Jet-Induced Emission-Line Nebulosity and Star Formation in the
High-Redshift Radio Galaxy 4C41.17

Geoffrey V. Bicknell¹
Ralph S. Sutherland¹
Wil J. M. van Breugel²
Michael A. Dopita¹
Arjun Dey³
George K. Miley⁴

1. ANU Astrophysical Theory Centre, Research School of Astronomy & Astrophysics, Australian National University. Postal address: Mt Stromlo Observatory, Private Bag, Weston PO, ACT, 2611, Australia. Email addresses: Geoffrey Bicknell: Geoff.Bicknell@anu.edu.au; Ralph Sutherland: ralph@mso.anu.edu.au; Michael Dopita: mad@mso.anu.edu.au

2. Institute of Geophysics & Planetary Physics, LLNL, Livermore, CA 94550. Email: wil@igpp.llnl.gov

3. KPNO/NOAO, 950 N. Cherry Ave., PO Box 26732, Tucson, AZ 85726. Present address: Dept. of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218. Email: dey@skysrv.pha.jhu.edu

4. Leiden Observatory, PO Box 9513, 2300 RA, Leiden, The Netherlands. Email: miley@strw.leidenuniv.nl
Received _________________; accepted _________________
The high redshift radio galaxy 4C41.17 has been shown in earlier work to consist of a powerful radio source in which there is strong evidence for jet-induced star formation along the radio axis. We argue that nuclear photoionization is not responsible for the excitation of the emission line clouds and we construct a jet-cloud interaction model to explain the major features revealed by the detailed radio, optical and spectroscopic data of 4C41.17. The interaction of a high-powered ($\sim 10^{46}$ ergs s$^{-1}$) jet with a dense cloud in the halo of 4C41.17 produces shock-excited emission-line nebulosity through ~ 1000 km s$^{-1}$ shocks and induces star formation. The Civ luminosity emanating from the shock, implies that the pre-shock density in the line-emitting cloud is high enough (hydrogen density $\sim 1 - 10$ cm$^{-3}$) that shock initiated star formation could proceed on a timescale (\sim a few $\times 10^6$ yr), well within the estimated dynamical age ($\sim 3 \times 10^7$ yr) of the radio source. Broad (FWHM $\approx 1100 - 1400$ km s$^{-1}$) emission lines are attributed to the disturbance of the gas cloud by a partial bow-shock and narrow emission lines (FWHM $\approx 500 - 650$ km s$^{-1}$) (in particular C$\text{iv} \lambda 1548, 50$) arise in precursor emission in relatively low metallicity gas or in shocked line emission in the lateral regions of the bow shock.

The implied baryonic mass $\sim 8 \times 10^{10}$ M_\odot of the cloud is high and implies that Milky Way size condensations existed in the environments of forming radio galaxies at a redshift of 3.8. Our interpretation of the data provides a physical basis for the alignment of the radio, emission-line and UV continuum images in some of the highest redshift radio galaxies and the analysis presented here may form a basis for the calculation of densities and cloud masses in other high redshift radio galaxies.
Subject headings: galaxies: active — galaxies: galaxies — elliptical: high-redshift — radio continuum: galaxies
1. Introduction

One of the most intriguing discoveries in the study of high-redshift radio galaxies (HzRG) has been that the rest-frame UV continuum emission from their parent galaxies is aligned with the non-thermal radio emission (McCarthy et al. 1987; Chambers, Miley, & van Breugel 1987). The nature of this continuum and ‘alignment effect’ has remained unclear. In nearby radio galaxies evidence has been found for jet-induced star formation, scattered light from hidden quasar-like AGN and nebular recombination continuum (Van Breugel et al. 1985; van Breugel & Dey 1993; Dey et al. 1996; Tadhunter, Dickson, & Shaw 1996; Dickson et al. 1995; di Serego Alighieri et al. 1989; Cimatti et al. 1996). A good example of radio-aligned UV emission in a very high-redshift radio galaxy is 4C41.17 at $z = 3.800$, which has been extensively studied at optical and radio wavelengths (Chambers, Miley, & van Breugel 1990; Miley et al. 1992; Carilli, Owen, & Harris 1994; Chambers et al. 1996). Recent HST observations have shown that the rest-frame UV morphology of 4C41.17 consists of four main regions, the brightest of which (4C41.17-NE) contains an edge-brightened bifurcated feature consisting of several compact knots located between the radio nucleus and a bright radio knot (Van Breugel et al. 1998).

Deep spectropolarimetric observations with the W. M. Keck Telescope by Dey et al. (1997) show that 4C41.17 is unpolarized between $\lambda_{\text{rest}} \sim 1400 \text{ Å} - 2000 \text{ Å}$, implying that scattered light does not dominate the aligned UV continuum. Instead, the observations show absorption lines and P-Cygni-like features that are similar to those seen in $z \approx 2 - 3$ star forming galaxies and nearby Wolf-Rayet starburst systems. The possibility of jet-induced star formation in 4C41.17 and other HzRGs has been suggested before (De Young 1981; De Young 1989; Rees 1989; Begelman & Cioffi 1989; Chambers, Miley, & van Breugel 1990; Daly 1990) but until now has lacked sufficient observational basis. In this paper we revisit the jet-induced star formation scenario for 4C41.17 in the light of the new data that are now
available, and present a self-consistent model in which interaction between one of the jets and a large, dense cloud in 4C41.17 produces both shock-excited line emission and induces star formation. It is fortunate that both phenomena occur since information provided by the former process enables us to better constrain the parameters relating to the latter.

Throughout this paper we assume that \(H_0 = 50 \text{ km s}^{-1} \text{ Mpc}^{-1} \) and \(q_0 = 0.1 \) for consistency with earlier work on 4C41.17. The luminosity distance \(d_L \), angular size distance \(d_A \) and linear scale at the redshift of 4C41.17 (\(z = 3.800 \)) are then 51.6 Gpc, 2.24 Gpc, and 10.8 kpc arcsec\(^{-1} \) respectively. We follow the notation of Chambers, Miley, & van Breugel (1990) and Carilli, Owen, & Harris (1994) in referring to the radio features (components, knots etc.).

