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constraints are largely independent of each other, so one could
hope to non-trivially constrain the acceptable values of σ 10 and τc.
However, additional sources of scatter not included in the simple
dimensionless SGP predictions can make it difficult to recover the
values of these parameters simply by reading off where the contours
intersect in this diagram.

None the less, this diagram (Fig. 10) and the associated SGP
predictions (Figs 3, 6, and 8) provide some heuristic guidance. We
see that in this parameter space, the input values of σ 10 and τc are
nearly independent of halo mass. This means that the fiducial model
would predict no change in the scatters of the MS or MZR, nor any
change in the slope of the FMR, which is roughly consistent with
observations (Whitaker et al. 2012; Zahid et al. 2013). We also see
that to reduce the synthetic scatter to below the observed scatter,
� ±0.34 dex for the MS and � ± 0.1 dex (Kewley & Ellison 2008,
both of which may be regarded as upper limits on the intrinsic scat-
ters), we could reduce the input accretion scatter, σ , or dramatically
reduce the coherence time (and therefore τc). Our ‘improved guess’
model adjusts the initial guess to reduce the two scatters and steepen
the FMR slope. In particular, we reduce σ by a factor of 2 and �ω

in our estimate of tcoherence to 0.25 (see the next section).

5 D ISCUSSION

In the previous section, we set up a fiducial set of assumptions to
map the SGPs of Sections 2 and 3 into observable parameters. We
were easily able to match the first-order relations, but our first guess
produced scatters in our synthetic MS and MZR that were too large.
In this section, we examine in more detail the full range of SGP-
based models that are consistent with the observed constraints on
the scatters in the MS and MZR and the slope of the FMR, and the
range of halo masses and redshifts over which SGP-based models
are valid in principle.

5.1 A more general model – do all galaxies at a fixed Mh

correspond to one SGP?

The analysis of SGPs in Sections 2 and 3 explicitly assumes that a
given galaxy has had the same values of μ, σ , tloss, tcoherence, ZIGM,
and q for eternity. This is clearly false – galaxies increase their mass
over time, moving them along any presumed scaling relations in e.g.
tdep or η, while other quantities likely depend explicitly on time, e.g.
μ and tcoherence. The statistical equilibrium model we have proposed
here, and other simpler models, may still be successful in describing
galaxies because these quantities plausibly vary slowly relative to
the internal time-scales of the galaxy, i.e. the loss time. Whereas the
typical equilibrium model assumes this of the accretion rate, our
model relaxes that particular assumption and allows the accretion
rate to vary, possibly very quickly, relative to other time-scales.

Our model was constructed with the goal of understanding the
scatter in galaxy scaling relations by examining the role of a known
(and significant) scatter in dark matter accretion rates among galax-
ies at a given mass. However, it is also plausible that the mass
loading factor, the depletion time, or some other quantity may vary
between galaxies near a fixed mass, or within a given galaxy on
relatively short time-scales. The former situation may be handled
by our model by having multiple SGPs with different values of e.g.
η at the same mass. The latter situation cannot be handled by SGPs
as we have formulated them.

The scenario in which scatter in η, tdep, or μ is responsible for the
scatter in galaxy scaling relations has several distinct predictions
compared to the stochastic accretion model we have presented.

Figure 11. Displacements from first-order scaling relations. Here we show
the offset of galaxies, in both our initial guess and improved guess models,
from fits to their MS and MZR. The black lines show a linear fit to these
data points, and the 1σ scatter of galaxies in � MZR around this fit. The
coloured lines show predictions of these quantities from two different fits to
the z = 0 FMR using different metallicity calibrations, with the thin lines
corresponding to M∗ = 108 M� and the thick to 1011 M�. Here we can see
the slight, but significant observed and predicted anticorrelation between
SFR and metallicity. Note that to fill out this histogram we drew a sample
of 100 times the number of galaxies shown in Fig. 9.

