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ABSTRACT
We describe a novel method for determining the demographics of a population of star clusters,
for example distributions of cluster mass and age, from unresolved photometry. This method
has a number of desirable properties: it fully exploits all the information available in a data set
without any binning, correctly accounts for both measurement error and sample incomplete-
ness, naturally handles heterogenous data (e.g. fields that have been imaged with different sets
of filters or to different depths), marginalizes over uncertain extinctions, and returns the full
posterior distributions of the parameters describing star cluster demographics. We demonstrate
the method using mock star cluster catalogues and show that our method is robust and accu-
rate, and that it can recover the demographics of star cluster populations significantly better
than traditional fitting methods. For realistic sample sizes, our method is sufficiently powerful
that its accuracy is ultimately limited by the accuracy of the underlying physical models for
stellar evolution and interstellar dust, rather than by statistical uncertainties. Our method is
implemented as part of the Stochastically Lighting Up Galaxies (SLUG) stellar populations
code, and is freely available.

Key words: methods: data analysis – methods: statistical – techniques: photometric –
galaxies: star clusters: general.

1 INTRODUCTION

Stars form in regions where the stellar density is vastly higher
than the mean for the galactic field. Over tens to hundreds of Myr
after their formation, stars disperse from these birthplaces, leaving
behind a small fraction of long-lived, gravitationally bound old star
clusters. This process of formation and dispersal encodes a great
deal of physics regarding the formation of stars, the expulsion of
gas from star-forming clouds, and the dynamical evolution of stellar
systems in a galactic potential. For recent reviews, see Krumholz
(2014), Krumholz et al. (2014), and Longmore et al. (2014).

Because of the physics it encodes, the distribution of star clus-
ter ages and masses has long been an important topic of study,
both observationally and theoretically. Theoretical models for clus-
ter dispersal have emphasized processes such as gas expulsion (e.g.
Baumgardt & Kroupa 2007; Parmentier et al. 2008; Krumholz &
Matzner 2009; Fall, Krumholz & Matzner 2010; Murray, Quataert &
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Thompson 2010), tidal disruption of clusters after gas expulsion
(e.g. Lamers et al. 2005; Gieles, Lamers & Portegies Zwart 2007;
Kruijssen 2009, 2012; Kruijssen et al. 2012; Elmegreen & Hunter
2010), and two-body relaxation and evaporation over long time-
scales (e.g. Fall & Zhang 2001). These models predict a variety of
functional forms for the joint age and mass distribution of surviving
star clusters. Observational studies have attempted to measure these
quantities for star clusters in the Milky Way (Williams & McKee
1997; Lada & Lada 2003; Borissova et al. 2011), the Magellanic
Clouds (Hunter et al. 2003; Rafelski & Zaritsky 2005; Chandar,
Fall & Whitmore 2010; Popescu, Hanson & Elmegreen 2012), and
more distant systems (Zhang et al. 1999; Larsen 2002; Goddard,
Bastian & Kennicutt 2010; Chandar et al. 2010, 2011; Bastian et al.
2012; Fall & Chandar 2012; Fouesneau et al. 2012, 2014; de Meu-
lenaer et al. 2015; Krumholz et al. 2015a; Johnson et al. 2016, 2017;
Adamo et al. 2017; Messa et al. 2018), with the goal of testing the
predictions of these models.

Because it is not at present possible to resolve the individual stars
in young star clusters beyond the Milky Way and its few nearest
neighbours, observational studies that go beyond samples of a few
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galaxies are generally restricted to working with unresolved light,
where the raw data consist of measurements of luminosities in
some set of filters for each star cluster. Consequently, there is an
urgent need for robust statistical techniques to derive the physical
properties of star cluster populations from such integrated light data;
the method we introduce below is intended for this type of analysis.

The traditional approach for analysing these data is to assign an
age and mass to each cluster by comparing their unresolved lumi-
nosities and colours to a set of evolutionary tracks for simple stellar
populations, with the best-fitting mass and age determined by χ2

minimization or a similar procedure. Once the masses and ages are
determined, the clusters are placed in mass and age bins, and the dis-
tribution in the population as a whole can, in principle, be measured.
However, such an approach encounters several difficulties. First,
the process of binning inevitably discards some of the information
present in the original data, and fitting parameters to binned dis-
tributions can introduce severe biases (e.g. Maschberger & Kroupa
2009). Second, at low masses, and for certain age and colour com-
binations even at higher masses, the assignment of mass and age to
an individual cluster is highly uncertain, and the errors in the as-
signments are not well approximated by simple Gaussians. Instead,
the posterior probability distribution function (PDF) of mass and
age can have a complex, multipeaked shape (Popescu & Hanson
2009, 2010a,b; Fouesneau et al. 2014; de Meulenaer et al. 2015;
Krumholz et al. 2015a). A single best-fitting mass and age may
be a very poor representation of the PDF for a single cluster, but
the process of assigning a cluster to a single bin ignores this com-
plexity. Third and most seriously, determining the properties of the
population as a whole requires considering the completeness of the
observed sample. Variations in whether and how one takes com-
pleteness into account can lead to quite different inferences in the
final physical distributions (e.g. Lamers 2009). Part of the reason for
this sensitivity is that completeness is a function of the luminosity
and surface brightness profile of the cluster, the background, and
the level of crowding in the image, leading to a completeness that
has a complex functional form in mass–age–extinction space.