2. HST Observations of 4C41.17 and the Relationship to the Radio Emission

The details of HST imaging of 4C41.17 are given in Van Breugel et al. (1998). Here, we summarize some of the pertinent details of these images and their relationship to the radio emission in order to facilitate the following theoretical discussion.

The montage in Figure 1 shows three HST images in different bands with the X-band radio images of Carilli, Owen, & Harris (1994) superimposed in the form of contours. The top image is a deep rest-frame UV image (F702W filter, \(\lambda_{\text{rest}} \sim 1430\AA \); 6.0 hours exposure); the middle image was acquired through the F569W filter, which includes Ly\(\alpha \) (2.0 hours exposure); the bottom image is a Ly\(\alpha \) image (LRF filter at \(\lambda_c \sim 5830 \text{ Å} \); 2.0 hours exposure). All of these images show strongly aligned non-thermal and thermal components. The direct association of the radio components with both UV continuum and Ly\(\alpha \) emission, together with the spectroscopic evidence for young stars from the Keck observations, strongly points to jet-induced star formation. In particular, the radio knot B2 (the second
from the left in these images) is associated with a Lyα “hotspot”. The F702W and F569W images reveal an interesting knotty and bifurcated feature (approximated with a 0.8 by 0.24′′ [~ 8.6 × 2.6 kpc] oval or parabola, shown enlarged on the right of Figure 1). It is natural to interpret this enhanced UV continuum as tracing the locus of newly formed stars. We comment further on this in § 3 in the context of our model.

In Figure 2 a 0.3″ smoothed version of the F702W image is displayed. This brings out an additional star forming region to the South of the regions evident in the unsmoothed version. Van Breugel et al. (1998) have estimated the star-formation rates in these regions from the UV luminosity, using the relationship between ultraviolet flux and star formation rate determined by Conti, Leitherer, & Vacca (1996). The estimated star formation rates in the various regions are given in table 1.

In the smoothed image, the region of UV continuum near both of the radio components B2 and B3 is even more marked, consistent with enhanced star formation in association with these components.

Following Van Breugel et al. (1998) we adopt the following nomenclature for the components in the HST image: The NE component is the region of edge-brightened UV emission located on the core side of the bright radio knot B2; NEE is the more diffuse component to the East of this. NW is the UV component along the radio axis on the Western side of the radio core and S is the clumpy component to the South, in the smoothed image.

The evidence for jet-induced line emission and star formation in the brightest UV emission region in 4C41.17 (4C41.17NE) is compelling and can be summarized as follows (Van Breugel et al. 1998; Dey et al. 1997):

- The star formation rate per square kiloparsec in the four UV bright regions mentioned
in the introduction is by far the greatest in 4C41.17NE (Van Breugel et al. 1998). (1996). The morphology of 4C41.17NE and its proximity to the radio knot, B2, strongly indicate that star formation has been induced by the interaction between the northern jet of the radio source and the cloudy medium of the forming parent galaxy as expected in the jet-induced star formation models cited above. The random distribution and lower star formation rates in the 4C41.17S knots, which are comparable to those of ‘Lyman-break’ galaxies (Steidel et al. 1996), suggests that star formation in that region is unaided by bowshocks from the radio jet.

- The HST Lyα image shows a bright arc-shaped feature near B2 at the apex of the edge-brightened UV structure, suggestive of a strong bow shock at the location where the jet interacts with dense ambient gas. Such emission-line features near bright radio structures are also often seen in nearby radio galaxies (van Breugel et al. 1985; Tadhunter et al. 1994) and these have a similar interpretation.

- The kinematics of the Lyα emission is very much disturbed in the aligned component with velocities with respect to systematic \(\sim 500 - 1400 \text{ km s}^{-1} \) and the range of FWHM in the spectra \(\approx 700 - 1400 \text{ km s}^{-1} \) (Dey et al. 1997; Chambers, Miley, & van Breugel 1990), suggesting large (projected) velocities and highly turbulent motions.

- The brightest Lyα emission is found on the same side (East) which has the outer hotspot of 4C41.17 closest the nucleus. This agrees with the general radio / EELR morphological asymmetry correlation seen in powerful FR-II radio galaxies (McCarthy, van Breugel, & Kapahi 1991), and suggests that the radio source has been impeded in this direction as a result of its encounter with relatively dense gas.

- As we noted in the introduction, the absence of any evidence for a polarized, scattered AGN continuum supports the notion that, in the case of 4C41.17, the active nucleus
is not responsible for the extended UV emission.

The above data suggest that there is substantial turbulence produced by a jet-cloud interaction in the vicinity of the radio components B2 and B3 and that the emission lines from this galaxy are probably related either to the star-forming region or to emission from radiative cloud shocks rather than excitation by UV-X-ray emission from the active nucleus.

3. Interaction of Clouds in the Lyα Halo with the Radio Jets

3.1. Outline of model

4C41.17 is located at the center of a large Lyα halo (Chambers, Miley, & van Breugel 1990). The passage of relativistic jets through such a halo will inevitably result in substantial jet–cloud interactions. In the case of the jet-cloud interaction evident near the radio knot B2 we suggest that a glancing incidence of the jet on the cloud causes a partial bow-shock to be driven in to the cloud. This is manifest through the associated shock-excited line emission and associated star formation in the bifurcated structure referred to above. The jet deposits much of its momentum at this site and it continues onward to the knot B3 where the decelerated jet plasma accumulates as a radio \textquotedblleft lobe\textquotedblright.

