Cosmological Space-Times

Lecture notes compiled by Geoff
Bicknell based primarily on:

Sean Carroll: An Introduction to
General Relativity

plus additional material
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ds® = —c*dt* +dz* + dy* + dz*
—  _dg0° + dz® + dy® + dz?

= ndrtdx”
where 1,, = Minkowski tensor = diag|—1,1,1,1]
p,v = 0,1,2,3

This is the metric of four-dimensional flat space time

Generalised by Einstein in his 1916 General Theory of Relativity to:

e gudat dx”

Metric tensor
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9. = Christoflel Symbols

O 1 O
L = 59 " (Guou T Gpp,w — Guv,p)
g°? = Inverse of g,,

The Christoffel symbols appear in the equations of test particles:

Geodesics of space time - and also in generalised (covariant)
derivatives

Riemann curvature tensor:
P TP __ TP P T A _ TP TA
Ra,ul/ - FVO',,[L F,ua,u + PM)\FVO' Fz/)\r,ua
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Ricci tensor

A
Ruv — o
Ricci scalar
R — g,L”/R’uV
Einstein tensor
1
GMV — R,uy — §g,u,VR
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Newton’s
Constant of
gravitation

Crw = Dl — I8

Cosmological constant
“Dark energy”

Matter tensor

Matter tensor

Wiy = (,oc2 + p)UU" 4 pg,..

dzt  1dz*
4-velocity of matter U" = e

ds ¢ dr
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Homogeneity and isotropy => Geometry invariant under
translations and rotations

=> Maximally symmetric space time

ds® = —c*dt* + a*(t) [eQﬁ(r)dr2 + r2df? + r* sin” d¢2}
Spatial part of metric:

do* = a°(t) [eQﬁmdrz + r2dh? + r? sin” 6’d¢2}
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When 8|

do® = a®(t) [dr® 4 r°df* 4 r* sin” 0d¢”|

which is the normal metric of flat space modified by the scale
factor a(t)

The scale factor informs us how the universe is expanding

In this space-time metric the coordinates are comoving

coordinates, i.e. as the Universe expands the spatial coordinates of
galaxies remain constant
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Neighbouring world lines

Comoving observers ul=constant

Geometry of 3D hypersurfaces
do® = a*(t) [eQﬁ(r)dTQ | TQdQQ}
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Characterised by

) Rk k(Yik Vit — YitVik)
—> Rij = 2]6"}/@]

Spatial metric
— diag(e%(r), r%. r? sin? 0)

Equations for metric tensor

BRy = e 2° (rgf 1> + 1 = 2kvy11 = 2ke?P
B Ry = e 2 (rgf 1) =

B Rsy = |72 (r gﬂ 1> + 1| sin® 0 = 2kr? sin* 6
r
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d* = df* + sin® 0d¢p?

1
28 _
: 1 — kr?
- ]
do® = a’(t) |5 Tk — +r2d0?
—
Coordinate transformation
r'? = |k|r?
=7 = |k|Y?
a“(t) [ dr'? ]
= do® = -2 dQ’
. kLT —sgu(R)yrz T
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Absorb [K|'/% into a(t); k = -1,0, |

A | —1kr2
do? = a2(t) 1 frzﬂ : r%m?:
kK = —-1,0,+1
k=0
do® = a*(t) [dr® + r*dQ”]

Expanding flat space
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C dr?

n % 2 1092
do” = a”(t) R r<d)
New radial variable
dr
d —
X (1+7°2)1/2
=y = sinh 'r
r = sinhy

Metric of each 3D hypersurface

do? = a*(t) |[dx* + sinh? Xd”]
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k=+|

dr?

do* = a*(t) - - r2dQ)?
New radial variable
dr?
dx = (1 —r2)L/2
= 0 = sin~ ! r
r = siny

Metric of each 3D hypersurface

do? = a*(t) [dx? + sin® xdQ7]
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do® = a”(t) [dx* + S*(x)d¥*]

0% k=20
sinh(y) k= -1
sin y k=41

. -
oS

What geometry do these metrics represent?

k=0 => Metric of an expanding flat space
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Consider a 3-sphere embedded in a 4-dimensional Euclidean space
(not space-time)

Let the equation of the sphere in (w,x,y,z) space be:
w? 4+ 22 + 92 + 22 = o2

The metric of the 4-dimensional space is:

do? = dw?* + dz* + dy* + dz°
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Consider the following set of spherical polars in 4-space; these
provide a parametric description of the surface of the 3-sphere
which has radius a(t). There are 3 angular parameters.

@ COS X
— asinycos®

a sin y sin 6 cos ¢

e 8 n &
|

= asinysinfsing

We now determine the metric of the surface of the sphere by
determining the differentials of the coordinates w, x,y and z.
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These are the differentials of w,x,y,z in terms of the polar angles

dw —a sin ydy

dz a cosx cos dy — asin y sin 6 d6

dx a cosy sinf cos pdx + asin y cos 0 cos ¢ df — a sin x sin 6 sin ¢ dg
dx a cos x sin @ sin ¢ dy + asin y cos 6 sin ¢ df + a sin y sin 8 cos ¢ do
This gives:

dw® + dz? + dy” + dz° = a*(t) [dx* + sin® x(d6? + sin” 0d¢?)]

which is the spatial part of the space-time metric
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|. The 3-space of this metric can be thought of a as a 3-sphere
of radius a(t) embedded in a 4 dimensional Euclidean space

2. The 3-sphere is expanding

3. Since a 3-sphere is closed the k=| metric represents a closed

Universe
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Consider section y=0:
y = asinysinfsing =0

=¢ = 0 or

® = (0 section

W = acosy

Zz = asinycosb
r = asinysin6
® = m section

W = acosy

z = asinycosb

Embedding of a 3-sphere in a r = —asinysinf

4-dimensional Euclidean space
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Consider the equation of a 3-hyperboloid embedded in a 4-
dimensional Euclidean space:

w? — 22 — % — 2% = g2

We can parametrically express this in terms of hyperspherical polars

= acoshy

— asinhycosf

a sinh y sin 0 cos ¢

e 8 n B
|

— asinh ysinfsin ¢
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dw = asinhydy

dz = acoshycosfdy — asinh y sin6db
dr = acoshysinf cosody + asinh y cosf cos ¢ df — asinh y sin 0 sin ¢
dy = acoshysinfsin¢dy + asinh y cosfsin ¢ df + a sinh x sin 6 cos ¢

Metric restricted to 3-hyperboloid

do* = dw*+dz* +dy” + dz°
= a*(t) [dXQ + sinh? y(d6? + sin” ¢9d¢2)}
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n=0""= Sme=10
= ¢=0 or =

Embedding of a 3-dimensional space
of negative curvature in a
4-dimensional Minkowskian space
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The metric of the expanding Universe can be expressed in one of
the 3 following ways:

ds® = —c*dt® +a*(t) [dx* + x*dQ] k=0 Infinite flat
Universe

ds® = —c*dt® +a*(t) [dx* +sin® xdQ°| k=1 Finite closed
Universe

ds® = —c*dt® + a®(t) [dx® + sinh® xdQ*| k=-1 Infinite, open

Universe
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