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Relativistic Effects

 

1 Introduction

 

The radio-emitting plasma in AGN contains electrons with
relativistic energies. The Lorentz factors of the emitting elec-

trons are of order . We now know that the bulk motion
of the plasma is also moving relativistically – at least in some
regions although probably “only” with Lorentz factors about
10 or so. However, this has an important effect on the prop-
erties of the emitted radiation – principally through the ef-
fects of relativistic beaming and doppler shifts in frequency.
This in turn affects the inferred parameters of the plasma.
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2 Summary of special relativity

 

For a more complete summary of 4-vectors and Special Rel-
ativity, see Rybicki and Lightman, 

 

Radiative Processes in As-
trophysics

 

, or Rindler, 

 

Special Relativity
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2.1 The Lorentz transformation

 

The primed frame is moving wrt to the unprimed frame with
a velocity  in the –direction. The coordinates in the primed
frame are related to those in the unprimed frame by:

x′

y′

x

y

V

S′S

v x
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(1)

 

We put the space-time coordinates on an equal footing by

putting . The the part of the Lorentz transforma-
tion can be written:

 

(2)

 

The reverse transformation is:

x′ Γ x vt–( )= t′ Γ t
Vx

c2
------– 

 =

y′ y= z′ z=

β v
c
--= Γ 1

1 β2–
-------------------=

x0 ct= x t–

x′ Γ x βx0–( )= x0′ Γ x0 βx–( )=
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(3)

 

i.e.,

 

(4)

x Γ x′ Vt′+( )= y y′= z z′=

t Γ t′ Vx′

c2
--------+ 

 =

x Γ x′ βx0′+( )= x0 Γ x0′ βx′+( )=
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2.2 Lorentz–Fitzgerald contraction

x′

y′

x

y

V

L0

x2′ x1′– L0=

x2′ x1′– Γ x2 x1–( ) V t2 t1–( )–[ ]=

L0 ΓL= L⇒ Γ 1– L0=

S′S
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2.3 Time dilation

x′

y′

x

y
V

S′S
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Consider a clock at a stationary position in the moving frame
which registers a time interval . The corresponding time

interval in the “lab” frame is given by:

(5)

i.e. the clock appears to have slowed don by a factor of 

T0

T t2 t1– Γ t2′ t1′–( ) V x2′ x1′–( ) c2⁄–[ ]= =

Γ t2′ t1′–( ) ΓT0= =

Γ
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2.4 Doppler effect

The Doppler effect is very important when describing the ef-
fects of relativistic motion in astrophysics. The effect is the

l V∆t=

d V∆t θcos=

θ

To observer

P1 P2

D

V
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combination of both relativistic time dilation and time retar-
dation. Consider a source of radiation which emits one period
of radiation over the time  it takes to move from  to .

If  is the emitted circular frequency of the radiation in the

rest frame, then 

(6)

and the time between the two events in the observer’s frame
is:

∆t P1 P2

ωem

∆t′ 2π
ωem
----------=
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(7)

However, this is not the observed time between the events be-
cause there is a time difference involved in radiation emitted
from  and . Let 

(8)

and 

(9)

∆t Γ∆t′ Γ
2π
ωem
----------= =

P1 P2

D distance to observer from P2=

t1 time of emission of radiation from P1=

t2 time of emission of radiation from P2=
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Then, the times of reception,  and  are:

(10)

Hence the period of the pulse received in the observer’s frame
is

t1
rec t2

rec

t1
rec t1

D V∆t θcos+
c

---------------------------------+=

t2
rec t2

D
c
----+=



High Energy Astrophysics: Relativistic Effects    13/92

(11)

Therefore,

t2
rec t1

rec– t2
D
c
----+ 

  t1
D V∆t θcos+

c
---------------------------------+ 

 –=

t2 t1–( )
V
c
----∆t θcos–=

∆t 1
V
c
---- θcos– 

 =
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(12)