Details of the spectra and images enable us to understand some of the important characteristics of the interaction. The Keck spectra (Dey et al. 1997) show three kinematically distinct components. Emission-line gas associated with the components B1, B2 and B3 of the inner radio source 4C41.17 consists of two components: relatively narrow lines for all species (Lyα, N v, Si ii, Si iv, C iv, He ii, and C iii) with FWHM $\approx 500–650\text{ km s}^{-1}$, and broad Lyα and C iii] with FWHM $\approx 1100–1400\text{ km s}^{-1}$. The third

\footnote{Si iv is also possibly broad; however, the estimate of the line width is complicated by}
component consists of narrow absorption lines often associated with the narrow emission-lines in P-Cygni-type features. These lines typically have FWHM $\approx 400 - 800$ km s$^{-1}$.

In our model, the broad emission lines originate from the apex of the jet’s bow shock, i.e. very close to the Lyα hotspot. This phenomenon is also observed in low redshift radio galaxies (van Breugel et al. 1985; Tadhunter 1991). The “narrow” emission lines, which differ in FWHM from the broad lines by only a factor ~ 2, and which also have a FWHM similar to that of the halo Lyα, may originate in (1) precursor gas preceding or outside the bow shock, (2) gas which is shocked by the lower velocity region of the bow-shock away from its apex or (3) both. The narrow absorption lines must arise in the atmospheres of young stars which are formed away from the apex of the bow-shock. This is consistent with the F702W (rest-frame UV) image of 4C41.17, which shows that the knots of UV emission close to B2, avoid the Lyα hotspot. Qualitatively, it seems natural that star formation may be inhibited near the apex of the bow shock. This is the site of interaction of the jet with the cloud and is likely to be a region of high vorticity. Moreover, the smoothed image shows distributed UV continuum associated with both of the radio components B2 and B3. Hence, it is likely that the general disturbance associated with these components has promoted star formation in the vicinity, not just in the bifurcated feature to which we have drawn attention.

As we have stated, many of the observed narrow emission lines could be produced either in the jet bow-shock or in the photoionized winds of the newly formed stars. An important exception is C$\ IV$ which is weak in stars older than 3×10^6 yr (Leitherer, Robert, & Heckman 1995). Moreover, when this line is present in emission in young stars, its strength is comparable to the absorption strength. In 4C41.17 the C$\ IV$ emission line strength dwarfs the absorption component and we therefore attribute this component of associated absorption.
emission to the effects of the radiative cloud shock. The C IV emission is narrow and this is an indicator that most of the flux from this line originates in the precursor material ahead of the bow shock. As we show below this is consistent with the velocity $\sim 1000 \text{ km s}^{-1}$ that we adopt for the normal component of this shock. For shocks of this velocity almost all of the C IV emission originates from the precursor.

3.2. The Jet Bow Shock

Let us now focus on the brightest emission line knot adjacent to knot B2 in the radio image. If a large fraction of the jet momentum flux, F_p, is absorbed at this interaction site, and the cross-sectional area of the (presumably jittering) jet over which the momentum is spread is A_{jet}, then the velocity of the bow shock driven into the cloud of density ρ_{cl} is given by $v_{\text{sh}} \approx (F_p/\rho_{\text{cl}}A_{\text{jet}})^{1/2}$. For a relativistic jet, the energy flux, $F_E = cF_p$; for a non relativistic jet, $F_E \approx 0.5 v_{\text{jet}} F_p$. The FWHM of knot B2 $\approx 0.11''$ (Chambers, Miley, & van Breugel 1990) and this angular scale provides an upper limit for $A_{\text{jet}} \approx 1.1 \times 10^{43} \text{ cm}^2$ since the radio emission resulting from the jet burrowing into the cloud emanates from a larger volume than just the head of the locally produced radio cocoon. We therefore obtain the corresponding lower limits for the bow shock velocity:

\begin{equation}
\begin{aligned}
 v_{\text{sh}} &\gtrsim 1100 F_{E,46}^{1/2} n_{H}^{-1/2} \text{ km s}^{-1} \quad \text{(relativistic)} \\
 v_{\text{sh}} &\gtrsim 1600 F_{E,46}^{1/2} \beta_{\text{jet}}^{-1/2} n_{H}^{-1/2} \text{ km s}^{-1} \quad \text{(non-relativistic)}
\end{aligned}
\end{equation}

where $10^{46} F_{E,46} \text{ ergs s}^{-1}$ is the jet energy flux and $n_{H} \text{ cm}^{-3}$ is the Hydrogen density in the cloud. These velocity limits are to be compared to the velocity with respect to systemic $\sim 500 - 1400 \text{ km s}^{-1}$ of Lyα in this region and also the FWHM of Lyα $\sim 700 - 1400 \text{ km s}^{-1}$. With radiative shocks, comparable fluxes of Lyα are emitted from both precursor and shocked regions so that these two measures of the Lyα velocity field give us a good indication that the normal component of the bow-shock velocity is of order 1000 km s^{-1}.

3.3. Shock-excited line emission

Let us now consider the emission line fluxes and how these relate to the ambient density and shock velocities. In so doing we are utilizing data with quite different spatial resolutions, the Keck spectra and the HST line and continuum images. The emission line components revealed by the Keck spectra are not resolved by the Keck spectra and we would expect contributions to the emission line luminosity from a number of the Lyα emitting regions. However, we expect the most significant contribution to come from the brightest Lyα emitting region in the immediate vicinity of the radio knot B2. Moreover, the stellar features in the Keck spectra originate from young stars and the site of these is revealed by the HST UV continuum images. Therefore, there is good reason to believe that the Keck spectra relate to the jet-cloud interaction near radio component B2.

The strongest emission lines in the spectrum are Lyα and C ivλ1548, 50. As is well known, the transfer of Lyα is subject to strong resonant scattering effects making it difficult to directly infer shock parameters from emission line fluxes. C iv is not as strongly affected by resonant scattering, and we therefore use the luminosity of the C iv doublet to constrain shock parameters. As we have shown above, the favored velocity of the normal component of the bow shock velocity is in the vicinity of 1000 km s$^{-1}$ and it is useful to note that is that this is compatible with a number of features of the emission. First, the C iv emission from a shock with this velocity is dominated by the precursor and the velocity dispersion of C iv (∼250 km s$^{-1}$) is in the range of halo velocity dispersions and is consistent with precursor dominated emission. Second, the HST Lyα image shows Lyα emission ahead of the presumed location of bow-shock (knot B2) indicating significant precursor emission in Lyα.

