent star-forming region, M r. The
quantity M r characterizes (chiefly through �SFR, see equation 14)
how well the IMF is sampled: lower values of M r result in a more
stochastically sampled IMF. Each data point9 in the two left-hand
panels of Fig. 11 corresponds to a different mass scaling factor, Fm.
The quantity shown on the vertical axis, tE/tE,0, is the factor by which
the measured characteristic time-scale is reduced relative to the time-
scale obtained for a well-sampled IMF (as listed in Appendix D), as
a result of incomplete IMF sampling at small region masses or low
SFR surface densities.

We describe the relation between reduction factor, tE/tE,0, and M r

through the probability P(N ≥ Nmin) as derived in Appendix E. The
purple curves in left-hand panels of Fig. 11 indicate the best-fitting
form of this function, obtained by varying the minimum stellar mass
contributing to the SFR tracer emission (Mmin) and the number of
such stars required (Nmin). We constrain the values for these two free
parameters using a brute-force approach: we calculate the value of
χ2

red (accounting for the uncertainties on both the abscissa and the
ordinate, see Orear 1982) for a range of Nmin = 1–4 and Mmin = 0–
120 M�, and use the minimum χ2

red to define the best-fitting parameter
values. The right-hand panels of Fig. 11 show the dependence of χ2

red
on Nmin and Mmin for the two example filters. The best fits are always
obtained for Nmin = 1.

8The quantity Estar,glob represents a mass surface density ratio because the
reference maps show the mass surface density. In typical observational
applications, Estar,glob would be a flux density ratio.
9For details on the error calculation on M r, see Appendix F.
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Figure 11. Top row: H α emission excluding the continuum (H α −). Bottom row: UV emission (WFC3 UVIS F225W). Left column: Change of the characteristic
time-scale of the SFR tracer, relative to the characteristic time-scale we determine from a well-sampled IMF, as a function of the average independent star-forming
region mass, M r. The data points show the results of the experiments in which we apply HEISENBERG to synthetic SFR tracer maps with stochastically sampled
IMFs at solar metallicity. For comparison, the purple curve shows the best-fitting analytical model from Appendix E. At low region masses, the characteristic
time-scales decrease due to the incomplete sampling of the IMF. Right column: Change of χ2

red with minimum stellar mass, Mmin, and the minimum number of
stars of that mass, Nmin. The minimum χ2

red found is indicated in the bottom right with the best-fitting model parameters (Nmin × Mmin).

When fitting for the two free parameters, we reject data points
that exceed the time-scale obtained for a well-sampled IMF (i.e.
tE/tE,0 > 1) by more than 1σ . This is to remedy an issue at low-
mass scaling factors (typically Fm ≈ 0.01), where we find that the
emission from the continuum can dominate over the SFR tracer
when using the H α + filter. This results in characteristic time-scales
that describe the long-lived continuum emission and therefore can
be orders of magnitude higher than tE, 0. The above data selection
criterion also affects the UV filters at low-mass scaling factors (Fm ≈
0.01), where the emission becomes dominated by UV-faint, low-mass
stars. As a result, the turn-off from tE/tE,0 = 1 is generally poorly
sampled (see Fig. 11 for an example), which means that we cannot
reliably distinguish between different Nmin and Mmin. Therefore, we
conclude that UV emission is not significantly affected by IMF
sampling.

Table 5 lists the best-fitting values of Mmin (Nmin = 1 in all cases)
for the full range of metallicities (Z/Z� = 0.05, 0.20, 0.40, 1.00,
2.00) for the H α filters. We find no unambiguous relation between
Mmin and metallicity or filter width. However, smaller filter widths
generally have higher Mmin. Higher values of Mmin imply higher star-
forming region masses below which IMF sampling affects the SFR
tracer time-scale.

Table 5. The functional form of the conversion factor, P(N ≥ Nmin),
between the characteristic time-scale measured for a well-sampled IMF and
a stochastically sampled IMF has two parameters, Nmin and Mmin. We use
Nmin = 1 and show here the values of Mmin.

0.05 Z� 0.20 Z� 0.40 Z� 1.00 Z� 2.00 Z�

H α − 11.50 11.95 13.00 11.55 10.45
H α + 10 Å 10.75 10.05 12.25 13.90 12.00
H α + 20 Å 12.10 12.05 12.40 10.35 9.95
H α + 40 Å 9.65 9.45 7.95 8.35 10.45
H α + 80 Å 9.20 8.70 8.85 6.25 8.00
H α + 160 Å 10.20 5.20 7.80 8.60 9.35

We combine the best-fitting values in Table 5 with the expressions
for P(N ≥ Nmin) provided in Appendix E to predict the region masses
below which incomplete IMF sampling affects the SFR tracer time-
scales. For H α −(+), this range is M r � 600–800(200–900) M�.
For a region separation length of λ = 200 pc and a total timeline
duration of τ = 20 Myr (typical for nearby star-forming galaxies,
see Chevance et al. 2020c), these characteristic region mass limits
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correspond to �SFR � (1.0–1.3) × 10−3 M� yr−1 kpc−2 for H α −
and �SFR � (0.3–1.4) × 10−3 M� yr−1 kpc−2 for H α +.