The factor  is a pure relativistic effect, the factor
 is the result of time retardation. In terms of lin-

ear frequency:

(13)

2π
ωobs
----------- Γ

2π
ωem
---------- 1

V
c
---- θcos– 

 =

ωobs⇒
ωem

Γ 1
V
c
---- θcos– 

 
-----------------------------------

ωem
Γ 1 β θcos–( )
---------------------------------= =

Γ
1 β θcos–( )

νobs

νem
Γ 1 β θcos–( )
---------------------------------=
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The factor

(14)

is known as the Doppler factor and figures prominently in the
theory of relativistically beamed emission.

2.5 Apparent transverse velocity
Derivation

A relativistic effect which is extremely important in high en-
ergy astrophysics and which is analysed in a very similar way
to the Doppler effect, relates to the apparent transverse veloc-
ity of a relativistically moving object.

δ 1
Γ 1 β θcos–( )
---------------------------------=
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l V∆t=

d V∆t θcos=

θ

To observer

P1 P2

D

l⊥ V∆t θsin=

V
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Consider an object which moves from  to  in a time  in
the observer’s frame. In this case,  need not be the time be-
tween the beginning and end of a periodic. Indeed, in prac-
tice,  is usually of order a year. As before, the time
difference between the time of receptions of photons emitted
at  and  are given by:

(15)

The apparent distance moved by the object is

(16)

P1 P2 ∆t
∆t

∆t

P1 P2

∆trec ∆t 1
V
c
---- θcos– 

 =

l⊥ V∆t θsin=
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Hence, the apparent velocity of the object is:

(17)

In terms of

Vapp
V∆t θsin

∆t 1
V
c
---- θcos– 

 
------------------------------------- V θsin

1
V
c
---- θcos– 

 
-------------------------------= =

Vapp
c

------------

V
c
---- θsin

1
V
c
---- θcos– 

 
-------------------------------=
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(18)

The non-relativistic limit is just , as we would

expect. However, note that this result is not a consequence of
the Lorentz transformation, but a consequence of light travel
time effects as a result of the finite speed of light.

βapp 

Vapp
c

------------= β V
c
----=

βapp
β θsin

1 β θcos–
------------------------=

Vapp V θsin=
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Consequences

For angles close to the line of sight, the effect of this equation
can be dramatic. First, determine the angle for which the ap-
parent velocity is a maximum:

(19)

This derivative is zero when

(20)

dβapp
dθ

-------------- 1 β θcos–( )β θcos β θβ θsinsin–

1 β θcos–( )2
---------------------------------------------------------------------------------=

β θ β2–cos

1 β θcos–( )2
--------------------------------=

θcos β=
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At the maximum:

(21)

If  then  and the apparent velocity of an object can
be larger than the speed of light. We actually see such effects
in AGN. Features in jets apparently move at faster than light
speed (after conversion of the angular motion to a linear
speed using the redshift of the source.) This was originally
used to argue against the cosmological interpretation of qua-

βapp
β θsin

1 β θcos–
------------------------ β 1 β2–

1 β2–
----------------------- β

1 β2–
------------------- Γβ= = = =

Γ 1» β 1≈
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sar redshifts. However, as you can see such large apparent ve-
locities are an easily derived feature of large apparent
velocities.
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The following images are from observations of 3C 273 over
a period of 5 years from 1977 to 1982. They show proper mo-
tions in the knots  and  of  mas/yr and

 mas/yr respectively. These translate to proper mo-

tions of  and  respectively.

C3 C4 0.79 0.03±

0.99 0.24±

5.5 0.2h 1– c± 6.9 1.7h 1–± c
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From Unwin
et al., ApJ,
289, 109
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2.6 Apparent length of a moving rod
The Lorentz-Fitzgerald contraction gives us the relationship
between the proper lengths of moving rods. An additional
factor enters when we take into account time retardation.