The emission from shocks with velocities ≤ 500 km s$^{-1}$ were calculated for solar metallicities by Dopita & Sutherland (1996a) and Dopita & Sutherland (1996b). Recent
work (Sutherland, Allen, & Kewley 1999) extends these calculations to higher velocities ($\sim 800 - 900 \text{ km s}^{-1}$) and lower metallicities. Extension to even higher velocities $\gtrsim 1000 \text{ km s}^{-1}$ is difficult at present. However, the results from the Sutherland et al. (1999) calculations certainly give one an indication of the magnitude of shock emission and the trend with increasing velocity.

For a shock of area A_{sh}, proceeding into gas with pre-shock Hydrogen density, n_H we represent the shock luminosity in C IV, $L(C_{\text{IV}})$, in the form

$$L(C_{\text{IV}}) = \alpha(C_{\text{IV}}) n_H A_{sh} \quad (3-2)$$

The shock coefficient $\alpha(C_{\text{IV}})$ is shown as a function of shock velocity and metallicity in Figure 3. The earlier Dopita and Sutherland solar metallicity shock grid produces C IV emission with a coefficient $\alpha(C_{\text{IV}})$ ranging between 6×10^{-5} and 5×10^{-4}, with the dominant source of C IV emission coming from the shock itself. Extrapolation to 1000 km s^{-1} would give $\alpha(C_{\text{IV}})$ just over 1×10^{-3}. The extended grid of (Sutherland, Allen, & Kewley 1999) for higher velocities and lower metallicities shows that C IV emission is much more efficient than extrapolated from the earlier low velocity grid, the reason for this being that C IV emission from the precursor region comes to dominate. At sub-solar metallicities the C IV emission is further enhanced, as the temperature of the precursor increases and C IV$\lambda\lambda 1548,50$ is excited more efficiently. This trend does not continue indefinitely as the effect of decreasing abundance eventually dominates. For example, for LMC abundances (Russell 1989), the $\alpha(C_{\text{IV}})$ coefficient grows rapidly with shock velocity, to values around 0.01. The value of this coefficient for SMC and solar abundances also rises to similar but lower values. It is not until $[\text{Fe/H}]$ falls to -2.0 or lower that the C IV efficiency fails to reach these levels.

Therefore, for shock velocities $\gtrsim 600 \text{ km s}^{-1}$ and for a range of metallicities, particularly LMC metallicities, $\alpha(C_{\text{IV}}) \sim 0.01$ so that we adopt this as a fiducial value. Also, as
we have noted above, the shock emission in this case is dominated by the emission from
the precursor as distinct from the low velocity case where the emission is dominated by
the shocked gas. This feature of shock-induced emission is consistent with the observed
velocity dispersion. The other important point to note is that because of the timescales
involved (\(\sim 10^7 \) yr), shocks with the velocities which are relevant here, are fully radiative.
For the velocity range of 700 – 900 km s\(^{-1}\) at LMC abundances, the cooling timescales are
\((9.4 - 16.3) \times 10^5 (1.0/n_H) \) yr, so that the shocks are fully radiative on timescales short
compared to the source timescale for densities \(\gtrsim 1.0 \text{ cm}^{-3} \).

As a fiducial value for the shock area we take the projected area, \(A_p \approx 35 \text{ kpc}^2 \),
obtained by counting HST pixels in the F569W image in the NE region, above a ’sky’
value, it is about 50% more than the area of the oval area the F702W and F569W images
in Figure 1 and is equivalent to the dashed rectangle in the centre right panel. With this
fiducial value for \(A_{sh} \) the predicted C IV luminosity from the shock is
\[
L(\text{C IV}) \approx 3 \times 10^{42} \left(\frac{\alpha(\text{C IV})}{0.01} \right) n_H \left(\frac{A_{sh}}{A_p} \right)^{-1} \text{ergs s}^{-1} \quad (3-3)
\]
where the value of \(\alpha(\text{C IV}) \) is really an average of the different normal components of
velocity over the bow-shock surface. Comparing the predicted C IV luminosity with that
observed, \(\approx 4.2 \times 10^{43} \text{ ergs s}^{-1} \), one can see that, if a fraction \(f(\text{C IV}) \) the C IV luminosity
emanates from this region, then \(n_H \sim 10 f(\text{C IV}) \text{ cm}^{-3} \).

By way of the lower limits for the bow shock velocity [see equations(3-1)] upper limits
on the energy flux can be estimated from:
\[
F_{E,46} \lesssim 0.77 n_H \left(\frac{v_{sh}}{10^3 \text{ km s}^{-1}} \right)^2 \text{ ergs s}^{-1} \quad \text{(relativistic)} \quad (3-4)
\]
\[
F_{E,46} \lesssim 0.39 n_H \beta_{\text{jet}} \left(\frac{v_{sh}}{10^3 \text{ km s}^{-1}} \right)^2 \text{ ergs s}^{-1} \quad \text{(non-relativistic)}
\]
Taking into account the likely range of number densities and the range of velocities in
the shocked material, it is evident that the upper limit on the jet energy flux is of order
\(10^{47} \text{ ergs s}^{-1} \) for a relativistic jet. For \(\beta_{\text{jet}} \approx 0.1 \), the upper limit is of order \(10^{46} \text{ ergs s}^{-1} \).
However, note that a jet with $\beta_{\text{jet}} \sim 0.1$ is unlikely to be supersonic. We expect that all jets in such sources are initially relativistic and the critical velocity at which they become subsonic is approximately $0.3c$ (Bicknell 1994).