The simplest approach to handling the problem of completeness
is to be extremely conservative, and discard all data in regions of
parameter space where the observations are not complete or nearly
so. However, this invariably requires one to discard much of the
available data. A somewhat more sophisticated approach is for-
ward modelling: rather than deriving the mass and age distribution
of the population from estimates of mass age for individual clus-
ters, one could instead consider a proposed distribution of masses
and ages, predict the resulting photometry distribution including
the effects of incompleteness, and adjust parameters of the mass
and age distribution until they match the observations. Approaches
of this type are widely used in astronomy, for example to infer
star formation histories or stellar mass distributions from observed
colour–magnitude diagrams (CMDs; e.g. Dolphin 2002; Harris &
Zaritsky 2009; Weisz et al. 2013; Conroy & van Dokkum 2016; see
Cerviño 2013 for a review). However, methods of this type have not
previously been applied to deriving the properties of populations of
star clusters, at least in part due a unique challenge not present in
other applications. In existing applications such as CMD fitting, the
forward model is deterministic, i.e. for a given stellar mass, age,
and other properties, there is a single predicted colour and magni-
tude. This is not the case for star clusters with masses � 3000 M�,
because such clusters are too small to fully sample the stellar initial
mass function (IMF, e.g. Cerviño & Luridiana 2004, 2006; da Silva,
Fumagalli & Krumholz 2012). As a result, two clusters of the same
total mass and age can produce wildly different luminosities and

colours. This means that the forward model is not deterministic,
but instead depends on an additional random variable that couples
non-linearly with the deterministic variables like cluster mass and
age. This situation presents computational challenges that are not
addressed by existing methods.

In this paper, we introduce a new approach for determining the
distribution of the properties of star clusters from unresolved pho-
tometry that allows us to consider arbitrary functional forms for
distributions of mass, age, and extinction, and to exploit all the
information available in heterogenous data (i.e. data where not all
fields are observed with the same filters or to the same depth). Cru-
cially, it naturally accounts for both incomplete observations and
the uncertainties in the assignment of masses and ages to individual
clusters that arise when the mapping between physical properties
and luminosity is non-deterministic due to finite sampling. The
essence of our approach is to consider a proposed distribution of
physical parameters, determine the corresponding luminosity dis-
tribution in a probabilistic way so that we preserve the non-unique
mapping between physical properties and photometry, apply the
completeness function in observed luminosity space, and then com-
pare to the data. We then adjust the underlying physical distribution
until the best match to the observations is found. We implement this
method using fast numerical algorithms that enable us to identify
the parameters describing a cluster distribution on a workstation-
level computer in ∼10 h of computing time. The software is based
on the Stochastically Lighting Up Galaxies (SLUG) software suite
(da Silva et al. 2012; da Silva, Fumagalli & Krumholz 2014;
Krumholz et al. 2015b), and is freely available from the SLUG web-
site, http://www.slugsps.com/cluster-population-pipeline.

The plan for the remainder of this paper is as follows. In Section 2,
we describe our new method and the computational techniques we
use to implement it. In Section 3, we test the method on mock
data to verify its accuracy and demonstrate its capabilities, and in
Section 4, we compare the performance of our new method to more
conventional approaches. We summarize our findings in Section 5.

2 METHOD

2.1 Statement of the problem

Our goal is to infer the mass and age distribution of a popula-
tion of star clusters in a galaxy for which we have a sample of
star clusters observed in some set of photometric bands; we must
include extinction as an additional nuisance parameter, which we
will marginalize over. The method we develop to achieve this goal
generalizes and extends the one proposed by Weisz et al. (2013)
for inferring the IMF of a resolved population of individual stars.
Formally, let g(M, T , AV | θ ) be the joint distribution of mass, age,
and visual extinction for the underlying population, which depends
on a vector of parameters θ .1 For example, if we were to assume
that the mass, age, and AV distributions are separable power laws,
then θ would contain the minimum, maximum, and slope of each
power law. We wish to infer a posterior distribution for θ . Since the
true size of the cluster population is not known a priori, and our

1Metallicity is another potential physical parameter, but for simplicity, we
will assume that the cluster-to-cluster variation in metallicity is small enough
that its effects can be neglected. This assumption is particularly likely to be
valid for optical data, since metallicity has relatively little effect on optical
bands, and mostly affect near-infrared colours (Anders et al. 2004). The
generalization to include metallicity as a parameter is straightforward.
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observations are inevitably incomplete at the low-luminosity end of
the distribution, we must also treat the number of clusters present
Nc as a parameter of the model, although we will see below that it
is more convenient to transform to a different variable.

The data from which we will make this inference consist of a set
of Nobs observed star clusters, and for the ith star cluster we observe
its absolute magnitude or luminosity LF, i in NF different photometric
filters F, measured with some photometric error σ F, i, which we take
to be known and Gaussian-distributed. For notational compactness,
let Li and σ i be the luminosities / absolute magnitudes and the
corresponding errors for the ith cluster in all NF filters, and {Li} and
{σ i} be the set of all such observed luminosities and uncertainties
for all clusters in every filter.