Fig. 11 demonstrates that it is important to consider the effects
of IMF sampling at low SFR surface densities, when constraining
the characteristic time-scale for the H α ± filters. This is because
at low SFR surface densities, the massive stars required to produce
H α emission are not always present. If we ignore this fact, the
H α ± characteristic time-scales will be overestimated; as a result,
the evolutionary time-line would be incorrectly calibrated and the
time-scales obtained with HEISENBERG would also be overestimated.
The agreement between the results of these experiments and the
theoretical model also demonstrate that the IMF sampling theory
presented in Appendix E accurately describes how the characteristic
time-scale of H α ± changes due to incomplete IMF sampling. This
means that observational applications of the KL14 principle can use
the expressions provided in equations (14) and (E6)–(E9) to derive
an SFR tracer time-scale corrected for IMF sampling. For the UV
tracers, however, we find that the characteristic time-scales are mostly
insensitive to the effects of incomplete IMF sampling.

7 C O M PA R ISON TO O BSERVATIONS

This paper predicts the characteristic emission time-scales for SFR
tracers, this can only be done using a galaxy simulation because it
requires a reference map of which the duration of emission is known
exactly. For the simulation, we do this by constructing an artificial
reference map occupied by the star particles within a known age
range and therefore known reference time-scale. It is not possible to
do this for observed galaxies. However, it is possible to test whether
the observed ratio between the emission time-scales of two different
SFR tracers is consistent with our predictions. In Kruijssen et al.
(2019), we used our predicted H α reference time-scale at the half-
solar metallicity of NGC 300 (tHα

E,0 = 4.59 ± 0.14 Myr) to measure a
CO cloud lifetime of 10.8+2.1

−1.7 Myr. We can now use the measured CO
cloud lifetime as a reference time-scale in an experiment combining
the CO map (now acting as the reference map) with a UV emission
map. This allows us to test if the resulting UV emission time-scale
is consistent with our prediction for the UV reference time-scale.

As a first test of the accuracy of our inferred time-scales, we
combine the GALEX FUV map of NGC 300 with the CO data
presented in Kruijssen et al. (2019). For the CO map, we use the
identical experiment setup as in Kruijssen et al. (2019), adopting the
same set of emission peaks identified there and removing diffuse
emission in the same way. For the FUV map, the emission peaks
on which the apertures are placed are identified over a flux range
of 1.3 dex below the brightest peak in the map, using flux contours
at intervals of 0.35 dex to separate adjacent peaks. In addition, we
remove the DC offset from the FUV map by filtering it with a high-
pass Gaussian filter in Fourier space on a size scale >1000 λ (Hygate
et al. 2019). Other than these details, we apply the default analysis
described in Kruijssen et al. (2018, 2019). The resulting tuning fork
diagram (also see Fig. 1) is shown in Fig. 12. We obtain a good
fit, with a UV emission time-scale of tFUV

obs = 23.1+5.9
−3.5 Myr. Given

the half-solar metallicity of NGC 300, this should be compared to
the reference time-scale predicted by equation (12) for Z = 0.5 Z�,
which is tUV

E,0 = 19.2 ± 2.0 Myr.
Fundamentally, this experiment expresses the reference time-scale

for GALEX FUV emission in units of the reference time-scale of
continuum-subtracted H α emission (using CO as an intermediate
step). This is the case because in both the CO-H α experiment of
Kruijssen et al. (2019) and the CO-FUV experiment carried out

Figure 12. Tuning fork diagram obtained for the combination of CO(1–0)
(Phase 2) and GALEX FUV (Phase 1) emission of NGC 300 (see Kruijssen
et al. 2019). The symbols show the relation between the phase-1-to-phase-2
flux ratio (F12) calculated at the locations of the emission peaks, relative to the
galactic-scale phase-1-to-phase-2 flux ratio (F12, gal) as a function of aperture
size, lap. The error bars indicate the 1σ uncertainty on each individual data
point, whereas the shaded areas indicate the effective 1σ uncertainty range
that accounts for the covariance between the data points. The best-fitting
model is indicated by the two dotted curves.

here, we have only measured the time-scale ratios. We should thus
compare the observed and predicted tFUV/tH α ratio. We measure
tFUV
obs /tH α

obs = 5.0+1.3
−0.8, whereas the calibration of this paper predicts

tFUV
E,0 /tH α

E,0 = 4.2 ± 0.5. These values agree to within the uncertainties
(at 0.9σ , or ∼20 per cent), which acts as a first demonstration that
the reference time-scales derived in this work are consistent with
observations.