3.4. Star formation in the shocked cloud

Star formation initiated by shocks has been a process that has been considered in many contexts for some time and much of the theoretical underpinnings of the subject were treated in a fundamental paper by Elmegreen & Elmegreen (1978). They consider a shocked layer of surface density σ confined by both self gravity and an external pressure P_{ext}. The reader is referred to Figure 5 for a description of the shock geometry. The Elmegreen and Elmegreen analysis involves the parameter

$$A = \left[1 + \frac{2P_{\text{ext}}}{\pi G \sigma^2} \right]^{-1/2}$$

(3-5)

where G is the constant of gravitation. Such a layer is strongly self-gravitating when $A \to 1$; the confinement is dominated by external pressure when $A \to 0$. With ρ_{00} as the density at the layer midplane, and H as the half-thickness of the layer, the temporal frequency ω and the wavelength, λ, of a perturbation are given in terms of their non-dimensional values, Ω and ν, by

$$\omega = (4\pi G \rho_{00})^{1/2} \Omega \quad \text{and} \quad \lambda = 2\pi H \nu^{-1}$$

(3-6)

In order that jet-induced star formation be effective, the time-scale for gravitational instability should be less than (and preferably much less than) the dynamical time-scale $\sim 10^7$ yr for the shocked region that we are considering. We therefore adopt a fiducial timescale of 10^6 yr for gravitational instability. The external pressure confining the recombination layer following a strong radiative shock into material with a pre-shock density ρ, is $P_{\text{ext}} \approx \rho v_{\text{sh}}^2$ and the surface density of the accreting layer is $\sigma = \rho v_{\text{sh}} t$. Hence,
the instability parameter defined by equation (3-5) above is given by

\[A = \left[1 + 4.0 \times 10^3 n_H^{-1} t_6^{-2} \right]^{-1/2} \approx 1.6 \times 10^{-2} n_H^{1/2} t_6 \] (3-7)

This places the layer in the regime where it is not dominated by self-gravity. Interestingly, however, fragmentation on a short enough timescale can occur. This is revealed by the following estimates of the instability timescale, the length scale corresponding to the maximal growth rate and the minimal length scale on which instability will occur. Fragmentation in this parameter regime has also been pointed out by Whitworth et al. (1997).

For \(A << 1 \), Elmegreen & Elmegreen (1978) numerically estimate the nondimensional values of the maximal growth rate, \(\Omega_{mgr} \), the wave number for maximal growth, \(\nu_{mgr} \), and the maximum wave number for instability, \(\nu_c \):

\[-\Omega_{mgr}^2 \approx 0.139 \quad A\nu_{mgr} \approx 0.294 \quad A\nu_c \approx 0.639 \] (3-8)

These non-dimensional values can be converted to physical units using the above relations between the half-thickness of the layer, the surface density and the central density, \(HA = 2^{-1} \sigma \rho_0^{-1} \), resulting in the following expressions for the timescale of maximum growth, \(t_{mgr} \), the wavelength, \(\lambda_{mgr} \) of the maximally growing perturbation and the minimum wavelength for instability, \(\lambda_{min} \):

\[t_{mgr} \approx 58 \left(\frac{\rho}{\rho_0} \right)^{1/2} n_H^{-1/2} \text{ Myr} \] (3-9)

\[\lambda_{mgr} \approx 11 \left(\frac{\rho}{\rho_0} \right) \left(\frac{v_{sh}}{10^3 \text{ km s}^{-1}} \right) t_6 \text{ kpc} \] (3-10)

\[\lambda_{min} \approx 5.1 \left(\frac{\rho}{\rho_0} \right) \left(\frac{v_{sh}}{10^3 \text{ km s}^{-1}} \right) t_6 \text{ kpc} \] (3-11)

The relevance of these estimates to the present situation is realized when we allow for the fact that in a radiative shock the ratio, \(\rho_0 / \rho \), of recombination to pre-shock densities is
typically of order 100. For $\rho_{00}/\rho \sim 100$, $t_{\text{mgr}} \approx 6 - 2$ Myr for $n_H = 1 - 10$ cm$^{-3}$. The linear scale corresponding to the maximum growth rate and the minimum growth scale both increase with time and indicate that the sizes of the star formation regions are of order a few hundred parsecs after about 3×10^6 yr.

Thus, for the range of pre-shock densities, $n_H \sim 1 - 10$ cm$^{-3}$ that we have identified from the shock dynamics, it is quite clear that gravitational instability occurs on timescales comfortably within the dynamical timescale of the jet-cloud interaction. Moreover, the sizes of the star formation regions fit well within the structures observed at the interaction site. Indeed, it is interesting to note the existence of knots in the bifurcated feature near B2 and B3 on a scale of 2-3 HST pixels corresponding to a spatial scale of $1 - 1.5$ kpc.

The above application of the Elmegreen & Elmegreen (1978) theory is also relevant to the more distributed star formation in the vicinity of B2 and B3. Here, we would also have radiative shocks driven by the high pressure radio lobe, but the shock velocity $v_{sh} \approx 570 (p_{\text{lobe},-9}/n_H)^{0.5}$ km s$^{-1}$ would be less. This does not affect the growth timescale but does affect the scale of maximum growth so that the star formation regions would not be resolved by HST.

3.5. The disruptive effect of the jet-cloud interaction

It is well known (e.g. Klein, McKee, & Colella (1994) and references therein) that shocks can disrupt clouds on timescales of the order of a shock crossing timescale, $t_{sh} \sim 9.7 \times 10^5 (L/\text{kpc})(v_{sh}/10^3 \text{ km s}^{-1})^{-1}$ yr where L is the relevant scale-size. For the transverse size of 3.4 kpc ($L = 1.7$ kpc) this would be of the order of 1.6×10^6yr if the transverse velocity is as high as 1000 km s$^{-1}$. However, the transverse component of the bow-shock velocity is less than the velocity of advance of the bow shock and the
shock-shredding timescale is likely to be at least a factor of two higher than this estimate. In this case the shock shredding timescale would be comparable to or higher than the star formation timescale, especially for a cloud density \(\sim 10 \, \text{cm}^{-3} \). Another way of looking at this is that on the radio source timescale \(\sim 10^7 \, \text{yr} \), the bow shock should propagate to the edge of the cloud. When that happens one does not expect much of that region of the cloud to survive. From the HST images in Figure 1, this appears to be the case. The emission-line and enhanced star-formation activity is confined to the arc-shaped region near B2.