∆x

d ∆x θcos=

θ
To observer

P1
P2

D

l⊥ ∆x θsin=

V

L
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Consider a rod of length

(22)

in the observer’s frame. Now the apparent length of the rod is
affected by the fact that photons which arrive at the observer
at the same time are emitted at different times.  corresponds
to when the trailing end of the rod passes at time  and 

corresponds to when the leading end of the rod passes at time
. Equating the arrival times for photons emitted from 

and  at times  and  respectively,

L Γ 1– L0=

P1
t1 P2

t2 P1

P2 t1 t2
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(23)

When the trailing end of the rod reaches  the leading end

has to go a further distance  which it does in 

secs. Hence,

t1
D ∆x θcos+

c
-----------------------------+ t2

D
c
----+=

t2 t1–⇒ ∆x θcos
c

-------------------=

P2

∆x L– t2 t1–



High Energy Astrophysics: Relativistic Effects    29/92

(24)

and the apparent projected length is

(25)

This is another example of the appearance of the ubiquitous
Doppler factor.

∆x L– V∆x θcos
c

-----------------------=

∆x⇒ L

1
V
c
---- θcos–

-------------------------=

Lapp ∆x θsin L θsin
1 β θcos–
------------------------

L0
Γ 1 β θcos–( )
--------------------------------- δL0= = = =
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2.7 Transformation of velocities
The Lorentz transformation

(26)

can be expressed in differential form:

(27)

x Γ x′ Vt′+( )= y y′= z z′=

t Γ t′ Vx′

c2
--------+ 

 =

dx Γ dx′ Vdt′+( )= dy dy′= dz dz′=

dt Γ dt′ Vdx′

c2
-----------+ 

 =
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so that if a particle moves  in time  in the frame  then
the corresponding quantities in the frame  are related by the
above differentials. This can be used to relate velocities in the
2 frames via

(28)

dx′ dt′ S′
S

dx
dt
------ Γ dx′ Vdt′+( )

Γ dt′ Vdx′

c2
-----------+ 

 
----------------------------------

dx′
dt
------- V+

1
V

c2
-----dx′

dt
-------+

-----------------------= =

vx⇒
vx′ V+

1
V vx′

c2
-----------+

---------------------=
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For the components of velocity transverse to the motion of ,

(29)

In invariant terms (i.e. independent of the coordinate system),
take

S′

dy
dt
------ vy

dy′

Γ dt′ Vdx′

c2
-----------+ 

 
----------------------------------

vy′

Γ 1
V vx′

c2
-----------+

 
 
 

------------------------------= = =

dz
dt
----- vz

dz′

Γ dt′ Vdx′

c2
-----------+ 

 
----------------------------------

vz′

Γ 1
V vx′

c2
-----------+

 
 
 

------------------------------= = =
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(30)

then

(31)

The reverse transformations are obtained by simply replacing
 by  so that:

(32)

v|| Component of velocity parallel to V=

v⊥ Component of velocity perpendiciular to V=

v||

v||′ V+

1 V v|| c2⁄+
----------------------------= v⊥

v⊥′

Γ 1 V v|| c2⁄+( )
-------------------------------------=

V V–

v||′
v|| V–

1 V v|| c2⁄–
----------------------------= v⊥′

v⊥

Γ 1 V v|| c2⁄–( )
-------------------------------------=
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and these can also be recovered by considering the differen-
tial form of the reverse Lorentz transformations.

2.8 Aberration

v

v||

v⊥θ

S v′

v||′

v⊥′θ′
S′

x

y

x′

y′
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Because of the law of transformation of velocities, a velocity
vector make different angles with the direction of motion.
From the above laws for transformation of velocities,

(33)

(The difference from the non-relativistic case is the factor of
.)