Our method yields a measurement of the FUV-to-H α time-scale
ratio. This means that an arbitrary scaling of both the H α and FUV
characteristic time-scales, for either the predicted or observed ratios,
would also result in agreement. However, the absolute time-scales
individually must also still be physical. A comparison of the above
numbers to other measurements in the literature shows that they
fall within the range of expected values. For instance, Leroy et al.
(2012) find that a young stellar population has emitted 50 per cent
of its H α emission after 1.7 Myr, and 95 per cent after 4.7 Myr.
Our characteristic H α time-scale at solar metallicity of 4.3 Myr falls
within this range. The same applies for our GALEX FUV time-
scale of 17.1 Myr, which falls within the time interval at which 50–
95 per cent of the cumulative flux has been emitted (4.8–65 Myr, see
Leroy et al. 2012). Future work combining H α and UV observations
of nearby galaxies will enable a more comprehensive test of the
presented time-scales.

8 C O N C L U S I O N S

We have applied a new statistical method (the HEISENBERG code
that uses the ‘uncertainty principle for star formation’, Kruijssen &
Longmore 2014; Kruijssen et al. 2018) to constrain the characteristic
emission time-scales of SFR tracers, i.e. the durations over which
H α and UV emission emerge from coeval stellar populations,
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specifically within the ‘uncertainty principle’ formalism. We expect
these time-scales to be critical in a variety of future studies. First,
observational applications of HEISENBERG will enable the empirical
characterization of the cloud lifecycle across a wide range of galactic
environments, by measuring e.g. the molecular cloud lifetime and
the time-scale for cloud destruction by feedback. However, in order
to lead to physically meaningful constraints, these applications
require the use of a known ‘reference time-scale’ for turning the
measured relative time-scales into absolute ones. This reference
time-scale is provided by the SFR tracer time-scales obtained in this
work. Secondly, the emission time-scales obtained here and their
dependence on metallicity and filter properties provide a helpful
point of reference for studies of photoionization feedback and UV
heating.

To obtain the SFR tracer emission time-scales, we generate
synthetic SFR tracer emission maps of a simulated near-L� isolated
flocculent spiral galaxy using the stochastic SPS code SLUG2 (da
Silva et al. 2012, 2014; Krumholz et al. 2015). We then apply HEISEN-
BERG to combinations of these synthetic maps and an independent set
of ‘reference maps’, which show the star particles from the simulation
in specific, known age bins. With this approach, we self-consistently
measure the characteristic time-scales for H α emission (with and
without continuum subtraction), as well as 12 different UV filters.

For stellar populations at solar metallicity and with a fully sampled
IMF we find the characteristic time-scales for H α with continuum
subtraction to be 4.3+0.1

−0.3 Myr, and 5.6–16.4 Myr without. For the UV
filters, the reference time-scale falls in the range 17.1–33.3 Myr, and
nearly monotonically increases with wavelength. When considering
stellar populations with different metallicities (Z/Z� = {0.05, 0.20,
0.40, 1.00, 2.00}) the range of characteristic time-scales increases, to
3.9–5.5 Myr for H α with continuum subtraction and 5.1–16.4 Myr
without, as well as 14.5–33.3 Myr for the UV filters. We define empir-
ical power-law relations that provide the characteristic time-scale as
a function of metallicity (equations 10–12). These empirical relations
include the response-weighted mean wavelength (λw) for UV filters
and the filter width (W) for the H α+ filters. These dependences
enable the use of a single expression to determine the characteristic
time-scale for all UV and H α ± SFR filters for a given combination
of filter properties and the metallicity of the environment.

We also investigate the effects of a stochastically sampled IMF on
the characteristic time-scales. Incomplete IMF sampling is found to
affect the obtained characteristic emission time-scales in low-�SFR

galaxies. We quantify this dependence by stochastically sampling
from the IMF prior to generating the synthetic SFR tracer emission
maps and then measuring the characteristic time-scales with HEISEN-
BERG. We use a Chabrier (2005) IMF to calculate the probability, P,
of forming at least Nmin stars of mass Mmin or higher given a star-
forming region mass M r. We then demonstrate that this probability is
a good predictor for the ratio between the characteristic time-scale for
a stochastically sampled IMF, tE, and that of a well-sampled IMF, tE,0.
As a result, we obtain a relation between tE/tE,0 and the characteristic
mass of independent star-forming regions, M r. Given an SFR surface
density (from which the characteristic region mass can be derived),
this relation quantifies the relative change of the SFR tracer time-
scale due to IMF sampling as a function of the galactic environment.

For UV tracers, the impact of IMF sampling on the characteristic
time-scale is minimal (<30 per cent) and can therefore be ignored
(this applies to all metallicities). However, incomplete IMF sampling
has a significant effect on the characteristic time-scales of H α

emission. At low SFR surface densities, the H α emission time-
scale is suppressed due to IMF sampling effects. Depending on
the metallicity and on whether the continuum emission has been

subtracted, the characteristic time-scale for a well-sampled IMF can
be used for M r � 200–900 M�, which for a region separation length
of λ = 200 pc and a total timeline duration of τ = 30 Myr corresponds
to �SFR � (0.3–1.3) × 10−3 M� yr−1 kpc−2. However, at lower region
masses or SFR surface densities, the H α reference time-scale must
be corrected to account for the effects of IMF sampling. We derive
fitting functions describing the change of the H α time-scales as a
function of the average independent star-forming region mass, M r, as
parametrized by the minimum stellar mass required for H α emission,
Mmin, which we tabulate as a function of metallicity (equations 14,
15 and E6–E9 as well as Table 5).