The above timescales imply that the shocked cloud cannot have a filling factor much less than unity. If this were the case, the smaller clouds would be disrupted by the effect of shocks before star formation could occur.

We also note that the situation envisaged in our model is not strictly the same as envisaged in Klein et al. (1994) who essentially considered the disruptive effects of a fast wind on a cloud into which shocks are driven. The disruption results from the combined effect of the Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Here the fast wind is replaced by an overpressured lobe enveloping and flowing in the more tenuous medium surrounding the cloud, or clouds (if the filling factor is less then unity). It is possible that the Klein et al. (1994) results underestimate the cloud survival time. This is a point that could be checked by simulations. For the present we use the Klein et al. (1994) estimates for order of magnitude purposes.

3.6. Relation to the dynamics of the radio source

An important consistency check on any model for a radio source relates to the radio luminosity and jet energy flux. In principle, one can use estimates of the jet energy flux obtained from the monochromatic power, \(P_\nu \), of a lobe and an estimate of the ratio \(\kappa_\nu \) of
monochromatic power to jet energy flux (Bicknell, Dopita, & O’Dea 1997; Bicknell et al. 1998). These estimates depend upon the age of the source and the estimate of the magnetic field in the lobe. The application of this method to high redshift radio galaxies meets with some complications resulting from the fact that the theory applies to the “low frequency” region of the spectrum defined to be that region for which the frequency is less than the radiative break frequency. Moreover the estimation of the minimum energy magnetic field also depends upon measurements from the low frequency region which, generally for high redshift radio galaxies, is inaccessible. We therefore adopt the following approach: The estimate of κ_ν and the estimate of the minimum energy magnetic field are both equally valid if applied to the extrapolated low frequency spectrum. At frequencies greater than the break frequency, both the measured flux density and power of a particular component at frequencies ~ 1 GHz are underestimates of the extrapolated quantities. If a spectrum breaks at a frequency ν_b with a change in spectral index of $\Delta \alpha$, then the ratio of extrapolated to measured flux densities is $(\nu/\nu_b)^{\Delta \alpha}$. If, as in the standard injection plus cooling model, $\Delta \alpha = 0.5$, then a ratio of extrapolated to measured flux densities ~ 10 implies a break frequency in the observer’s frame ~ 10 MHz and a corresponding break frequency in the rest frame ~ 50 MHz. It is therefore unlikely that the ratio of extrapolated to measured flux densities is greater than 10.

What do we take to be the “lobe” in 4C41.17? Chambers et al. (1990) have argued that this should be component B3 rather than component C. The latter component has a very steep spectral index and does not appear to be connected to the inner components. It may be a relic of earlier activity in this galaxy and we adopt the Chambers et al. (1990) interpretation of component B3 as the lobe. The $1.5 - 4.7$ GHz spectral index of B3 is 1.2 (Carilli, Owen, & Harris 1994), consistent with a typical low frequency spectral index of 0.7 and a cooling induced break of $\Delta \alpha \approx 0.5$. Therefore the above remarks on the extrapolated flux density are pertinent.
The monochromatic luminosity of B3 at rest frequency $\nu_{\text{rest}} = (1 + z)\nu_{\text{obs}}$ is given by

$$P_{\nu_{\text{rest}}} = \frac{4\pi D_L^2}{1 + z} F_{\nu_{\text{obs}}}$$ \hspace{1cm} (3-12)$$

where $D_L = 5.16 \times 10^4$ Mpc is the luminosity distance and $F_{1.465\,\text{GHz}} = 85$ mJy (Carilli, Owen, & Harris 1994). Thus, $P_{7.0} \approx 5.7 \times 10^{34}$ ergs s$^{-1}$ Hz$^{-1}$.

We estimate the ratio of monochromatic luminosity to jet power using

$$\kappa_\nu \approx (a - 2) C_{\text{syn}}(a) \left(\gamma_0 m_p c^2\right)^{(a-2)} \left[1 - \left(\gamma_1/\gamma_0\right)^{-(a-2)}\right]^{-1} B^{(a+1)/2} \nu^{-(a-1)/2} \tau$$ \hspace{1cm} (3-13)$$

In this equation a is the electron spectral index $(N(E) \propto E^{-a})$, γ_0 and γ_1 are the upper and lower cutoffs in the Lorentz factor of the electron distribution, B is the magnetic field, $C_{\text{syn}}(a) = 4\pi c_5(a)c_9(a)(2c_1)^{(a-1)/2}$ incorporates a number of Pacholczyk (1970) synchrotron parameters and $\tau = f_e f_{\text{ad}} t$ is an evolutionary parameter which depends on $f_e \approx 1$ the electron/positron fraction of the internal energy, an adiabatic factor $f_{\text{ad}} \sim 0.5$ and the age of the lobe. In order to obtain theoretical estimates of $\kappa_{7.0}$ we estimate the minimum energy magnetic field from the peak surface brightness of knot B3 in the 1.465 GHz image (Carilli, Owen, & Harris 1994) and a FWHM of 0.11$''$ (Chambers et al. 1990). Since there are a number of uncertain parameters, we bracket the estimates by values of extrapolated flux densities and powers between 1 and 10 times the measured values and values of $\tau = 10^{\text{Myr}}$. (Chambers et al. (1990) estimated the dynamical lifetime of B3 to be approximately 3×10^7 yr corresponding to $\tau \approx 15$ Myr.) The other important parameter in these calculations is the ratio of the actual value of the magnetic field to the minimum energy value. This is probably the most important parameter for reconciliation of the radio power and the jet energy flux, since $\kappa_\nu \propto B^{1+a}$. For Cygnus A, Carilli et al. (1991) estimated that the magnetic field strength is about 0.3 times the minimum energy value in order to reconcile the lobe advance speed estimated from spectral aging with that estimated from ram pressure balance. Likewise, Wellman, Daly, & Wan (1997b) and Wellman, Daly,
& Wan (1997a), using the same argument, estimated that $B \approx 0.25B_{\text{min}}$ from a sample of powerful radio galaxies. Therefore, in table 2, the results of the calculations for $\kappa_{7,0}$ and the resultant estimates of the energy flux, $F_E = \kappa_{7,0}^2 P_{7,0}$ are given for different extrapolated flux densities, a value of $\tau = 10\text{Myr}$ and for $B = B_{\text{in}}$ and $B = 0.25B_{\text{min}}$. As one can see from the table, the radio power is consistent with a jet energy flux $\sim 10^{46}\text{ergs s}^{-1}$ for $F_{\nu,\text{extrap}}/F_{\nu} \gtrsim 10^{0.5}$ and $B/B_{\text{min}} = 0.25$ and this is consistent with the upper limits on the jet energy flux given by equations 3-4.