Finally, let us assume that each of our observations has a known
completeness function described by Pobs,i(L′). This function is the
probability that a cluster of intrinsic luminosity L′, observed in the
same manner as observed cluster i (i.e. with the same integration
time and set of filters, in a field at the same distance) will be included
in the sample.2 Note that L′ is distinct from the quantity L intro-
duced in the previous paragraph: the former is the true luminosity
of a cluster, while the latter is the measured luminosity, which is
slightly different due to observational error. A simple magnitude
limit corresponds to Pobs,i(L′) being a step function. In practice,
this function must be determined by artificial cluster tests or the
like. Note that we explicitly allow for the possibility that different
sets of observations may have different completeness limits, for
example if we are combining data from two different galaxies at
different distances, or from two fields within the same galaxy that
were observed to different depths.

2.2 Posterior probability for a cluster population

As usual in a Bayesian approach, we write the posterior probability
distribution of the model parameters (θ, Nc) gives the data as the
product of the prior probabilities with the likelihood function, i.e.3

p(θ, Nc | {Li}, {σ i}, Nobs)

∝ p({Li}, Nobs | θ , Nc, {σ i}) pprior(θ , Nc). (1)

We remind readers that, in this equation θ is the vector of param-
eters describing the distribution of star cluster properties, Nc is the
true number of clusters in the observed region, {Li} and {σ i} are the
vector of observed cluster luminosities or magnitudes and their cor-
responding uncertainties, and Nobs is the number of observed clus-
ters. The likelihood function p({Li}, Nobs | θ , Nc, {σ i}) is simply
the probability density of the data give the model and the observa-
tional errors, while pprior(θ , Nc) is the prior probability distribution
for the parameters θ and Nc, and p(θ, Nc | {Li}, {σ i}, Nobs) is the
posterior PDF that we are attempting to compute. To evaluate it,
we assume that the observed luminosity of each cluster represents
an independent draw from an underlying distribution of star cluster
luminosities, pL(L | θ, σ ); note that L here is the observed lumi-
nosity, not the intrinsic one, and because the uncertainties σ are not

2Here and throughout, we use lowercase p to denote PDFs, and uppercase
P to denote simple, dimensionless probabilities.
3A note on notation, since all probability distributions can be properly nor-
malized by requiring that their integrals be unity, in what follows we usually
omit normalization constants and write out all dependencies as proportion-
alities. The only exceptions are cases where we retain the normalization
constant for clarity.

the same from one measurement to another, the luminosity distri-
butions for each cluster are not identical. We defer a calculation of
pL(L | θ , σ ) to the next section.

We assume that both the intrinsic luminosities of clusters and
the observational errors on them are uncorrelated.4 Under this as-
sumption, and since the number of observed clusters Nobs is also an
independent variable, we can write the likelihood function for the
cluster population as a product of the probability distributions for
individual clusters and for Nobs,

p({Li}, Nobs | θ , Nc, {σ i})

∝ PN(Nobs | θ , Nc)
Nobs∏
i=1

pL(Li | θ , σ i). (2)

Here PN(Nobs | θ , Nc) is the probability that we will observe Nobs

clusters from a population of Nc whose intrinsic luminosity distri-
bution is parametrized by θ .

To determine PN(Nobs | θ , Nc), first consider the simplest case
where the observed clusters all come from a single field imaged with
a single set of filters and uniform sensitivity across it. In this case,
there is a single completeness function Pobs(L′), and for a cluster
population with a distribution of intrinsic luminosities pL′ (L′ | θ ),
for any set of population parameters θ there is a single probability

Pobs(θ ) =
∫

Pobs(L′) pL′ (L′ | θ ) dL′ (3)

that a randomly selected cluster will be observed. In this case,
the number of clusters we expect to observe is Nex = Pobs(θ )Nc,
and since each observation of one of the Nc clusters present is
an independent experiment, the actual number observed must be
Poisson-distributed:

PN(Nobs | Nex) = NNobs
ex e−Nex

Nobs!
. (4)

In this expression, we have suppressed the dependence of Nex on θ

for the sake of compactness.
Now consider the more general case where we have multiple

fields with different sensitivities and filter sets, and thus different
completeness functions. For each such observation j, there will be
some number of clusters Nex, j that one would expect to detect, which
is a function of both the true number of clusters in the observed field
and the observational completeness function for it. The number of
clusters Nobs, j that is actually observed in each field will then be
Poisson-distributed per equation (4), and the total number of clusters
expected in the full catalogue of all fields is just Nex = ∑

jNex, j.
However, the sum of a number of random variables that are each
drawn from a Poisson distribution is itself Poisson-distributed. Thus,
PN(Nobs | θ , Nc) must be distributed following equation (4) even for
heterogenous observations.

