Cosmological Space-Times

Lecture notes compiled by Geoff Bicknell based primarily on:

Sean Carroll: An Introduction to
General Relativity
plus additional material

Metric of special relativity

$$
\begin{aligned}
& d s^{2}=-c^{2} d t^{2}+d x^{2}+d y^{2}+d z^{2} \\
& =-d x^{0^{2}}+d x^{2}+d y^{2}+d z^{2} \\
& =\eta_{\mu \nu} d x^{\mu} d x^{\nu} \\
& \text { where } \quad \eta_{\mu \nu}=\text { Minkowski tensor }=\operatorname{diag}[-1,1,1,1] \\
& \mu, \nu=0,1,2,3
\end{aligned}
$$

This is the metric of four-dimensional flat space time
Generalised by Einstein in his 1916 General Theory of Relativity to:

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

General relativity field equations

$$
\begin{aligned}
g_{\mu \nu} & \Rightarrow \text { Christoffel Symbols } \\
\Gamma_{\mu \nu}^{\sigma} & =\frac{1}{2} g^{\sigma \rho}\left(g_{\nu \rho, \mu}+g_{\rho \mu, \nu}-g_{\mu \nu, \rho}\right) \\
g^{\sigma \rho} & =\text { Inverse of } g_{\mu \nu}
\end{aligned}
$$

The Christoffel symbols appear in the equations of test particles: Geodesics of space time - and also in generalised (covariant) derivatives

Riemann curvature tensor:

$$
R_{\sigma \mu \nu}^{\rho}=\Gamma_{\nu \sigma, \mu}^{\rho}-\Gamma_{\mu \sigma, \nu}^{\rho}+\Gamma_{\mu \lambda}^{\rho} \Gamma_{\nu \sigma}^{\lambda}-\Gamma_{\nu \lambda}^{\rho} \Gamma_{\mu \sigma}^{\lambda}
$$

Tensors derived by contraction over indices

Ricci tensor

$$
R_{\mu \nu}=R_{\mu \lambda \nu}^{\lambda}
$$

Ricci scalar

$$
R=g^{\mu \nu} R_{\mu \nu}
$$

Einstein tensor

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R
$$

Einstein's field equations

Newton's
Constant of gravitation

$$
G_{\mu \nu}=\Lambda g_{\mu \nu}+\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

$$
\rceil
$$

Cosmological constant "Dark energy"

Matter tensor

Matter tensor

$$
\begin{aligned}
& T_{\mu \nu}=\left(\rho c^{2}+p\right) U^{\mu} U^{\nu}+p g_{\mu \nu} \\
& \text { 4-velocity of matter } U^{\mu}=\frac{d x^{\mu}}{d s}=\frac{1}{c} \frac{d x^{\mu}}{d \tau}
\end{aligned}
$$

Metric of the Universe

Homogeneity and isotropy => Geometry invariant under translations and rotations

=> Maximally symmetric space time

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[e^{2 \beta(r)} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} d \phi^{2}\right]
$$

Spatial part of metric:

$$
d \sigma^{2}=a^{2}(t)\left[e^{2 \beta(r)} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right]
$$

When $\quad e^{2 \beta}=1$

$$
d \sigma^{2}=a^{2}(t)\left[d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right]
$$

which is the normal metric of flat space modified by the scale factor a(t)

The scale factor informs us how the universe is expanding

In this space-time metric the coordinates are comoving coordinates, i.e. as the Universe expands the spatial coordinates of galaxies remain constant

Space-time geometry

Geometry of 3D hypersurfaces

$$
d \sigma^{2}=a^{2}(t)\left[e^{2 \beta(r)} d r^{2}+r^{2} d \Omega^{2}\right]
$$

Maximally symmetric spaces (consequence of

 homogeneity and isotropy)Characterised by

$$
\begin{aligned}
{ }^{(3)} R_{i j k l} & =k\left(\gamma_{i k} \gamma_{j l}-\gamma_{i l} \gamma_{j k}\right) \\
\Rightarrow R_{i j} & =2 k \gamma_{i j}
\end{aligned}
$$

Spatial metric

$$
\gamma_{i j}=\operatorname{diag}\left(e^{2 \beta(r)}, r^{2}, r^{2} \sin ^{2} \theta\right)
$$