3.7. Cloud mass and gravitational instability of clouds in the halo of 4C41.17

In order to estimate the cloud mass involved in this interaction, we assume that the cloud is as deep as it is wide (3.4 kpc) and we assume an area equal to the extent of the entire Lyα-bright region adjacent to B2 ($\approx 65\text{kpc}^2$). This yields a mass $\approx 8 \times 10^{10} f(\text{C IV}) M_\odot$. The cloud mass inferred for the cloud interacting with the jet is well in excess of the Jeans mass. Presumably this cloud is not exceptional as far as clouds in the halo of 4C41.17 are concerned. Indeed, the existence of other regions forming stars, albeit at a lower rate (see table 1 and Van Breugel et al. (1998)), indicates that star formation is also occurring within this galaxy as a result of gravitational collapse. The freefall time for a cloud of density ρ is $t_{\text{ff}} \approx 2100 \rho^{-1/2} \approx 1.4 \times 10^7 (n_H/10\text{cm}^{-3})^{-1/2} \text{yr} -$ comparable to the dynamical timescale of the radio source itself.

3.8. Other regions of Lyα flux

For a uniform density of $n_H = 1.0\text{cm}^{-3}$, the extent of the ionized precursor zone for a $700 - 900\text{ km s}^{-1}$ shock at LMC metallicity ranges from 4.2 to 9.4 kpc (Sutherland, Allen & Kewley 1999). The extent of the precursor emission is inversely proportional to density.
Hence, the Lyβ emitting region, approximately 4 kpc in extent to the east of B3 could be shock precursor emission from a region of density $\sim 1.1 - 2.4 \text{ cm}^{-3}$. Similarly the other Lyβ emitting region, $\sim 10 \text{ kpc}$ in extent on the western side of the galaxy and beginning at another radio knot could be precursor emission associated with the expansion of that radio component, if the density is approximately $0.4 - 0.9 \text{ cm}^{-3}$. Thus, both of these regions could be the result of jet interactions in slightly more tenuous regions.

4. Discussion and Conclusions

We have shown that the recent observational evidence for jet-induced star formation in 4C41.17 can be understood through a model in which clouds with a density $(n_{\text{H}} \sim 1 - 10 \text{ cm}^{-3})$ in the galaxy are compressed by the bow shock resulting from interaction with the jet. Using the C iv emission to estimate the density leads to a consistent scenario for shock induced star formation. The gravitational timescales estimated from the density are well within the dynamical timescale of the radio source and suggest that, compared to the radio source timescale, star formation should occur almost instantaneously. Some of the important features of the observations which lead to a reasonably self-consistent model include the large velocities with respect to systemic and large velocity dispersions of the Lyβ emitting region near B2. These imply relatively large bow-shock velocity $\sim 1000 \text{ km s}^{-1}$ and an upper limit on the jet energy flux $\sim 8 \times 10^{46} \text{ ergs s}^{-1}$. These estimates are consistent with the radio source energy budget if the size of the momentum deposition region is smaller than the upper limit $\sim 0.11''$ and/or if the magnetic field is approximately 0.25 times the equipartition value. Our analysis therefore supports the general picture of jet-induced star formation in the papers cited in the introduction.

Our assumption of a filling factor ~ 1 for the jet-disrupted cloud requires some comment. This is necessary in our model since smaller sub-clouds would fragment on a
smaller shock-crossing time and stars would not form, if the star-formation rate is governed
by the Elmegreen & Elmegreen (1978) ansatz. Is such a filling factor reasonable, given
that in our own galaxy, for example, the interstellar medium is fragmented on the scale of
molecular clouds of about 100 pc in size? This analogy is unreasonable since the ISM in
the Galaxy has been disrupted by several generations of star formation, so that one does
not expect a single monolithic cloud of H I to survive. Since we are dealing with a low
metallicity cloud in the early universe, such an argument is not valid. Perhaps one could
also ask whether local high velocity clouds (HVCs; Burton & Braun (1999) and references
therein) provide a better $z = 0$ analogy. In this case the HVC density (much lower than
that in 4C41.17) and core-halo structure, are influenced by local heating processes, e.g. the
soft X-ray background, heating by grains and PAHs, Wolfire et al. (1995). The environment
of 4C41.17 is so different that analogies with local HVCs are not relevant. Nevertheless, this
discussion does focus attention on what a two-phase medium at this redshift should look
like and whether it is consistent with the monolithic Hydrogen cloud that we have assumed.
This is an interesting question which is beyond the scope of this paper but which should
receive attention in future. Another related question is: Could star formation proceed much
faster than indicated by the (Elmegreen & Elmegreen 1978) estimates? This should also be
considered in future work.