Because PN(Nobs | θ , Nc) depends only on Nex, it is convenient
to eliminate Nc in favour Nex as the variable for which we will seek
a posterior PDF. That is, rather than trying to compute p(θ, Nc |

4The assumption of uncorrelated noise may not be strictly true in a real
observation, since the dominant uncertainty in real observations is usually
the aperture correction. This may lead to errors that depend on the level
of crowding or background, and thus are correlated with respect to the
locations of clusters within the target galaxy. However, this would represent
a correlation of error with cluster position. As long as there is no correlation
of the error with cluster physical properties, this does not matter for our
purposes.
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{Li}, {σ i}, Nobs), we will instead compute

p(θ, Nex | {Li}, {σ i}, Nobs)

∝ PN(Nobs | Nex)
Nobs∏
i=1

pL(Li | θ , σ i). (5)

We have therefore written the likelihood function for our observed
cluster population in terms of the luminosity distribution for a single
cluster and the expected number of observed clusters, with the
dependence on Nex separable from that on θ . Of course, once one
has determined the posterior distributions of θ and Nex, one could use
these to obtain the posterior distribution of Nc. In practice, however,
this is unlikely to be interesting, for the following reason: star cluster
mass functions are invariably observed to be steep, such that by
number most clusters have low masses. Thus, the value of Nc will
depend strongly on the shape of the mass function at low masses.
Since real extragalactic observations invariably become incomplete
at masses significantly larger than the smallest possible star cluster
mass, any parameters we introduced to describe the shape of the
lower part of the mass function (e.g. a lower mass cut-off), will not
be constrained by the observations, and since Nc depends critically
upon them, it will be unconstrained by the observations as well.

2.3 The distribution of observed luminosities for individual
clusters

The final step in our derivation is to compute the distribution of
observed luminosities for an individual cluster, pL(L | θ , σ ), where
we remind readers that L is the vector of observed luminosities,
which are the result of taking the true luminosity L′ and measuring
it with some finite error σ . To do so, we assume that there is a
distribution of intrinsic cluster luminosities L′ that is identical for
every cluster, and that depends only the model parameters: pL′ (L′ |
θ ). We can then obtain the observed luminosity distribution by
marginalizing over the intrinsic luminosity of each cluster:

pL(L | θ , σ )

∝
∫

pL′ (L′ | θ ) p(L | L′, σ ) Pobs(L′) dL′, (6)

where p(L | L′, σ ) is the probability that a cluster of intrinsic lu-
minosity L′ will yield an observed luminosity L when measured
with uncertainty σ . Under our assumption that the observational
uncertainties are Gaussian, this is

p(L | L′, σ ) = (2π)−NF/2∏NF
n=1 σn

exp

[
−

NF∑
n=1

(
Ln − L′

n

)2

2σ 2
n

]

≡ N(L | L′, σ ), (7)

where the sum runs over all NF filters, and we have introduced
the notation N(x | x0, σ ) to represent the usual multidimensional
normal distribution centred on x0 with standard deviation σ and no
covariance, evaluated at position x.

We estimate the intrinsic luminosity distribution convolved with
the probability of being observed using the method described
by Krumholz et al. (2015b), and implemented in the clus-
ter slug module in the SLUG software package. Specifically,
given a library of simulated clusters, where cluster j has a mass
Mj, age Tj, extinction AV, j, and a vector of luminosities L′

j, we
write the intrinsic luminosity distribution using a kernel density

estimation model,

pL′ (L′ | θ ) Pobs(L′) ∝
Nlib∑
j=1

wj(θ)N(L′ | L′
j, h). (8)

Here, the sum runs over all Nlib clusters in the simulation library, h
is the bandwidth of the kernel density estimation, and the weights
wj are given by

wj(θ ) = Pobs(L′
j)

g(Mj, Tj, AV,j | θ )

plib(Mj, Tj, AV,j)
, (9)

where g(M, T , AV | θ ) is the proposed distribution of mass, age,
and extinction, and plib(M, T, AV) is the distribution from which the
library was sampled.

For the purposes of developing intuition, it is helpful to examine
the weight factors wj(θ ) factors in a bit more detail. The meaning of
the first term, Pobs(L′

j), is simple: it simply downweights the contri-
bution of each library cluster to the observed luminosity distribution
by the probability that will actually be observed. The factor plib(M,
T, AV) in the denominator of equation (9) simply represents the
frequency with which we drew a particular combination of (M, T,
AV) in the process of constructing the library; that is, the number of
sample library clusters that fall into a particular infinitesimal range
in mass, age, and extinction is just proportional to plib(M, T, AV). By
contrast, g(M, T , AV | θ) is the number of sampled points that we
would have had in that bin if our library had been drawn from the
distribution described by the parameters θ . Thus, the ratio of these
two terms, to which wj(θ ) is proportional, simply represents the ratio
of the number of clusters we should have for a particular set of pa-
rameters θ to the number we actually used when we constructed our
library. For example, if g(M, T , AV | θ ) = (1/2)plib(M, T , AV) at
some particular point (M, T, AV), this means that our library has
twice as many clusters in that neighbourhood as it should give the
value of θ , and thus when attempting to compute the luminosity
distribution pL′ (L′ | θ ), we should only count our library samples
as half a cluster each, wj(θ ) = 1/2. Note that our procedure imposes
a restriction on plib(M, T, AV): it must be non-zero at any point in
(M, T, AV)-space where g(M, T , AV | θ ) is non-zero for any set of
parameters θ , i.e. the support of the library must encompass the
support of all candidate distributions describing the population. If
this condition is not satisfied, then wj(θ ) diverges.