Even though we have arrived at the above reference time-scales
by carrying out a set of numerical experiments using a galaxy
simulation, and one could thus argue that the results are model
dependent, we reiterate that the results are not expected to be
sensitive to the details of the baryonic physics in the simulations (see
discussion in Section 3). The measurements carried out in this work
require a physically motivated correlation of positions and ages of star
particles. The critical goal was to carry out these measurements self-
consistently within the framework of our method and thus enabling
its future observational applications. In principle, this measurement
could have been performed using maps of randomly generated
distributions of regions: fundamentally, we have only characterized
how quickly young stellar emission fades in the adopted SPS model.
However, the main advantage of using a galaxy simulation is that
it generates a distribution with a physically reasonable imprint of
galactic morphology and the positional correlation of star formation
events by self-gravity and stellar feedback. The accuracy of the
results is demonstrated by a first comparison to observations of
H α and GALEX FUV emission in the nearby galaxy NGC 300
(Section 7), which shows that the time-scales predicted by this work
are consistent with the observed time-scales.

In summary, we have measured the characteristic emission time-
scales of SFR tracers within the ‘uncertainty principle’ formalism,
as a function of metallicity and (for UV and H α+) filter properties,
as well as their sensitivity to IMF sampling, which effectively
expresses their dependence on the SFR surface density. This spans
the range of key environmental factors that affect the time-scales
of H α and UV emission, and provides important constraints on the
duration of photoionization feedback and UV heating. The reference
time-scales derived in this work enable observational applications of
the ‘uncertainty principle for star formation’, in which they are used
to turn the relative durations of evolutionary phases into an absolute
timeline. Specifically, we expect that the fitting functions provided
in equations (10)–(12) and equations (E7)–(E9) will have great
practical use because they enable the straightforward calculation
of the reference time-scales as a function of metallicity, UV filter
wavelength, and SFR surface density. Indeed, the first applications of
this method have already used these equations to infer the time-scales
driving cloud evolution, star formation, and feedback (Kruijssen et al.
2019; Chevance et al. 2020a, c; Hygate et al. 2020; Ward et al. 2020b,
as well as section 7 of this paper). In view of the variety of recent
and upcoming applications of this method, the time-scales presented
in this work represent an essential ingredient towards empirically
constraining the physics driving molecular cloud lifecycle.
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APPENDI X A : H α A B S O R P T I O N A N D
EMI SSI ON FEATURES

We produce synthetic emission maps by passing the age and mass
information of all the star particles from our simulation to SLUG2
(da Silva et al. 2012, 2014; Krumholz et al. 2015). SLUG2 then
calculates the predicted emission spectrum for each particle, to
which we apply UV and H α + filters (H α − comes directly from
the hydrogen-ionizing photon emission). However, the emission
spectrum that SLUG2 produces does not include the underlying H α

absorption from the stellar continuum. In this appendix, we use
STARBURST99 (Leitherer et al. 1999; Vázquez & Leitherer 2005)
to investigate when the H α absorption feature can no longer be
neglected.

We ran STARBURST99 for an instantaneous burst of star formation
for the five standard Geneva evolutionary tracks using a Kroupa
(2001) IMF and output the data in 0.1 Myr time-steps for 20 Myr.
We otherwise used the default settings.

The equivalent width of the H α emission is taken directly from
the STARBURST99 output files. To determine the equivalent width of
the absorption feature, we model the continuum (straight line) and
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Figure A1. The results of STARBURST99 simulations for an instantaneous burst of star formation at 0 Myr. We show the change in equivalent width of the H α

absorption and emission feature; we also include the difference between the two equivalent widths (H α observed). The H α − time-scale is marked for comparison.

the absorption feature (Voigt profile) of the high-resolution spectral
data in the wavelength range 6482 Å ≤ λ ≤ 6642 Å.

In Fig. A1, we show the change in the equivalent width of
the absorption and emission feature over time; the change in the
difference between the two equivalent widths is also included. We
see that the emission feature is dominant up to at least 10 Myr and
longer for the lower metallicities; this is at least 5 Myr longer than
the H α − time-scales we measure (see Table D1) which are also
marked in Fig. A1.

We can see from Fig. A1 that the H α time-scales we are
considering fall comfortably within the emission-dominant regime

and conclude that the absorption feature can safely be neglected for
our analysis.