The most important case of this is when . We put

(34)

θtan
v⊥
v||
------

v⊥′

Γ v||′ V+( )
-------------------------- v′ θsin

Γ v′ θcos V+( )
------------------------------------= = =

Γ

v v′ c= =

v|| c θcos= v⊥ c θsin=

v||′ c θ′cos= v⊥′ c θ′sin=
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and 

(35)

and the angles made by the light rays in the two frames satis-
fy:

(36)

β V
c
----=

c θcos
c θ′cos V+

1
V
c
---- θ′cos+

---------------------------- θcos⇒ θ′cos β+
1 β θ′cos+
--------------------------= =

c θsin
c θ′sin

Γ 1
V
c
---- θ′cos+ 

 
------------------------------------- θsin⇒ θ′sin

Γ 1 β θ′cos+( )
-----------------------------------= =
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Half-angle formula

There is a useful expression for aberration involving half-an-
gles. Using the identity,

(37)

the aberration formulae can be written as:

(38)

θ
2
---tan θsin

1 θcos+
---------------------=

θ
2
--- 
 tan

1 β–
1 β+
------------ 
  1 2/ θ′

2
---- 
 tan=
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Isotropic radiation source

Consider a source of radiation which emits isotropically in its
rest frame and which is moving with velocity  with respect
to an observer (in frame ). The source is at rest in  which
is moving with velocity  with respect to .

V
S S′
V S

S S′

x

y

x′

y′

V

1
Γ
---sin 1–
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Consider a rays emitted at right angles to the direction of mo-

tion. This has . The angle of these rays in  are given

by 

(39)

(40)

These rays enclose half the light emitted by the source, so that
in the reference frame of the observer, half of the light is emit-
ted in a forward cone of half-angle . This is relativistic

beaming in another form. When  is large: .

θ
π
2
---±= S

θsin
1
Γ
---±=

1 Γ⁄

Γ θ
1
Γ
---≈
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3 Four vectors

3.1 Four dimensional space-time
Special relativity defines a four dimensional space-time con-
tinuum with coordinates

(41)

An event is the point in space-time with coordinates 
where .

The summation convention

Wherever there are repeated upper and lower indices, sum-
mation is implied, e.g.

x0 ct= x1 x= x2 y= x3 z=

xµ

µ 0 1 2 3, , ,=
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(42)

The metric of space-time is given by

(43)

where

(44)

AµBµ AµBµ

µ 0=

3

∑=

ds2 ηµνdxµdxν=

ηµν

1– 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

= Inverse ηµν

1– 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

= =
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(45)

Hence the metric

(46)

This metric is unusual for a geometry in that it is not positive
definite. For spacelike displacements it is positive and for
timelike displacements it is negative.

This metric is related to the proper time  by

(47)

Indices are raised and lowered with , e.g. if  is a vector,
then

ds2 dx0( )2 dx1( )2 dx2( )2 dx3( )2+ + +–=

τ

ds2 c2– dτ2=

ηµν Aµ
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(48)

This extends to tensors in space-time etc. Upper indices are
referred to as covariant; lower indices as contravariant.

3.2 Representation of a Lorentz transformation
A Lorentz transformation is a transformation which preserves

. We represent a Lorentz transformation by:

(49)

Aµ ηµνAν=

ds2

xµ′ Λµ
νxν=

ηµν Λσ
µΛ

τ
νηστ=
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That is, a Lorentz transformation is the equivalent of an or-
thogonal matrix in the 4-dimensional space time with indefi-
nite metric.