We now evaluate equation (6) using equation (7) for p(L | L′, σ )
and equation (8) for pL′ (L′ | θ ) Pobs(L′). This gives

pL(L | θ , σ )

∝
∫ Nlib∑

j=1

wj(θ) N(L′ | L′
j, h) N(L | L′, σ ) dL′

∝
Nlib∑
j=1

wj(θ )
∫

N(L′ | L′
j, h) N(L | L′, σ ) dL′

= A(θ)
Nlib∑
j=1

wj(θ ) N(L | L′
j, h′), (10)

where h′ = √
h2 + σ 2, with the sum is computed elementwise. In

the second step, we use the linearity of the integration operator
to exchange the sum and the integral and take the weights wj(θ )
out of the integral because they do not depend on L′; in the final
step, we make use of the standard result for the integral of the
product of normal distributions. The quantity A(θ ) that we have
added to the final line is a normalization constant chosen to ensure
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that
∫

pL(L | θ , σ ) dL = 1, and is given by

A(θ ) =
⎡
⎣ Nlib∑

j=1

wj(θ )

⎤
⎦

−1

. (11)

Inserting this into equation (2) gives the complete specification
of the likelihood function,

p({Li}, Nobs | θ, Nex, {σ i}) ∝ PN(Nobs | Nex)

A(θ )Nobs

Nobs∏
i=1

⎡
⎣ Nlib∑

j=1

wj(θ ) N(Li | Lj, h′)

⎤
⎦ , (12)

where PN(Nobs‖Nex) is a Poisson distribution with expectation value
Nex. As noted above, since in practice we cannot constrain Nex

from observations, we can regard it as a nuisance parameter to
be marginalized over. The remaining problem of determining the
best-fitting parameters θ , and exploring the shape of the posterior
probability distribution in the vicinity of this maximum in order to
determine uncertainties, can then be solved using any number of
methods. Our implementation uses the EMCEE package (Foreman-
Mackey et al. 2013), a Markov Chain Monte Carlo (MCMC) algo-
rithm.

Numerical evaluation of equation (12) requires some care, be-
cause the right-hand side involves a very large number of terms.
A typical catalogue might contain several thousand observed clus-
ters, and the SLUG libraries we use contain 107 sample clusters;
thus equation (12) involves 1010–1011 terms. Since any method of
finding the maximum likelihood invariably involves evaluating the
likelihood function hundreds of thousands of times, brute force
evaluation of equation (12) is impractically slow. We can avoid this
problem by noting that the normal distribution N(Li − Lj | h′) is
negligibly small for most combinations of Li and Lj, because for a
the great majority of clusters in the library |(Li − Lj)2/2h′2| 
 1.
That is, only a tiny fraction of Lj values are near any given Li, and
these nearby clusters completely dominate the inner sum in equa-
tion (12). In Appendix A, we describe an algorithm that exploits this
fact to evaluate the sum in order ln Nlib rather than order Nlib time.
Combined with openMP parallelization over the outer product, this
algorithm enables us to evaluate equation (12) for each value of θ

and five-filter photometry in a roughly 1 s on a workstation, making
MCMC optimization of the fit parameters practical.

3 MOCK CATALOGUE TESTS

3.1 Generation of mock catalogues

To demonstrate the capabilities of our new method, we carry out a
series of tests on mock data. We generate mock star cluster data sets
by running SLUG to draw a certain number of clusters from speci-
fied mass, age, and extinction distributions, and for each cluster to
calculate the photometric magnitude in the Hubble Space Telescope
(HST) WFC3 filters F275W, F336W, F438W, F555W, and F814W;
for shorthand below, we refer to these filters as UV, U, B, V, and
I. Although our method can handle heterogenous data without dif-
ficulty, for simplicity in this demonstration of it, we assume that
all fields are images in these same five filters. For all the tests pre-
sented in this section, unless otherwise noted, we adopt a Chabrier
(2005) IMF for the stars, we compute stellar evolution using the
MESA Isochrones and Stellar Tracks (MIST) version 1.0 tracks for
stars born rotating at 40 per cent of breakup (Dotter 2016; Choi

et al. 2016),5 and using SLUG’s default option (‘sb99’) for stellar
atmospheres (Leitherer et al. 1999; Vázquez & Leitherer 2005). We
include extinction with an extinction law given by SLUG’s Milky
Way extinction curve, and nebular emission using SLUG’s default
treatment, with a ratio of nebular to stellar extinction drawn from
a Gaussian distribution with a mean of 2.1 and a dispersion of 0.5,
based on the empirically determined distribution found by Kreckel
et al. (2013). All tests use Solar metallicity, and all assume a con-
stant star formation rate of Ṁ∗ = 1 M� yr−1, with star formation at
this rate having begun a time Tsf in the past, and continuing to the
present. For simplicity, and because extinction is a nuisance param-
eter, we assume that all catalogues have an extinction distribution
of the form

p(AV) ∝ exp

(
− A2

V

2σ 2
AV

)
(13)

with σAV = 0.5 mag, and AV restricted to be >0.