A P P E N D I X B: IN F L U E N C E O F T H E
W E I G H T I N G SC H E M E O N T H E R E S U LTS

In Section 4, we adopt a simple weighting scheme to combine the
measured emission time-scales for different choices of tM and tR

(see Fig. 4) into a single value. Because our method performs best
when tE,0 ∼ tM ∼ tR (Kruijssen et al. 2018), this scheme calculates
the geometric distance in logarithmic space between the measured
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Figure B1. Comparison of the time-scales measured using the weighting
scheme adopted in this paper (x-axis) and the time-scales that would have
been obtained by taking the value of tE,0 that is closest to tM and tR (y-axis).
The data points are colour coded by filter (see the colour bar), with the shape
denoting the metallicity. This figure shows that both methods are in rough
agreement, but that there exist clear outliers. For these cases, i.e. when both
methods disagree, we demonstrate in the text and in Fig. B2 that the weighting
scheme provides the most accurate result.

time-scale and tM and tR, and then defines the weight of each cell as
its inverse (Wd

ij , equation 5). As is common practice, we also weight
each cell by the inverse square of the uncertainty (Wu

ij , equation 6). A
much simpler approach would be to simply adopt the cell for which
the measured time-scale is closest to tM and tR. In this appendix,
we briefly demonstrate that this simple approach generally provides
similar results to the adopted weighting scheme, but is more sensitive
to stochasticity and outliers. This motivates the use of the adopted
weighting scheme.

In Fig. B1, we show the comparison of the emission time-scales
obtained with both of the above approaches. As the figure shows, both
approaches agree to within �20 per cent, which largely validates our
approach. However, there are also clear outliers, with deviations up

to a factor of 2. To investigate what causes these outliers, we show
the full table of measurements for one of them (H α + 20 Å) in
Fig. B2. This figure shows a fragmented weighting landscape, with
two local minima around tE,0 = 6−7 Myr and tE,0 ≈ 15 Myr. Due
to the extreme proximity of the second of these two minima to the
corresponding tM and tR, it has a high weight, even thought the
first minimum is the correct answer. This is illustrated by (1) the
fact that the surrounding cells have high weights too (i.e. it is not
isolated) and (2) the fact that the first minimum is more consistent
with the measurements for other metallicities and filter widths listed
in Appendix D. Had we simply used the cell for which tE,0 is closest to
tM and tR, we would have selected the second minimum. By contrast,
the adopted weighting scheme ends up with tE,0 = 7.3+0.4

−0.2 Myr. This
is very close to the correct answer found near the first minimum and
shows that the second minimum has a minor effect on the final result
when using the adopted weighting scheme.

In principle, we could have adopted a different functional form
for equation (5). However, this would necessarily have been more
ad hoc than a simple inverse dependence on the geometric distance
in logarithmic space used here. We therefore prefer to adopt the
simplest approach that avoids a strong sensitivity to outliers, which
we have done in Section 4.

A P P E N D I X C : C O M PA R I S O N O F TH E
A NA LY T I C A L T I M E - S C A L E FI T S TO TH E
MEASUREMENTS

In Figs C1 and C2, we compare the best-fitting analytical functions
for predicting the H α + and UV SFR tracer time-scales (equations 11
and 12) to the measurements obtained with Heisenberg. These one-
dimensional projections of Figs 9 and 10 are useful for identifying
parts of parameter space in which the analytical fits do not describe
the measurements well, i.e. at long UV wavelengths and solar metal-
licity (which is the largest discrepancy found across the metallicity-
wavelength space considered). In such cases, it might be advisable
to use the measurement rather than the analytical expression.

Figure B2. Example showing the same table as in Fig. 4, but this time for H α including the continuum (H α +) with a 20 Å filter. As before, the reference
maps are characterized by the age bin used to select the star particles which are included in the reference map. tM denotes the minimum age of the star particles
and tR the width of the age bin. The colour coding is based on the weighting, W , used when calculating the weighted average. All values within the tables are
given in Myr. This figure shows that the simple approach of taking the measured value that is closest to tM and tR is sensitive to local minima (which would in
this case overestimate the time-scale by a factor of two, see the offset star in Fig. B1), whereas the weighting scheme adopted in this work avoids this problem
by calculating a weighted average of all cells (see the text for details).
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Figure C1. Characteristic time-scales of H α + filters as a function of metallicity (left) and filter width (right). The symbols show the results of applying the
HEISENBERG code to synthetic H α + maps. The grey curve shows the fit from equation (11) and the shaded region indicates the associated uncertainty. The
symbols and colours in the right-hand panels correspond to those used on the left.
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Figure C2. Characteristic time-scales of UV SFR tracers as a function of metallicity (left) and wavelength (right). The symbols show the results of applying
the HEISENBERG code to synthetic UV maps. The grey curve shows the fit from equation (12) and the shaded region indicates the associated uncertainty. The
symbols and colours in the right-hand panels correspond to those used on the left.

APPENDIX D : C OMPLETE SET O F SFR
TRAC ER EMISSION TIME-SCALES

In Table D1, we list the complete set of SFR tracer emission time-
scales constrained in this paper. This contains the characteristic time-

scales of H α ± and all 12 UV filters, for the five different metallicities
Z/Z� = 0.05, 0.20, 0.40, 1.00, 2.00. In addition, we include the age
intervals that we adopt to define the stellar reference maps used when
measuring the SFR tracer time-scales with the HEISENBERG code. For
more details on the calculations, see Section 4.
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Table D1. A summary of all the characteristic time-scales and corresponding age bins (for producing reference maps in
Sections 5 and 6), for the different star formation rate tracers (see Table 1 for details). These results are for a well-sampled
IMF. The filter order is in increasing filter width (W) for H α + and increasing response-weighted mean wavelength (λw)
for UV. Table 3 is included in these tables under the 1.00 Z� heading.