In particular, the scatter, rather than being stochastic, would be
constructed from several nearly parallel, slightly offset, equilibrium
relations. One could likely find acceptable values for the scatter in
the SGP parameters which reproduced the observed scatters, since
each equilibrium relation depends on a different combination of the
SGP parameters. Thus, one might expect to be able to have eμ vary
by ∼0.34 dex and ZIGM to vary by ∼0.1 dex.

This model would indeed produce, more or less, the observed
scatters in the MS and MZR, but it would not account for the
decreasing metallicity with increasing SFR at fixed stellar mass
(see Fig. 11), i.e. what we call the ‘slope’ of the FMR. In particular,
the equilibrium metallicity is independent of the accretion rate, and
the SFR is independent of ZIGM (at least in this simple model),
so there would be no slope in the FMR. The situation gets even
worse with a scatter in η, since both the equilibrium SFR and Z are
inversely related to η, which would tend to create a positive slope
in the FMR. Similarly, a scatter in M∗ at fixed halo mass tends to
induce a positive slope – at a given M∗, galaxies from higher halo
mass and lower halo mass will be present, and because both the
MS and MZR have positive slopes, the higher (lower) halo mass
galaxies will have higher (lower) SFRs and Zs, again leading to a
positive slope in the FMR.

Given the difficulty in obtaining a negative FMR by adding scat-
ters in the parameters which enter the equilibrium relations, com-
pared with the natural way the negative slope arises in our statistical
equilibrium model, via a time-varying accretion rate, it certainly
seems that no alternative model is needed. In fact, by enforcing the
requirement that ∂ log Z/∂ log ṀSF < 0, we may be able to obtain
limits on the scatter in parameters (M∗, η) which tend to make the
slope in the FMR positive. We caution, however, that the uncertainty
in the metallicity determinations is great enough that for some meth-
ods of computing the metallicity, the slope becomes positive at high
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Figure 12. Slope in the FMR. For both our improved and initial guesses, as
well as three fits to the z = 0 FMR using different metallicity calibrations,
we show the slope in the metallicity with respect to the SFR, as a function
of stellar mass. Since the FMR fits depend explicitly on Ṁ2

SF, we must
also choose an SFR at which to evaluate this quantity. We choose the MS
value at that mass (as determined by our fit to the MS of our initial guess
model), which we plot as the solid lines, and ±0.3 dex, the dashed lines.
The three different calibrations predict substantially different values, so
to be somewhat conservative we have chosen to interpret the observational
constraint as ∂log Z/∂log ṀSF < 0, a fact on which most calibrations agree
most of the time.

masses (Yates et al. 2012). For now we keep the weak, but perhaps
not weak enough, restriction that ∂ log Z/∂ log ṀSF < 0 and see
what constraints we can derive.

To accomplish this, we set up a six-dimensional grid of models.
Each point in the grid corresponds to a choice of σ 10, log10�ω,
scatter in M∗, scatter in tdep, scatter in η, and scatter in eμ. For
each point in the grid, we simulate a full set of galaxies – 200
per value of Mh < 1012.3 M�, and compute the scatter in the MS
and MZR and the slope in Z versus SFR at fixed M∗. We then
compare each of these pieces of information to the observations in
a maximally conservative way. We treat the observed scatters in the
MS and MZR as upper limits on the intrinsic scatters, and make no
assumptions about the purely observational scatter. Although there
is an observationally known value of the slope of Z versus SFR
at fixed M∗, we make no strong assumptions about the probability
distribution function (PDF) of that parameter – we merely require
that it is negative (see Fig. 12). Thus, for each point in the grid, we
can say how many constraints that model violates: 0, 1, 2, or 3.

In Fig. 13, we project these scores, again in a maximally con-
servative way. For each point in the 2D projection, we look up all
models in the full 6D space which have the two values under consid-
eration in our projection, and we find the model which violated the
fewest constraints. Thus, the figure shows the minimum number of
constraints violated by any model with that combination of values.
If any model with those coordinates is allowed by the constraints,
the pixel is shown in blue. Each darker shade of red means every
model with those coordinates violated at least one more constraint,
up to all three.