Conditions:

•   – rules out reflections ( )

•   – isochronous

For the special case of a Lorentz transformation involving a
boost along the –axis

detΛ 1= x x–→

Λ0
0 0>

x
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(50)

3.3 Some important 4-vectors
The 4-velocity

This is defined by

(51)

Λµ
ν

γ βΓ– 0 0

βΓ– Γ 0 0

0 0 1 0

0 0 0 1

=

uµ dxµ

dτ
---------

dx0

dτ
--------- dxi

dτ
--------,= =
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The zeroth component

(52)

Note that we use  for the Lorentz factor of the transforma-
tion and  for particles. This will later translate into  for bulk
motion and  for the Lorentz factors of particles in the rest-
frame of the plasma.

dx0

dτ
--------- c

dt
dτ
----- c

dt

dt2 c 2–– dx1( )2 dx2( )2 dx3( )2+ +[ ]+
----------------------------------------------------------------------------------------------------= =

c

1 v2

c2
-----–

------------------- cγ= =

Γ
γ Γ

γ



High Energy Astrophysics: Relativistic Effects    47/92

The spatial components:

(53)

so that

(54)

The 4-momentum

The 4-momentum is defined by

(55)

where

dxi

dτ
--------

dxi

dt
-------- dt

dτ
----- γvi= =

uµ γc γvi,[ ]=

pµ m0uµ γmc γmvi,[ ]
E
c
--- pi,= = =
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(56)

is the energy, and

(57)

is the 3-momentum.

Note the magnitude of the 4-momentum

(58)

E c2 p2 m2c4+ γmc2= =

pi γm0vi=

ηµνpµ pν p0( )2 p1( )2 p2( )2 p3( )2+ + +–=

E
c
--- 
  2

p2+– m– 2c2= =
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3.4 Transformation of 4-vectors
Knowing that a quantity is a 4-vector means that we can eas-
ily determine its behaviour under the effect of a Lorentz

transformation. The zero component behaves like  and the
 component behaves like . Recall that:

(59)

Therefore, the components of the 4-velocity transform like

(60)

Hence,

x0

x x

x Γ x′ βx0′+( )= x0 Γ x0′ βx′+( )=

U0′ Γ U0 βU1–( )=

U1′ Γ βU0– U1+( )=
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(61)

Transformation of Lorentz factors

Putting  gives

(62)

cγ′ Γ cγ βγv1–( ) γ′⇒ Γγ 1 β
v1

c
-----– 

 = =

γ′v1′ Γ βcγ– γv1+( ) γ′v1′⇒ Γγ v1 cβ–( )= =

γ′v2′ γv2=

γ′v3′ γv3=

v1 v θcos=

γ′ Γγ 1 β
v
c
-- θcos– 

 =
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This is a useful relationship that can be derived from the pre-
vious transformations for the 3-velocity. However, one of the
useful features of 4-vectors is that this transformation of the
Lorentz factor is easily derived with little algebra.

Transformation of 3-velocities

Dividing the second of the above transformations by the first:

(63)

Dividing the third equation by the first:

v1′ Γγ v1 cβ–( )

Γγ 1 β
v1

c
-----– 

 
------------------------------- v1 cβ–( )

1 β
v1

c
-----– 

 
------------------------ v1 V–( )

1
V vx

c2
---------–

 
 
 
------------------------= = =
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(64)

and similarly for . These are the equations for the transfor-
mation of velocity components derived earlier.

v2′ γv2

Γγ 1 β
v1

c
-----– 

 
------------------------------- v2

Γ 1
V vx

c2
---------–

 
 
 

----------------------------= =

v3
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4 Distribution functions in special relativity

In order to properly describe distributions of particles in a rel-

py

pz

Distribution of momenta in 
momentum space. 

p

px
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ativistic context and in order to understand the transforma-
tions of quantities such as specific intensity, etc. we need to
have relativistically covariant descriptions of statistical dis-
tributions of particles.

Recall the standard definition of the phase space distribution
function:

(65)f d3xd3 p
No of particles within an elementrary volume

of phase space
=
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4.1 Momentum space and invariant 3-volume
The above definition of  is somewhat unsatisfacto-
ry from a relativistic point of view since it focuses on three
dimensions rather than four. 

Covariant analogue of 

The aim of the following is to replace  by something that
makes sense relativistically.