3.1.1 Mass and age distributions

The different mock data sets differ only in their assumed distribu-
tions of mass and age. We consider a population of clusters born
with a mass distribution

p(Mi) ∝ MαM
i exp

(
− Mi

Mbreak

)
(14)

above some minimum mass Mmin. The corresponding expectation
value for the cluster mass is

〈Mi〉 = Mbreak
� (2 + αM, Mmin/Mbreak)

� (1 + αM, Mmin/Mbreak)
, (15)

where �(a, z) is the incomplete � function. Assuming that a fraction
fc of stars are born in star clusters, the total number of clusters formed
is

Nform = fcTsf
Ṁ∗

〈Mi〉 . (16)

For the age distributions, we consider two possibilities that have
been advocated in the literature. Some authors (e.g. Fall & Chandar
2012; Chandar, Fall & Whitmore 2015; Chandar et al. 2017) argue
for mass-independent (mid) cluster disruption, whereby the proba-
bility that a given cluster survives to a particular time is independent
of its mass, at least for ages below a few Gyr. In this formulation,
the probability that a cluster survives to age T is described by a
power law,

ps,mid =
{

1, T < Tmid

(T /Tmid)αT , T > Tmid
(17)

for αT ≤ 0. In this case the corresponding joint distribution of cluster
mass and age is

d2N

dM dT
∝ MαM exp

(
− M

Mbreak

)
max (T , Tmid)αT , (18)

so that at ages T > Tmid, we have the usual power-law age distribution
dN/dT ∼ T αT usually adopted in mid-models. We require that this
distribution only apply at ages T > Tmid, and be flat at younger ages,

5The MIST models make use of the MESA stellar evolution code (Paxton
et al. 2011, 2013, 2015).
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because otherwise the distribution would diverge as T → 0.6 For
this distribution, the fraction of clusters formed that have survived
to the present day, assuming Tsf ≥ Tmid, is

fs,mid =
{

(1 + ln χ ) /χ, αT = −1
(1/χαT − αT /χ )/(1 − αT ), αT �= −1

, (19)

where χ = Tsf/Tmid is the number of disruption times for which star
formation has been ongoing.

The other possibility is that star clusters undergo mass-dependent
disruption (mdd), as proposed for example by Lamers et al. (2005)
and Gieles (2009). In this model, clusters lose mass at a rate that
varies as a power law with their current mass, dM/dT ∝ Mγmdd

with 0 ≤ γ mdd ≤ 1, so that at age T a cluster born with mass Mi will
have a mass

M = Mi

[
1 − γmdd

(
Mmin

Mi

)γmdd T

Tmdd,min

]1/γmdd

. (20)

If the second term in square brackets is >1, then the cluster is
considered to have disrupted completely. Here Tmdd, min is the time-
scale over which a cluster of initial mass Mmin loses all its mass and
disappears.7 In this case, the distribution of present-day masses and
ages is

d2N

dM dT
∝ d2N

dMi dT

dM

dMi
(21)

∝ MαM ηαM +1−γmdd exp

(
−η

M

Mbreak

)
(22)

where

η(M, T ) ≡
[

1 + γmdd

(
Mmin

M

)γmdd T

Tmdd,min

]1/γmdd

(23)

is the ratio of the initial mass to the present mass for a clus-
ter of present-day mass M and age T. Since a cluster born of
age T must have been formed with a mass larger than Ms,min =
Mmin(γmddT /Tmdd,min)1/γmdd to have survived, the fraction of clus-
ters of age T that have survived mdd is

fs,mdd(T ) =
∫ ∞

max(Ms,min(T ),Mmin) MαM e− M
Mbreak dM∫ ∞

Mmin
MαM e− M

Mbreak dM
(24)

=
�

(
1 + αM,

max(Ms,min(T ),Mmin)
Mbreak

)
�

(
1 + αM, Mmin

Mbreak

) . (25)

6Physically, the assumption that the age distribution is flat below some
minimum age Tmid is expected on dynamical grounds. Even if there is a
disruption mechanism that unbinds clusters on time-scales below Tmid, there
is no way to determine from photometry that stars have become unbound
until they begin to disperse, and they cannot disperse on time-scales less
than a cluster crossing time. Thus, regardless of the nature of any physical
disruption mechanism, the observed cluster age distribution must match the
star formation rate distribution (i.e. must be independent of age) at times
less than the typical cluster crossing time.
7Note that the conventional choice for mdd models is to normalize to the
disruption time for a cluster of initial mass 104 M�, denoted t4, or an initial
mass of 1 M�, denoted t0. We have instead chosen to normalize at Mmin

instead, simply to avoid introducing an extra parameter. Since the disruption
time is simply a power law in the mass, our Tmdd, min parameter is related
to the more usual t4 or t0 trivially: Tmdd,min = t4(Mmin/104 M�)γmdd , and
similarly for t0.

Averaged over all ages, the total fraction of surviving clusters is

fs,mdd = 1

Tsf

∫ Tsf

0
fs,mdd(T ) dT . (26)

The integral cannot be evaluated in closed form, but is trivial to
evaluate numerically for any specified set of parameters.

3.1.2 Mock catalogues

Our joint mass–age distribution is fully characterized by a choice
to use mdd or mid, and by six parameters: Mmin, Tsf, αM, Mbreak,
and either αT and Tmid (for mid-models) or γ mdd and Tmdd, min (for
mdd models). The parameters Mmin and Tsf cannot generally be de-
termined from observations of the type we are considering because
clusters near the minimum mass or maximum age are invariably too
dim to observe; they enter the problem only by changing the total
number of clusters in the catalogue. Since this effect is degenerate
with changes to the value of fc (the fraction of stars formed in clus-
ters) or Ṁ∗ (the total star formation rate), we simply set Mmin = 100
M� and Tsf = 10 Gyr for all catalogues, and do not explore varia-
tions in these parameters further. For the remaining parameters, we
consider three mock catalogues, whose parameters are summarized
in Table 1 that illustrate different possible combinations of them.
We tune our parameters so that each catalogue produces a compara-
bly sized sample of observable clusters, with the size chosen to be
about the size of the catalogue for NGC 628 presented by Adamo
et al. (2017), which contains approximately 3700 clusters (though
not all are visually confirmed). The cases are:

(i) Powerlaw: this case uses a mock catalogue with clusters
drawn from a distribution similar to that proposed by, e.g. Fall &
Chandar (2012), and Chandar et al. (2015, 2017), whereby the mass
function is a pure powerlaw whose upper limit set only by size of
sample effects, and disruption is mass independent. Specifically, we
adopt for this catalogue αM = −2, αT = −1, Mbreak = 106.5 M�,
and Tmid = 106.5 yr. Note that for this choice of Mbreak, the expected
number of clusters that form with M > Mbreak is �1, so the mass
distribution is effectively a pure power law truncated only by finite
sample size. Also adopting fc = 1 for this case, the expected number
of clusters surviving to the present day is

N = Nformfs,mid = 2.93 × 104. (27)

We therefore draw this number clusters for the mock catalogue.
(ii) Truncated: this case is similar to the results obtained by

Fouesneau et al. (2014) and Johnson et al. (2017) for Andromeda.
Disruption is mass-independent, but no disruption occurs until ages
above 100 Myr, i.e. Tmid = 108 yr. The mass function is truncated
at a lower mass, Mbreak = 105 M�. Finally, only 10 per cent of stars
form in clusters, so fc = 0.1. All other parameters are the same as for
Powerlaw. For this distribution, the mean cluster mass is 〈M〉 =
638 M� and the number of surviving clusters is N = 8.78 × 104.

(iii) Mass-dependent disruption (MDD): this cata-
logue uses parameters chosen to be similar to those obtained by
Adamo et al. (2017). For this case we use mdd, with γ mdd = 0.65
and Tmdd, min = 9.5 Myr.8 The mass distribution at birth is the same
as for Truncated, i.e. αM = −2 and Mbreak = 105 M�. We take
fc = 0.3 in this case, so the total number of clustered formed is
Nform = 4.71 × 106. Using equation (26), the fraction of clusters

8Note that Tmdd, min = 9.5 Myr is equivalent to Adamo et al.’s parameter
t4 = 190 Myr.
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Table 1. Parameters of mock catalogues, and results of fits to these parameters using SLUG. The first row lists the number of observed clusters in each mock
catalogue. The second row specifies whether the catalogue was generated using mid or mdd, and the values w(mid) and w(mdd) that we report are the Akaike
weights of the mid and mdd models as determined from our MCMC fits; see the main text for details. For all other parameters, we give the true value used in
generating the catalogue, and we list fit values in the form (q50)+(q84−q50)

−(q50−q16) where qN is the Nth percentile estimate for q. Thus, the value reported is the 50th
percentile, and the + and − error range indicates the range from the 16th to the 84th percentile. While we calculate fit parameters for both mid and mdd models
for each mock catalogue, in the table above we report the fits only for whichever of the two models has the higher Akaike weight.

Parameter Powerlaw Truncated MDD DoubleErr LibMismatch CompMismatch

Nobs 5629 5167 5479 5255 5088 5093
mid / mdd True mid mid mdd mid mid mid

w(mid) 1.0 1.0 <10−10 1.0 1.0 1.0
w(mdd) <10−10 <10−10 1.0 <10−10 <10−10 <10−10

αM True −2 −2 −2 −2 −2 −2
Fit −2.00+0.018

−0.021 −2.01+0.028
−0.033 −2.05+0.019

−0.039 −2.00+0.019
−0.021 −1.91+0.030

−0.033 −1.97+0.020
−0.023

log (Mbreak/M�) True 6.5 5.0 5.0 5.0 5.0 5.0
Fit 6.36+0.51

−0.39 4.90+0.17
−0.12 5.20+0.16

−0.09 4.90+0.10
−0.08 4.76+0.10

−0.08 4.96+0.11
−0.11

αT True −1 −1 – −1 −1 −1
Fit −1.02+0.021

−0.022 −1.01+0.071
−0.056 – −0.97+0.040

−0.038 −0.95+0.040
−0.035 −1.04+0.042

−0.040
log (Tmid/yr) True 6.5 8.0 – 8.0 8.0 8.0

Fit 6.49+0.029
−0.031 8.00+0.047

−0.050 – 7.96+0.031
−0.030 7.90+0.042

−0.041 7.97+0.035
−0.032

γ mdd True – – 0.65 – – –
Fit – – 0.61+0.030

−0.036 – – –
log (Tmdd, min/yr) True – – 6.98 – – –

Fit – – 7.05+0.134
−0.049 – – –

that survive mdd is fs, mdd = 0.00370, so the expected number of
clusters at the present day is N = 1.74 × 104.

(iv) DoubleErr: this catalogue is identical to Truncated,
except that the assumed photometric errors added to the true cluster
luminosities are twice as large – see below. Its purpose is to test
how our results depend on the size of the photometric error.

(v) LibMismatch: this catalogue is identical to Truncated
in its parameters, but instead of generating the mock catalogue
using MIST models for stellar evolution and a Milky Way extinction
curve, we generate them using SLUG’s Padova tracks (Girardi et al.
2000) and starburst attenuation curve. The goal of this catalogue is
to test the robustness of our method in a case where the models for
stellar evolution and dust are not a perfect match to the underlying
data.