This exercise demonstrates that even this conservative interpre-
tation of the observed scatters as upper limits, combined with the

Figure 13. The set of parameters conservatively allowed by the observa-
tions. In addition to the parameters of the accretion process (σ 10 and �ω),
we include a variable lognormal scatter in η, M∗, tdep, and the median ac-
cretion rate eμ. These lognormal scatters have medians equal to the values
used in Section 4.2 to fit the first-order relations. Blue pixels indicate that
at least one model with that pair of parameters is consistent with the data.
Each darker shade of red means the model which violates the fewest con-
straints for that pair of parameters violates one more constraint, up to all
three. The white cross shows our initial guess, while the green ‘+’ shows
our ‘improved guess’.

weak requirement that Z decrease with increasing SFR at fixed
stellar mass, yields non-trivial constraints on the parameters. In
particular, σ10 � 0.35 dex, smaller than that in our fiducial model.
This may point to a smoothing out of the baryonic accretion rate
relative to the scatter in dark matter accretion rates implied by the
Neistein et al. (2010) formula. Perhaps even more interesting is that
there is a minimum σ 10 implied by our observational restrictions,
σ 10 � 0.1 dex, which comes from the requirement that the FMR
have a negative slope. In particular, if σ 10 is too small, the subtle
feature in the M∗(Mh) relation causes both the SFR and metallicity
of galaxies with M∗ ∼ 109 M� to be higher than the MS and MZR,
and galaxies at other masses to be below those relations, generating
a positive correlation between SFR and Z. However, other versions
of the M∗–Mh relation do not necessarily included this feature.

The scatter in M∗ for a given SGP must be �0.1 dex. This is a bit
at odds with the observational constraints from Reddick et al. (2013)
(0.20 ± 0.03 dex at fixed maximum circular velocity), although we
note that our constraint is on scatter in M∗ that is uncorrelated with
everything else in the SGP, whereas in reality it is quite plausible
(and in fact predicted by the SGP – see Appendix A) that, at a fixed
halo mass, M∗ is correlated with both SFR and Z. This number
can also be comparable to the 0.09 dex uncertainty in stellar mass
reported by Tremonti et al. (2004), though again our constraint
is only on the scatter in M∗ that is uncorrelated with all other
observables.
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Figure 14. A plausible set of constraints on model parameters. Here
we make the plausible but uncertain assumption that the FMR slope,
∂log Z/∂log ṀSF, is between −2 and −1, in addition to the constraints
on the widths of the MS and MZR. As one might expect, narrowing the
allowed range of FMR slopes dramatically reduces the allowed regions of
parameter space. One should not take these regions to be genuine constraints,
but rather to demonstrate the power of the slope of the FMR in constraining
these parameters.

Another interesting constraint is that the scatter in η must be
�0.1 dex. This is surprisingly small, considering the great deal of
theoretical uncertainty as to the actual values and scalings of η in
the first place. In our models, this comes from the aforementioned
effect that in the equilibrium relations, both Z and ṀSF are inversely
related to η, so scatter in η tends to reverse the negative slope in the
FMR.

Unsurprisingly, there is virtually no constraint on the scatter in
tdep. This is simply because the equilibrium relations for ṀSF and
Z are independent of tdep – to constrain this scatter one would need
constraints on the scatter in the M∗–Mg/M∗ relation, although if
such galaxies also had SFR measurements, they would have directly
measured depletion times anyway. There is also relatively little
constraint on scatter in the median accretion rate, eμ. Essentially
this is because, in the equilibrium relations, only the SFR is affected
by this scatter, so as long as the scatter in eμ is smaller than the scatter
in the MS, there is no problem.