0.05 Z� 0.20 Z� 0.40 Z� 1.00 Z� 2.00 Z�

(a) Characteristic time-scales, tE,0 [Myr].
H α − 5.5+0.2

−0.1 5.1+0.1
−0.2 4.8+0.1

−0.3 4.3+0.1
−0.3 3.9+0.1

−0.3

H α + 10 Å 6.2+0.3
−0.1 6.3+0.3

−0.1 5.9+0.3
−0.1 5.6+0.2

−0.1 5.1+0.1
−0.1

H α + 20 Å 8.0+0.5
−0.3 8.0+0.4

−0.2 7.7+0.4
−0.2 7.3+0.4

−0.2 7.3+0.4
−0.2

H α + 40 Å 9.0+0.2
−0.2 10.2+0.2

−0.2 9.6+0.2
−0.2 9.3+0.2

−0.3 9.1+0.4
−0.5

H α + 80 Å 12.1+0.2
−0.2 11.7+0.2

−0.2 11.9+0.2
−0.2 10.7+0.2

−0.2 10.7+0.4
−0.5

H α + 160 Å 15.1+0.5
−0.2 15.0+0.4

−0.2 15.5+0.5
−0.2 16.4+0.6

−0.3 16.2+0.9
−0.3

GALEX FUV 26.7+0.4
−0.3 21.4+0.2

−0.2 19.7+0.2
−0.2 17.1+0.4

−0.2 14.5+0.3
−0.8

UVOT W2 29.3+0.3
−0.4 24.8+0.2

−0.2 22.2+0.2
−0.2 19.0+0.3

−0.2 16.5+0.3
−0.2

WFC3 UVIS1 F218W 29.5+0.3
−0.4 26.0+0.3

−0.3 23.3+0.2
−0.2 19.4+0.2

−0.2 16.9+0.3
−0.2

UVOT M2 29.5+0.3
−0.4 26.1+0.3

−0.3 23.3+0.2
−0.2 19.5+0.2

−0.2 16.8+0.3
−0.2

GALEX NUV 29.5+0.3
−0.3 26.3+0.4

−0.3 23.6+0.3
−0.2 19.6+0.2

−0.2 17.1+0.3
−0.2

WFC3 UVIS1 F225W 29.8+0.2
−0.3 26.5+0.4

−0.3 24.7+0.3
−0.2 19.6+0.2

−0.2 17.2+0.3
−0.2

WFPC2 F255W 30.1+0.3
−0.3 27.4+0.7

−0.3 26.3+0.5
−0.3 22.4+0.2

−0.2 18.4+0.4
−0.3

UVOT W1 30.4+0.3
−0.3 28.0+0.6

−0.4 26.5+0.7
−0.3 21.8+0.2

−0.2 18.6+0.4
−0.3

WFC3 UVIS1 F275W 30.7+0.3
−0.3 27.9+0.6

−0.4 28.3+0.6
−0.4 23.5+0.2

−0.2 19.1+0.2
−0.2

WFPC2 F300W 31.6+0.3
−0.4 28.0+0.2

−0.3 30.0+0.2
−0.3 27.7+0.6

−0.3 21.2+0.2
−0.2

WFPC2 F336W 31.2+0.3
−0.3 30.2+0.3

−0.2 30.3+0.3
−0.2 33.1+0.4

−0.3 25.3+0.3
−0.2

WFC3 UVIS1 F336W 31.4+0.3
−0.3 29.7+0.2

−0.2 30.6+0.4
−0.3 33.3+0.4

−0.4 25.3+0.2
−0.2

(b) Age bins, tE,0 ≤ Age ≤ 2tE,0 [Myr].
H α − 5.5–11.0 5.1–10.1 4.8–9.5 4.3–8.6 3.9–7.9
H α + 10 Å 6.2–12.3 6.3–12.7 5.9–11.7 5.6–11.1 5.1–10.2
H α + 20 Å 8.0–16.1 8.0–16.1 7.7–15.5 7.3–14.6 7.3–14.6
H α + 40 Å 9.0–17.9 10.2–20.3 9.6–19.3 9.3–18.6 9.1–18.2
H α + 80 Å 12.1–24.1 11.7–23.4 11.9–23.7 10.7–21.4 10.7–21.3
H α + 160 Å 15.1–30.1 15.0–30.0 15.5–31.1 16.4–32.7 16.2–32.4
GALEX FUV 26.7–53.5 21.4–42.9 19.7–39.4 17.1–34.2 14.5–29.0
UVOT W2 29.3–58.7 24.8–49.5 22.2–44.3 19.0–38.0 16.5–33.0
WFC3 UVIS1 F218W 29.5–59.0 26.0–52.0 23.3–46.7 19.4–38.9 16.9–33.9
UVOT M2 29.5–58.9 26.1–52.2 23.3–46.7 19.5–39.0 16.8–33.5
GALEX NUV 29.5–59.1 26.3–52.5 23.6–47.3 19.6–39.1 17.1–34.1
WFC3 UVIS1 F225W 29.8–59.5 26.5–53.0 24.7–49.3 19.6–39.3 17.2–34.5
WFPC2 F255W 30.1–60.3 27.4–54.8 26.3–52.6 22.4–44.7 18.4–36.8
UVOT W1 30.4–60.8 28.0–56.0 26.5–53.1 21.8–43.5 18.6–37.2
WFC3 UVIS1 F275W 30.7–61.3 27.9–55.8 28.3–56.5 23.5–47.0 19.1–38.3
WFPC2 F300W 31.6–63.1 28.0–55.9 30.0–60.0 27.7–55.4 21.2–42.5
WFPC2 F336W 31.2–62.3 30.2–60.4 30.3–60.7 33.1–66.3 25.3–50.6
WFC3 UVIS1 F336W 31.4–62.8 29.7–59.5 30.6–61.2 33.3–66.6 25.3–50.6