(vi) CompMismatch: this catalogue is identical to Trun-
cated in its parameters, but uses a different completeness function
(see below). The goal of this catalogue is to test how our method
behaves when our estimated completeness function is not exactly
correct.

3.1.3 Completeness and photometric error

To test the effects of observational completeness and photometric
error, and show how our method copes with them, we next add noise
to our mock catalogues, and apply completeness cuts to them. We set
the photometric noise level for all catalogues except DoubleErr
to 0.1 mag in all bands,9 based on typical levels of photometric
accuracy in recent large surveys such as Legacy Extragalactic UV
Survey (LEGUS) (Adamo et al. 2017). To test the sensitivity of our
results to the noise level, for DoubleErr we set the noise level
to 0.2 mag instead, comparable to the poorest levels of accuracy
in LEGUS. For either noise level, we generate the observed mag-
nitudes of all clusters by taking the true magnitudes in each band

9Here and throughout we use Vega magnitudes.

calculated by SLUG and adding a random offset drawn from a Gaus-
sian distribution with a dispersion 0.1 or 0.2 mag, as appropriate for
that catalogue.

We next apply a completeness cut, using a completeness function
comparable to that obtained by Adamo et al. (2017) for the galaxy
NGC 628 based on their mock cluster tests. Specifically, for all the
catalogues except CompMistmatch, we take the probability that
a given cluster makes it into the catalogue to be 100 per cent for V
≤ −5 mag, 0 for V ≥ −4 mag, and linearly varying between these
two limits for −5 mag < V < −4 mag, i.e. Pobs = −V − 4 mag.
For CompMismatch, we instead use a completeness function that
is 100 per cent for V ≤ −4.75 mag, 0 for V ≥ −4 mag, and varies
in between these two limits as Pobs = [(− V − 4)/0.75]2. For each
cluster, we assign a flag of ‘observed’ or ‘not observed’ based on
the V magnitude; for clusters in the partially complete range, we
randomly assign them one flag or the other with probability Pobs(V).
This process yields a list of ≈5000 observed clusters for of our mock
catalogues; the exact number in each case is given in Table 1.

As an example of the effects of noise and the completeness cut,
Fig. 1 shows the true distribution of cluster physical properties in
the Powerlaw catalogue, and the corresponding distribution for
those clusters flagged as observed. Figs 2 and 3 show the corre-
sponding observed CMD and colour–colour diagram. As the plots
shows, observational completeness truncates both the mass and age
distributions, and does so in a way that is correlated – clusters are
more likely to remain in the catalogue if they are either young or
massive, and are mostly removed if they are old and low mass.
However, the cut-off imposed by observational limits is not sharp in
either mass or age due to the effects of stochastic sampling, varying
extinction, and partial completeness. For example, for a fully sam-
pled (i.e. non-stochastic), unextincted stellar population with a mass
of 300 M�, the ages corresponding to 100 per cent, 50 per cent, and
0 per cent completeness (V = −5, −4.5, and −4 mag, respectively)
are 12.0, 19.1, and 53.7 Myr, respectively. However, in our Pow-
erlaw mock catalogue, we find that there are 13 observed clusters
with mass <300 M� at ages above 53.7 Myr, and 388 non-observed
clusters larger than 300 M� with ages below 12.0 Myr.
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SLUG IV: forward-modelling star cluster demographics 3557

Figure 1. Distribution of clusters in the Powerlaw mock catalogue. The
top set of panels shows the distribution of all clusters, while the bottom
set shows the distribution of those clusters that are observed. In each set
of panels, the central one shows the density of clusters (in clusters per
dex2), as indicated by the colour bar; points mark individual clusters in
sparsely populated regions. The enclosing contour corresponds to a number
of clusters per dex2 equal to the lowest value in the colour bar. Above and
to the right of the central panel, we show 1D histograms of the mass and
age distributions, in units of clusters per dex (i.e. the quantities plotted are
dN/dlog M and dN/dlog T).

The conventional means of avoiding this complication in
analysing cluster populations is to impose fairly severe cuts on the
data so as to ensure that the sample that is retained is well within
the zone of completeness, and massive enough to be relatively un-
affected by stochasticity. However, this approach is undesirable

Figure 2. Same as Fig. 1, except that now we show the distribution of
clusters in colour and magnitude rather than in their physical properties. The
blue lines with large grey points show evolutionary tracks for unextincted
clusters with fully sampled (i.e. non-stochastic) stellar populations over the
age range from 105 to 1010 yr. From top to bottom, the lines correspond
to cluster masses of 106, 104, and 102 M�. The points are logarithmically
spaced in age from 105 yr (lightest) to 1010 yr (darkest) at intervals of 1 dex.
The dashed black line indicates the 50 per cent completeness limit.

because it both discards much of the available information and re-
stricts the range of applicability of the resulting fits. For example,
our Powerlaw mock catalogue contains 5629 observed clusters.
Discarding all clusters with V > −6 mag, as is done for example
in Adamo et al. (2017), leaves only 2445, and thus amounts to
throwing out more than half the data. Any fits to the remaining data
could be used to constrain the distributions of mass and age only
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