With these constraints in mind, we have altered our initial guess,
simply by reducing σ 10, �ω, and σlog10 M∗ , and slightly increasing
σμ (see Table 2). We label this model the ‘improved guess’ model.
Purely for demonstration, we have also computed scores for the
grid of models where we include not only an upper limit on the
scatters, but also a much narrower range of acceptable slopes of the
FMR, namely −2 < ∂ log Z/∂ log ṀSF < −1. With these stronger
restrictions, we get the projections shown in Fig. 14. Our ‘improved
guess’ model is engineered to adhere to this much stronger con-
straint, though there are plenty of models which would be ruled
out by this strict scoring that are still consistent with the observa-

tions. Unsurprisingly, the stronger constraint dramatically narrows
the range of acceptable models in most of the projections. Partic-
ularly striking is that the allowed range of �ω ∼ �z, the interval
in redshift over which galaxies have constant accretion rates in our
model, is narrowed substantially from �ω � 3 to �ω � 0.4.

5.2 Domain of applicability

Under what circumstances might a real population of galaxies be in
statistical equilibrium? We know that for a constant accretion rate,
the SFR and the metallicity will equilibrate on the mass-loss time-
scale. A standard equilibrium model therefore requires that tloss be
much less than the time-scale on which any parameter entering into
the equilibrium relations, namely q (i.e. η, ξ , and fR), ZIGM, tdep,
and Ṁext, changes. The success of these models in understanding
the first-order trends in galaxy scaling relations suggests that these
requirements, while seemingly numerous, are at least marginally
satisfied.

Our statistical equilibrium model relaxes one of these restrictions
by splitting Ṁext into a (hopefully) slowly evolving median eμ and
a (potentially) rapidly varying stochastic component eσx(t). Our for-
mulation of this component introduces two time-scales, tcoherence –
the time between new draws from the lognormal distribution, and
σ tloss – the time for a 1σ accretion event to be forgotten by the
galaxy.

Figs 2 and 5 show graphically the exponential suppression of old
draws of the accretion distribution in their influence on the full dis-
tribution of � and Z†. In logarithmic space, the separation between
the centres of the distribution of each draw is just τc = tcoherence/tloss,
while the width of each distribution is σ . When σ � τc, the distri-
butions are well separated, and we conclude that galaxies may be
in statistical equilibrium so long as tloss is appreciably less than the
time-scale on which any parameters of the SGP change (explicitly
μ, σ , tcoherence, tloss, ZIGM, and q). Note that tcoherence itself may well
be shorter than or comparable to tloss.

When σ � τc, the contributions from previous draws begin to
matter significantly for the distribution of �. In this case, the number
of draws which are important increases from ∼1 to ∼ σ/τc, so rather
than tloss being short, we need σ tloss to be short. At least in our initial
guess, shown in the previous section, this is a minor effect since
σ ∼ 1. Therefore, the region of Mh–z space where the statistical
equilibrium model is valid should be comparable to the region where
an ordinary equilibrium model is capable of reproducing the first-
order galactic scaling relations, which in turn is set by the scaling
of tloss with halo mass and redshift.

In our fiducial model presented in the previous section, star-
forming galaxies at every halo mass were in equilibrium at z = 0.
As we mentioned, this is not necessarily the case in the real Universe
– the mass loading factor may well scale weakly with halo mass,
in which case low-mass galaxies, with their long depletion times,
would be unable to equilibrate to their baryonic accretion rate even
in a Hubble time. Either scenario is currently perfectly consistent
with observations, since the mass-loss time-scale is unknown, owing
to its dependence on η. In Fig. 15, we show regions of Mh–z space
where the equilibrium assumptions are valid – the bluer the colour,
the better satisfied the condition that the Hubble time be much longer
than teq, the maximum of the mass-loss time (tloss), the coherence
time (tcoherence), and the burn-through time (σ tloss).