Equations for metric tensor
${ }^{(3)} R_{11}=e^{-2 \beta}\left(r \frac{\partial \beta}{\partial r}-1\right)+1=2 k \gamma_{11}=2 k e^{2 \beta}$
${ }^{(3)} R_{22}=e^{-2 \beta}\left(r \frac{\partial \beta}{\partial r}-1\right)+1=2 k r^{2}$
${ }^{(3)} R_{33}=\left[e^{-2 \beta}\left(r \frac{\partial \beta}{\partial r}-1\right)+1\right] \sin ^{2} \theta=2 k r^{2} \sin ^{2} \theta$

Solution

$$
d \Omega^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}
$$

$$
\begin{aligned}
e^{2 \beta} & =\frac{1}{1-k r^{2}} \\
d \sigma^{2} & =a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right]
\end{aligned}
$$

Coordinate transformation

$$
\begin{aligned}
r^{\prime 2} & =|k| r^{2} \\
\Rightarrow r^{\prime} & =|k|^{1 / 2} r \\
\Rightarrow d \sigma^{2} & =\frac{a^{2}(t)}{|k|}\left[\frac{d r^{\prime 2}}{1-\operatorname{sgn}(k) r^{\prime 2}}+r^{\prime 2} d \Omega^{2}\right]
\end{aligned}
$$

Absorb $|k|^{1 / 2}$ into a(t); $k=-1,0,1$

$$
\begin{aligned}
e^{2 \beta} & =\frac{1}{1-k r^{2}} \\
d \sigma^{2} & =a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right] \\
k & =-1,0,+1
\end{aligned}
$$

$\mathrm{k}=0$

$$
d \sigma^{2}=a^{2}(t)\left[d r^{2}+r^{2} d \Omega^{2}\right]
$$

Expanding flat space

$$
\mathrm{k}=-\mathrm{l}
$$

$$
d \sigma^{2}=a^{2}(t)\left[\frac{d r^{2}}{1+r^{2}}+r^{2} d \Omega^{2}\right]
$$

New radial variable

$$
\begin{aligned}
d \chi & =\frac{d r}{\left(1+r^{2}\right)^{1 / 2}} \\
\Rightarrow \chi & =\sinh ^{-1} r \\
r & =\sinh \chi
\end{aligned}
$$

Metric of each 3D hypersurface

$$
d \sigma^{2}=a^{2}(t)\left[d \chi^{2}+\sinh ^{2} \chi d \Omega^{2}\right]
$$

$k=+1$

$$
d \sigma^{2}=a^{2}(t)\left[\frac{d r^{2}}{1-r^{2}}+r^{2} d \Omega^{2}\right]
$$

New radial variable

$$
\begin{aligned}
d \chi & =\frac{d r^{2}}{\left(1-r^{2}\right)^{1 / 2}} \\
\Rightarrow \chi & =\sin ^{-1} r \\
r & =\sin \chi
\end{aligned}
$$

Metric of each 3D hypersurface

$$
d \sigma^{2}=a^{2}(t)\left[d \chi^{2}+\sin ^{2} \chi d \Omega^{2}\right]
$$

Summary of 3D metrics

$$
\begin{aligned}
& d \sigma^{2}=a^{2}(t)\left[d \chi^{2}+S^{2}(\chi) d \Omega^{2}\right] \\
& S(\chi)=\chi \\
& S(\chi)=\sinh (\chi) \\
& S=-1 \\
& S(\chi)=\sin \chi
\end{aligned} \quad k=+1 .
$$

What geometry do these metrics represent?
$\mathrm{k}=0$ => Metric of an expanding flat space
$k=+1$

Consider a 3-sphere embedded in a 4-dimensional Euclidean space (not space-time)

Let the equation of the sphere in (w, x, y, z) space be:

$$
w^{2}+x^{2}+y^{2}+z^{2}=a^{2}
$$

The metric of the 4-dimensional space is:

$$
d \sigma^{2}=d w^{2}+d x^{2}+d y^{2}+d z^{2}
$$

Metric of the surface of the 3 -sphere

Consider the following set of spherical polars in 4-space; these provide a parametric description of the surface of the 3 -sphere which has radius $\mathrm{a}(\mathrm{t})$. There are 3 angular parameters.

$$
\begin{aligned}
w & =a \cos \chi \\
z & =a \sin \chi \cos \theta \\
x & =a \sin \chi \sin \theta \cos \phi \\
y & =a \sin \chi \sin \theta \sin \phi
\end{aligned}
$$

We now determine the metric of the surface of the sphere by determining the differentials of the coordinates $\mathrm{w}, \mathrm{x}, \mathrm{y}$ and z .