A P P E N D I X E: TH E O R E T I C A L E X P E C TAT I O N S
FOR THE EFFECT OF INCOMPLETE IMF
SAMPLING

Here, we predict the relationship between how well the IMF is
sampled and the characteristic time-scale of the SFR tracer. As
mentioned in Section 6, the characteristic time-scale of the SFR
tracer is related to the number of star-forming regions in the emission
map. We therefore estimate the relative change of the effective SFR
tracer time-scale as the fraction of star-forming regions that do
contain sufficiently massive stars to emit in the tracer of interest.
This approach will be tested below. In practice, this means we need
to estimate how many stars, Nmin, of at least some minimum mass,
Mmin, are expected to form within a star-forming region of mass Mr.
We consider Mmin to characterize the stellar mass at which the SFR

emission becomes noticeable and not the mass contributing the most.
The mass of the star-forming region, Mr, can then act as a proxy for
how well the IMF is sampled: smaller values of Mr will result in a
region with an IMF that is less well sampled.

We can calculate the probability, P, of producing a minimum
number of stars Nmin of at least some minimum mass Mmin in a given
star-forming region through a Bernoulli (i.e. binomial) trial. If the
region can produce a sufficient number of stars of sufficient mass,
then the region is identifiable in the SFR tracer; therefore, in our
binomial trial, we define a ‘success’ as producing a star of mass M
which satisfies the condition of Mmin ≤ M ≤ Mr. The probability
of success is given by p, N� is the total number of stars within
the star-forming region, and N counts the number of ‘successful’
stars.
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Figure E1. Curves showing how the probability of forming at least Nmin stars of mass Mmin or higher changes with star-forming region mass, Mr. The grey
dashed lines indicate the approximate fit to the full calculation. See Appendix E for details and Table E1 for fit parameter values. Left: Constant Nmin.
Right: Constant Mmin.

The binomial distribution gives the probability of k successful
stars:

P (N = k) = N�!

k!(N� − k)!
pk(1 − p)N�−k. (E1)

The probability that we wish to calculate (at least Nmin stars of a mass
of Mmin or higher) is given by

P (N ≥ Nmin) = 1 − P (N < Nmin) (E2)

= 1 −
Nmin−1∑

k=0

P (N = k). (E3)

The IMF, dn/dm, describes the distribution of mass amongst the stars
within a star-forming region; this means we can use the IMF to
determine the values of p and N� and therefore to calculate P(N = k).
In a star-forming region with a well-sampled IMF, p is the fraction
of stars that satisfy the condition Mmin ≤ M ≤ Mr and N� is the total
number of stars within the region

p = ν
∫ Mr

Mmin

dn
dm

dm ; N� = μ

∫ Mr

0

dn

dm
dm. (E4)

The normalization constants ν and μ are evaluated through

1 = ν
∫ Mr

0
dn
dm

dm ; Mr = μ

∫ Mr

0
m

dn

dm
dm. (E5)

In order to convert the probability value, P(N ≥ Nmin), into an estimate
for the characteristic time-scale, tE, we assume a Chabrier (2005) IMF
and use the characteristic time-scales we find for a fully sampled IMF,
tE,0, (see Appendix D) in the following equation:

tE = tE,0 × P (N ≥ Nmin). (E6)

In Fig. E1, we show how the form of the probability curve P(N
≥ Nmin) changes for different values of Nmin and Mmin. Increasing
the value of Mmin increases the star-forming region mass required
to reach a given probability of forming enough sufficiently massive
stars (set by Nmin and Mmin); the same effect is observed for Nmin but
less pronounced. Higher Nmin also affects the probability of forming
enough sufficiently massive stars by increasing the rate of change of
probability with changing star-forming region mass.

The curves in Fig. E1 have a complex analytical form, therefore
we provide a four-parameter function that approximates these curves.
These approximations are also included in Fig. E1 as dotted grey

Table E1. Values for the free parameters, ai and bi, in the analytical models
presented in Fig. E1 and described by equations (E7)–(E9).