To construct these diagrams, we also need to make an assump-
tion regarding how input parameters vary not only with halo mass,
but with redshift. We assume that the mass loading factor and the
factor by which we reduce the efficiency, fε , are independent of
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Figure 15. The validity of the statistical equilibrium model. Here we show
the ratio of teq to the instantaneous Hubble time, as a function of halo
mass and redshift. The bluer the colour, the more satisfied the condition
that teq < tH, required for the statistical equilibrium model to be valid.
We show two cases for the scaling of the mass loading factor with halo
mass: η ∝ M

−2/3
h , which we use in our fiducial model, and η = 0.5. Both

are consistent with direct observations of η. For reference, we overplot
the trajectories of 20 haloes as they grow stochastically, as calculated by
equations (25)–(27) with �ω = 0.5. With a strong scaling for η in halo
mass and tdep in redshift, the model is reasonable for haloes probed in
galaxy surveys, but it is certainly plausible that low-mass galaxies are not
in equilibrium.

redshift, but that the depletion time-scales as tdep ∝ (1 + z)−1, a
somewhat weaker scaling than if the depletion time scaled with the
dynamical time (Davé et al. 2012). This scaling is consistent with
recent observational results from CO observations at high redshift
(Tacconi et al. 2010, 2013; Saintonge et al. 2013), though of course
there are large uncertainties. Moreover, these observations span a
very limited range of mass and redshift compared to that shown in
these diagrams. We therefore emphasize that these plots represent
plausible assumptions, not predictions.

5.3 Evolution with redshift

Since it is plausible that a statistical equilibrium model may be
used successfully at higher redshift, one may consider extending
our analysis beyond the z ≈ 0.1 data we have considered. There
are however both theoretical and observational challenges. First,
a great deal of poorly justified assumptions are required to scale
the fiducial model to higher redshift, including the strong scaling
of depletion time with redshift discussed in the previous section.
Observationally, while there are measurements of the MS, MZR,
and FMR at higher redshift, the metallicity measurements in par-
ticular are fraught with complications arising from the changing set
of lines visible from ground-based telescopes and the uncertainty
of converting line characteristics to physical metallicities in the
substantially different environments of high-redshift galaxies (see
Kewley et al. 2013a,b). The high-order quantities we discuss in this
paper are therefore both difficult to predict and measure.

We can none the less make the basic point under the assumption
that the SFR and metallicity have reached their equilibrium values,

the metallicity will be Zeq = ZIGM + q, where q is a combination of
fR, η, and ξ , none of which are expected to change dramatically with
redshift. Thus, the MZR should not change with redshift if galaxies
are in equilibrium. Observational studies tend to find at least some
evolution (e.g. Mannucci et al. 2009; Yuan, Kewley & Richard
2013). However, given the difficulty in calibrating the zero-point of
the MZR even at low redshift, and the possibility that samples of
high-redshift galaxies are biased high in SFR and therefore low in Z
(Stott et al. 2013), we do not believe that equilibrium models have
been ruled out at higher redshifts.

Similarly, the slope of the FMR, which one may read off from
the quadratic fit to the FMR (equation 35),

∂ log Z/∂ log ṀSF = a2 + a4 m + 2a5 s (36)

should be independent of the SFR. We therefore predict that in
general a5 ≈ 0, although since m and s are highly correlated, the fact
that many best-fitting models do not yield a5 = 0 is not necessarily
an indication that this prediction is wrong.

We can also describe how the fiducial model, which does not
quite fit the data at z = 0, would scale to higher redshift. The
predicted value of σ is not dependent on redshift, at least for the
dark matter. Given our results suggesting that baryonic processes
likely play an important role in smoothing the accretion, it is unclear
how this smoothing process would evolve, so this constant value
of σ is highly uncertain. Meanwhile tcoherence will evolve strongly
with redshift, but the quantity which sets the second-order scatter
we consider is τc = tcoherence/tloss. If we assume that η at fixed halo
mass does not change, then tloss simply scales as the depletion time,
which likely does decrease significantly towards higher redshift. If
they decrease at a similar rate, near 1/(1 + z), then τc is unlikely to
evolve very much. In this scenario, we would predict that the scatter
in the MS and MZR, and the slope in the FMR at fixed stellar mass
would be roughly independent of redshift (and as evidenced in
Fig. 10, independent of halo mass).