Euclidean metric restricted to 3 -sphere

These are the differentials of w, x, y, z in terms of the polar angles

$$
\begin{aligned}
d w & =-a \sin \chi d \chi \\
d z & =a \cos \chi \cos \theta d \chi-a \sin \chi \sin \theta d \theta \\
d x & =a \cos \chi \sin \theta \cos \phi d \chi+a \sin \chi \cos \theta \cos \phi d \theta-a \sin \chi \sin \theta \sin \phi d \phi \\
d x & =a \cos \chi \sin \theta \sin \phi d \chi+a \sin \chi \cos \theta \sin \phi d \theta+a \sin \chi \sin \theta \cos \phi d \phi
\end{aligned}
$$

This gives:
$d w^{2}+d x^{2}+d y^{2}+d z^{2}=a^{2}(t)\left[d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$
which is the spatial part of the space-time metric

Conclusions for $\mathrm{k}=+\mathrm{l}$:

I. The 3-space of this metric can be thought of a as a 3-sphere of radius $a(t)$ embedded in a 4 dimensional Euclidean space
2. The 3 -sphere is expanding
3. Since a 3 -sphere is closed the $\mathrm{k}=\mathrm{I}$ metric represents a closed

Universe

Embedding diagram

Consider section $\mathrm{y}=0$:

$$
\begin{aligned}
y & =a \sin \chi \sin \theta \sin \phi=0 \\
\Rightarrow \phi & =0 \text { or } \pi
\end{aligned}
$$

$\phi=0$ section
$w=a \cos \chi$
$z=a \sin \chi \cos \theta$
$x=a \sin \chi \sin \theta$
$\phi=\pi$ section
$w=a \cos \chi$
$z=a \sin \chi \cos \theta$
Embedding of a 3-sphere in a 4-dimensional Euclidean space

The case $\mathrm{k}=-\mathrm{l}$

Consider the equation of a 3-hyperboloid embedded in a 4dimensional Euclidean space:

$$
w^{2}-x^{2}-y^{2}-z^{2}=a^{2}
$$

We can parametrically express this in terms of hyperspherical polars

$$
\begin{aligned}
w & =a \cosh \chi \\
z & =a \sinh \chi \cos \theta \\
x & =a \sinh \chi \sin \theta \cos \phi \\
y & =a \sinh \chi \sin \theta \sin \phi
\end{aligned}
$$

Differentials:

$$
\begin{aligned}
d w & =a \sinh \chi d \chi \\
d z & =a \cosh \chi \cos \theta d \chi-a \sinh \chi \sin \theta d \theta \\
d x & =a \cosh \chi \sin \theta \cos \phi d \chi+a \sinh \chi \cos \theta \cos \phi d \theta-a \sinh \chi \sin \theta \sin \phi \\
d y & =a \cosh \chi \sin \theta \sin \phi d \chi+a \sinh \chi \cos \theta \sin \phi d \theta+a \sinh \chi \sin \theta \cos \phi
\end{aligned}
$$

Metric restricted to 3-hyperboloid

$$
\begin{aligned}
d \sigma^{2} & =d w^{2}+d x^{2}+d y^{2}+d z^{2} \\
& =a^{2}(t)\left[d \chi^{2}+\sinh ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
\end{aligned}
$$

Embedding: $y=0$ section

$$
\begin{aligned}
y=0 & \Rightarrow \sin \phi=0 \\
& \Rightarrow \phi=0 \text { or } \pi
\end{aligned}
$$

Summary

The metric of the expanding Universe can be expressed in one of the 3 following ways:
$d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[d \chi^{2}+\chi^{2} d \Omega^{2}\right]$
$\mathrm{k}=0$ Infinite flat
Universe
$d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[d \chi^{2}+\sin ^{2} \chi d \Omega^{2}\right]$
k=| Finite closed Universe
$d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[d \chi^{2}+\sinh ^{2} \chi d \Omega^{2}\right]$
k=-| Infinite, open
Universe