Nmin Mmin a1 b1 a2 b2

1.000 1.000 − 1.001 − 0.251 − 0.384 − 0.632
1.000 3.162 − 1.016 − 0.137 − 0.146 − 0.338
1.000 10.000 − 1.021 − 0.085 − 0.071 − 0.235
1.000 31.623 − 1.000 − 0.048 − 0.056 − 0.233
1.000 100.000 − 1.000 − 0.008 − 2.393 − 5.405

1.000 7.000 − 1.020 − 0.098 − 0.088 − 0.257
3.162 7.000 − 1.930 − 0.118 − 0.966 − 1.555
10.000 7.000 − 4.816 − 0.235 − 0.987 − 1.638
31.623 7.000 − 38.108 − 0.426 − 1.016 − 0.891
100.000 7.000 − 1000.000 − 0.743 − 1.016 − 0.889

lines. The following set of equations describe the form of the
approximation:

M0 = Nmin × Mmin, (E7)

f (Mr) = 1 + a1 exp

(
b1

[
Mr

M0

])
+ a2 exp

(
b2

[
Mr

M0

]2
)

, (E8)

P (N ≥ Nmin) ≈

⎧⎪⎨
⎪⎩

0 f (Mr) ≤ 0

f (Mr) 0 < f (Mr) < 1

1 f (Mr) ≥ 1

, (E9)

where ai, bi for i = {1, 2} are four parameters that we determine
through least-squares minimization. We present the parameter values
for all the approximate curves displayed in Fig. E1 in Table E1. For
intermediate values of Mmin, these best-fitting parameters can be
interpolated as a function of log (Mmin). The approximate expression
gives an almost identical fit in the cases where Nmin = 1 (see Fig. E1)
but for higher values of Nmin the approximation does not perform as
well. Fortunately, as we show in Section 6, we only need to consider
the case of Nmin = 1.

We now have a description of how the characteristic time-scale of
SFR tracers in a star-forming region with a stochastically sampled
IMF, tE, is related to the characteristic time-scale determined when
the IMF is well sampled, tE,0, through a probability distribution
function, P(N ≥ Nmin). The IMF and two free parameters, Nmin

and Mmin, characterize the form of P(N ≥ Nmin). We note that the
analytical expression for the time-scale correction factor P(N ≥ Nmin)
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does not carry an explicit metallicity dependence. We therefore apply
the same theoretical framework for all metallicities, allowing us to
combine the effects of both metallicity and IMF sampling on the
characteristic SFR time-scale.

A P P E N D I X F: ER RO R P RO PAG AT I O N

In Section 6.1, we calculate the average independent star-forming
region mass as

M r = �SFR × (temi + tref − tover) × π

(
λ

2

)2

. (F1)

This equation uses the SFR surface density, �SFR, and the duration
of the reference map, tref, along with quantities that the HEISENBERG

code measures: the typical separation length of independent star-
forming regions, λ; the duration of the emission map, temi; and the
duration of the overlap between the emission and reference phases,
tover. We note that equations (F1) and (14) are equivalent through the
definition

τ ≡ temi + tref − tover. (F2)

Here, we describe how we propagate the uncertainties on these
quantities into an uncertainty on the characteristic region mass M r.

To calculate the uncertainty on M r we start with the general
expression: the uncertainty on a quantity f, σ f, which is a function of
N variables i.e. f(x1, . . . , xN) is given by (Hughes & Hase 2010)

σ 2
f =

N∑
i=1

N∑
j=1

∂f

∂xi

∂f

∂xj

ρij σiσj , (F3)

where σ i represents the uncertainty on variable xi and ρ ij represents
correlation coefficients between variable xi and xj (where ρ ii = 1 and
ρ ij = ρ ji). In order to simplify our expressions and to use the same
notation as in equation (F3), we define the following:

κ ≡ �SFR
π

4
, (F4)

x1 ≡ λ, (F5)

x2 ≡ temi, (F6)

x3 ≡ tover (F7)

and equation (F1) becomes

M r = κτx1
2 (F8)

= κ(x2 + tref − x3)x1
2. (F9)

We note that �SFR and tref are considered to be without error and
do not need to be included as variables. The derivatives we need in
order to calculate σMr

are

∂

∂x1
M r = 2κτx1, (F10)

∂

∂x2
M r = κx1

2, (F11)

∂

∂x3
M r = −κx1

2. (F12)

Combining equation (F10) with equation (F3) we find the expression
for the uncertainty on M r, σMr[

σMr

M r

]2

= 4σ1
2

x1
2

+
(
σ2

2 + σ3
2 − 2ρ23σ2σ3

)
τ 2

+ 4 (ρ12σ1σ2 − ρ13σ1σ3)

τx1
. (F13)

With this expression, we can take into account the associated
uncertainty on the value of M r as part of our error analysis and
χ2 calculations when investigating the effects of incomplete IMF
sampling on the characteristic time-scales of SFR tracers.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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