5.4 Relationship to other work

Our model bears a resemblance to several recent papers on equilib-
rium models (Davé et al. 2012; Lilly et al. 2013). Our model reduces
to a slightly simpler version of the Davé et al. (2012) model when
τc → ∞ and σ → 0, i.e. the upper left of the σ 10−τc diagrams we
showed in Sections 2 and 3.

One of the criticisms of the Davé et al. (2012) model has been
its explicit assumption that dMg/dt = 0. Simple toy models of
the growth of galaxies under various star formation laws, (e.g.
Feldmann 2013), point out that for many galaxies at redshift zero,
dMg/dt < 0. Indeed, in our recent work on the radially resolved
evolution of disc galaxies since z = 2 (Forbes et al. 2014), we find
that much of the galactic disc for many galaxies tends to be moder-
ately out of equilibrium between local sources and sinks, with star
formation being somewhat higher than the (local) accretion rate.

The equilibrium model of Lilly et al. (2013) attempts to address
this issue by allowing part of the incoming accretion to build up in
the gas reservoir. The price they pay is that the SFR becomes an input
to their model rather than an output. Perhaps even more worrying
is that they assume dZ/dt = 0 always, even when dMg/dt 
= 0.
Note that Feldmann (2013) makes a similar argument. As shown
by our sample trajectories in Section 3, it actually takes Z longer to
equilibrate than the SFR, since the metallicity can only equilibrate
once the SFR catches up (or falls off) to the accretion rate. It is
therefore odd that they assume that the metallicity is in equilibrium
while the SFR is not. It is only through this oddity that they are
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able to fit a second-order relation, i.e. the FMR, with their model.
We consider our model to be both more self-consistent and more
powerful, in that we can generate a scatter in the SFR and metallicity,
and about the FMR itself. Pipino, Lilly & Carollo (2014) have
recently examined the validity of the equilibrium approximations
made in these models and the resulting relationship between specific
SFR and metallicity, and find reasonable agreement between their
numerical model and Lilly et al. (2013)’s approximation.

Another important result, and to our knowledge the only previ-
ous theoretical attempt to address the scatter in the MS, is Dutton
et al. (2010). They use a rather sophisticated semi-analytic model,
including cooling from virial shock-heated gas in a dark matter halo
and star formation as a function of specific angular momentum (i.e.
radius) in the disc, although they do not include any way for the gas
to change its angular momentum (as we do in Forbes, Krumholz &
Burkert 2012; Forbes et al. 2014). They find a significant but small
scatter in their model star-forming MS arising from variation in
halo concentration, which in turn causes differences in the mass ac-
cretion histories between different galaxies of the same halo mass.
Their model therefore resembles ours in the limit that τc → ∞, but
σ 
= 0. Our model’s more flexible treatment of the accretion process
and other model parameters (e.g. the mass loading factor) gives us
somewhat more insight on the problem of scatter not only in the MS
but also in the MZR and FMR, although of course our model is far
simpler in terms of its treatment of star formation, and we can make
no predictions regarding other important and interesting quantities
(Dutton 2012, i.e. galaxy sizes and rotation curves).

6 C O N C L U S I O N

In the past few years, a new view has emerged as a useful way
of understanding galaxies. In this picture, galaxies are in a slowly
evolving equilibrium between accretion, star formation, and galac-
tic winds regulated by the mass of cold gas in their ISM. To the
degree that the parameters controlling this balance are well-defined
functions of the mass of a galaxy and its redshift, this sort of model
may be used to understand the connection between galaxy scaling
relations and these physical parameters, which are not known from
first principles.