These unanswered questions aside, it appears that the wealth of data on 4C41.17
and the physics revealed by the combined HST and VLA observations, together with the
interpretation we have advanced, make it clear that jet-induced star formation can indeed
be a significant process in many very high-redshift radio galaxies. Theoretically this was
anticipated 10 years ago, on the basis of the dense, cloudy media expected in forming
galaxies and the presence of extremely luminous (10 - 100 times the luminosity of Cygnus
A) radio sources embedded in them. Observationally, at present, 4C41.17 is unique in that
direct evidence for jet-induced star formation exists. However, the radio/UV alignments
seen in many $z > 3$ radio galaxies, together with their blue colors and the very similar rest-frame optical and radio source sizes (Van Breugel et al. 1998) strongly suggest that jet-induced star bursts may occur in most high-redshift radio galaxies.

WvB appreciates the support of the Australian National University Astrophysical Theory Centre, the Anglo-Australian Observatory, and the Australian National Telescope Facility during his sabbatical leave at these institutions from January to April, 1997. He thanks his Australian colleagues for their warm hospitality and invigorating discussions. The work by WvB at IGPP/LLNL is performed under the auspices of the US Department of Energy under contract W–7405–ENG–48. AD acknowledges the support of NASA HF-01089.01-97A and partial support from a postdoctoral Research Fellowship at NOAO, operated by AURA, Inc. under cooperative agreement with the NSF. We are grateful to the referee of the original manuscript for detailed and helpful comments which have contributed significantly to an improvement of the science. Useful discussions with Professor K. Freeman are gratefully acknowledged.
REFERENCES

Burton, W. B. & Braun, R. 1999, astro-ph, 9912470, 000

De Young, D. S. 1981, Nature, 293, 43

Dopita, M. A. & Sutherland, R. S. 1996a, ApJS, 102, 161

Pacholczyk, A. G. 1970, Radio Astrophysics (San Francisco: Freeman)

Sutherland, R. S., Allen, M. G., & Kewley, L. 1999, in preparation, 000, 000

This manuscript was prepared with the AAS LaTeX macros v4.0.
Table 1: Star formation rates in the different UV components, estimated by Van Breugel et al. (1998).

<table>
<thead>
<tr>
<th>Component</th>
<th>Diameter (kpc)</th>
<th>SFR ($M_{\odot} y^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>11</td>
<td>60</td>
</tr>
<tr>
<td>NE</td>
<td>11</td>
<td>200</td>
</tr>
<tr>
<td>NEE</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>S</td>
<td>22</td>
<td>110</td>
</tr>
</tbody>
</table>
Table 2: Estimates of the jet energy flux from the radio power of component B3.

<table>
<thead>
<tr>
<th>F_{ν}^{extrap}/F_{ν}^{obs}</th>
<th>$P_{7.0\text{GHz}}$</th>
<th>B_{min}</th>
<th>B/B_{min}</th>
<th>$\kappa_{7.0}$</th>
<th>F_E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ergs s$^{-1}$ Hz$^{-1}$</td>
<td>(Gauss)</td>
<td>(Hz$^{-1}$)</td>
<td>(ergs s$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.7×10^{34}</td>
<td>3×10^{-4}</td>
<td>1</td>
<td>1×10^{-10}</td>
<td>6×10^{44}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
<td>9.5×10^{-12}</td>
</tr>
<tr>
<td>$10^{1/2}$</td>
<td>1.8×10^{35}</td>
<td>3.5×10^{-4}</td>
<td>1</td>
<td>2×10^{-10}</td>
<td>1×10^{45}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
<td>2×10^{-11}</td>
</tr>
<tr>
<td>10</td>
<td>5.7×10^{35}</td>
<td>5×10^{-4}</td>
<td>1</td>
<td>3×10^{-10}</td>
<td>2×10^{45}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
<td>3×10^{-11}</td>
</tr>
</tbody>
</table>

Figure Captions

Figure 1 Montage of three HST images taken through the F702W, F569W and Lyα filters. The X-band radio images of Carilli, Owen, & Harris (1994) are superimposed in the form of contours.

Figure 2 The F702W HST image smoothed to 0.3" resolution. This enhances the star-forming region to the South.

Figure 3 Radiative shock models from (Sutherland, Allen, & Kewley 1999) for a range of metallicities. The shaded bar indicates the range of α(C iv) for shock velocities over 600 km s$^{-1}$ The curves are labeled with the metallicities of each series. The straight line labeled DS95 is a least squares fit to the results of the 150 – 500 km s$^{-1}$ grid of solar metallicity models from Dopita & Sutherland (1996a) and Dopita & Sutherland (1996b). The earlier grid does not extrapolate well to the higher velocity range of 500 – 900 km s$^{-1}$, where the C iv emission from the precursor rapidly rises producing the higher than expected α(C iv) values. Lower metallicity models with SMC and
LMC abundances are very efficient C IV producers due to hotter precursors in those models.

Figure 4: The suggested morphology of a jet-cloud interaction as it relates to 4C41.17. The jet bow-shock causes the arc-shaped region evident in the HST images and the plasma from the disrupted jet accumulates some distance upstream. The Lyα emission originates from both the precursor and shocked regions and therefore has a high velocity FWHM typical of the bow shock velocity. The C IV λλ1548, 50 originates from the precursor region and is therefore narrower.

Figure 5: Illustration of a radiative shock and the associated post-shock radiatively cooled layer wherein star formation is envisaged to occur (following Elmegreen & Elmegreen (1978)). As the shock progresses through the pre-shock gas (density \(\rho \)) the column density of the cool layer accumulates, rendering it more and more gravitationally unstable.
Fig. 1.—

Fig. 2.—
Fig. 3.—

![Plot of Shock Velocity vs. [Fe/H] = -2.0]

Fig. 4.—

![Diagram of Star Formation, Shocked Gas, Bow Shock, Precursor, and Disrupted Jet]
Radiatively cooled layer

Central density ρ_0

Column density $\sigma = \rho V_{sh} t$

Post-shock cooling zone

$P \sim \rho V_{sh}^2$

Shock

V_{sh}

Fig. 5.—