In the spirit of these equilibrium models, we have presented a
simple model which relaxes a key assumption in the equilibrium
model, namely that the rate at which baryons enter the gas reservoir
varies slowly. A population of galaxies in our model has been fed
by the same stochastic accretion process for eternity, or at least
long enough that the full joint distribution of all galaxy properties
has become time invariant. We therefore refer to our picture as a
statistical equilibrium model, since the individual galaxies are not
in equilibrium, but the population is.

With this model, we study a number of second-order relation-
ships about the well-known galaxy scaling relations between the
stellar mass and the SFR (the star-forming MS), and the stellar
mass and metallicity (the MZR). We look at the scatter at fixed stel-
lar mass in both of these quantities, as well as the (anti)correlation
between star formation and metallicity at fixed stellar mass. Our
main conclusions are as follows.

(i) Including a stochastic scatter in the accretion rate at the level
expected from N-body cosmological simulations naturally produces
an anticorrelation between SFRs and metallicities at fixed stellar
mass, as observed, and a scatter in both the star-forming MS and
MZR somewhat larger than the observed scatters.

(ii) Neglecting the scatter in model parameters (i.e. the mass
loading factor, the depletion time, the scatter in stellar mass at fixed
halo mass, etc.), all second-order quantities (the scatter in the MS,
the scatter in the MZR, and the slope in metallicity with respect to the
SFR at fixed stellar mass) are determined by only two parameters:
the scatter in the accretion rate and the ratio of the time-scale on
which the accretion varies to the time-scale on which the galaxy
loses gas mass.

(iii) Using a maximally conservative interpretation of the avail-
able data, we are able to constrain these two parameters as well
as a number of additional parameters, namely the scatter in the
mass loading factor at fixed halo mass and the uncorrelated scat-
ter in M∗ at fixed halo mass. We find that the lognormal scatter in
the baryonic accretion rate σ 10 is between about 0.1 and 0.4 dex,
moderately smaller than what we would have predicted based on
N-body simulations and assuming that the baryons follow the dark
matter. This may point to some process in the haloes of galaxies
which smoothes out variations in the baryonic accretion rate, or a
substantial amount of baryon cycling, which has the effect of aver-
aging out the accretion rate over a longer time period. We find that
the scatter in the mass loading factor at fixed halo mass is less than
0.1 dex, remarkably small considering the theoretical uncertainty in
the details of the physics of feedback. Our constraint on the time-
scale over which the accretion rate varies is much weaker, with the
allowed time period exceeding a change in redshift of 1, but it could
be narrowed considerably by stronger constraints on the FMR.

The statistical equilibrium framework we have presented here
is a novel approach to understanding higher order properties of
galaxy scaling relations analytically. This sort of analysis may be
plausibly extended to other galaxy properties beyond what we have
considered here, or to other astrophysical applications involving a
self-regulated process being driven stochastically. For our particular
application of this method, we hope that our analysis motivates new
development in both theory and observation.

On the theory side, tcoherence (or a more sophisticated quantity
describing the time-scales on which accretion varies) and σ may
be measured with some confidence in both dark-matter-only and
baryonic cosmological simulations. Semi-analytic models may be
altered to include the appropriate level of variability in baryonic
accretion rates. Meanwhile, we have shown that observable quanti-
ties, e.g., the scatter in the star-forming MS, can provide significant
constraints on properties of the baryonic accretion process and the
galaxy-to-galaxy variability of the mass loading factor. Our infer-
ences are, however, limited by our limited certainty on the intrinsic
scatter in the scaling relations we have considered and the true pa-
rameters of the FMR. Pinning down these quantities observationally
at a variety of masses and redshifts may substantially improve our
understanding of the details of baryonic accretion and feedback.
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A P P E N D I X A : D E TA I L S O F T H E M O N T E
C A R L O SI M U L AT I O N S

Throughout this paper, we have presented heatmaps of various quan-
tities as a function of τc = tcoherence/tloss, and σ10 = σ log10(e). Com-
puting each of these quantities for the model is typically a non-trivial
task which requires a Monte Carlo simulation, in which a large en-
semble of galaxies are sampled at random times to sample the
underlying true distribution of the quantity in question for galaxies
in this model. Here we describe the details of these simulations.

For each pixel in these grids of τc versus σ 10, we sample an en-
semble of 30 000 galaxies. Each galaxy is started at a time τ = 0
with initial values � = Z† = 1, the equilibrium values for those
quantities in the limit σ → 0 and τc → ∞. The galaxies are then
evolved for long enough that, for all practical purposes, they forget
their initial conditions (formally our model assumes that the galaxy
population has been undergoing the same stochastic accretion pro-
cess for eternity, but this is obviously impractical computationally).
To determine ‘long enough’, we use the analytic results derived
in Sections 2 and 3 which show that galaxies forget their initial
conditions with an e-folding time of tloss. We also note that for our
distribution to represent the true long-term steady-state distribution,
as discussed in Section 5.2, galaxies with large scatters in their ac-
cretion rate need to experience enough draws from the accretion
rate distribution that even the tail of the probability distribution of
past events has no influence on the present distribution.

We therefore define a time-scale τlong = 1 + τc + σ , i.e. a time
guaranteed to be of the order of the longest time-scale in the problem
for any choice of τc and σ . We then calculate the number of draws
from the accretion distribution necessary to simulate each galaxy out
to 15τ long, namely k = 15τlong/τc. We then draw a pseudo-random
number uniformly distributed between 0 and 1, and compute the
galaxy’s properties (�, Z†) at the time τobs = (k + r)τc, where r
is the random number. This samples the full distribution of these
quantities for the population of galaxies in steady state. In general,
the computational cost is just proportional to k, since to compute
� and Z†, we must first draw k random numbers and compute the
sequence �1, . . . , �k and Z

†
1 , . . . , Z

†
k before we can calculate those

quantities at τ obs. Thus, the models with short coherence times, i.e.
τc � 1, are the most expensive.
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Figure A1. The correlation between SGP versions of the SFR and stellar
mass. The non-zero correlation shows that scatter in stellar mass at fixed halo
mass can drive galaxies along the MS, rather than being merely uncorrelated.

With the 30 000 samples for each of the 41 by 41 points in the
grid of σ and τc, we can then compute each of the quantities shown
in this paper – the standard deviation of Z† and � (independently),
the correlation between the two quantities, and the linear slope. We
also record a quantity which may be regarded as a proxy for stellar
mass, defined as

M∗ =
∫ τobs

0
�(τ ) dτ. (A1)

Naturally the magnitude of this quantity is, on average, propor-
tional to the amount of time we let the simulations run, which is
chosen subjectively to be �15τlong. However, one may expect that
any statistical properties which remove the mean may be physi-
cally relevant. In Figs A1 and A2, we show the correlation between
our analogues to star formation and metallicity, and stellar mass.

Figure A2. The correlation between SGP versions of the metallicity and
the stellar mass. Just as with the SFR, the correlation is positive everywhere,
meaning again that scatter in stellar mass at fixed halo mass scatters galaxies
along the MZR.

Clearly, over much of parameter space there is a small but appre-
ciable correlation between each quantity and M∗, meaning that the
tension between our result that σlog M∗ � 0.15 dex and the observa-
tional constraint that the scatter in stellar mass at fixed halo mass
be 0.19 dex (Reddick et al. 2013) is not a large concern. This is
because our constraint is on scatter in M∗ that is uncorrelated with
any other quantity, whereas in reality, as in the SGP, the stellar mass
may well be positively correlated with the quantities in question,
in which case at least some of the scatter in M∗ will be along the
first-order scaling relations, and therefore would not contribute to
the scatter in the relation at fixed stellar mass.
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