Consider the space of 4-dimensional momenta. We express
the components of the momentum in terms of a hyperspheri-
cal angle  and polar angles  and . 

f x t p, ,( )

d3 p

d3 p

χ θ φ
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(66)

The Minkowksi metric is also the metric of momentum space
and we express the interval between neighbouring momenta

as . In terms of hyperspherical angles:

(67)

p0 mc χcosh=

p1 mc χ θ φcossinsinh=

p2 mc χ θ φsinsinsinh=

p3 mc χ θcossinh=

ηµνd pµd pν

ηµνd pµd pν d mc( )( )2– +=

m2c2 dχ( )2 χ dθ2 θdφ2sin2+( )sinh2+[ ]+
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This is proved in Appendix A.

The magnitude of the 3-dimensional momentum is

(68)

A particle of mass  is restricted to the mass shell
. This is a 3-dimensional hypersurface in mo-

mentum space. From the above expression for the metric, it is
easy to read off the element of volume on the mass shell:

(69)

This volume is an invariant since it corresponds to the invar-
iantly defined subspace of the momentum space,

. 

p mc χsinh=

m
m constant=

dω mc( )3 χsinh2 θdθdφsin=

m constant=
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On the other hand, the volume element  refers to a sub-
space which is not invariant. The quantity

(70)

depends upon the particular Lorentz frame. It is in fact the

projection of the mass shell onto . However, it

is useful to know how the expression for  is expressed in
terms of hyperspherical coordinates.

In the normal polar coordinates:

(71)

Putting  in this expression,

d3 p

d3 p d p1d p2d p3=

p0 constant=

d3 p

d3 p p2 θdpdθdφsin=

p mc χsinh=
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(72)

That is, the normal momentum space 3-volume and the invar-
iant volume  differ by a factor of .

4.2 Invariant definition of the distribution function
The following invariant expression of the distribution func-
tion was first introduced by J.L. Synge who was one of the in-
fluential pioneers in the theory of relativity who introduced
geometrical and invariant techniques to the field.

We begin by defining a world tube of particles with momen-

tum  (4-velocity ).

d3 p mc( )3 χsinh2 χ θdsin χdθdφcosh χdωcosh= =

dω χcosh

pµ uµ
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The distribution function  is defined by:

World tube of particles with 4-

velocity . The cross-sectional 
3-area of the tube is .

uµ

dΣ0

t

x

y

uµ

dΣ0

dΣ

nµ

f xµ pµ,( )
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The three-area of the world tube,  is the particular 3-area

that is normal to the world lines in the tube. Using , we

define the distribution function, , by the following
definition:

(73)

This is expressed in terms of a particular 3-area, .

dΣ0

dΣ0

f xµ pµ,( )

Number of world lines within

the world tube with momenta 

within dω

f xµ pµ,( )dΣ0dω=

dΣ0
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Now consider the world lines intersecting an arbitrary 3-area

(or 3-volume)  that has a unit normal . The projection
relation between  and  is

(74)

Proof of last statement

First, let us define what is meant by a spacelike hypersurface.

In such a hypersurface every displacement, , is spacelike.

That is, . The normal to a spacelike hyper-

surface is timelike. The square of the magnitude of a unit nor-
mal is -1:

dΣ nµ

dΣ dΣ0

dΣ0 dΣ c 1– uµnµ–( )×=

dxµ

ηµνdxµdxν 0>
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(75)

Example:

The surface

(76)

is spacelike. Its unit normal is:

(77)

We can also contemplate a family of spacelike hypersurfaces
in which, for example

(78)

ηµνnµnν 1–=

t constant=

nµ 1 0 0 0, , ,( )=

t variable=
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This corresponds to a set of 3-volumes in which  and

 vary, that are swept along in the direction of the time-axis.
As before the unit normal to this family of hypersurfaces is

 and the corresponding 4-velocity is 

(79)

In the present context, we can consider the set of 3-spaces
 corresponding to each cross-section of a world tube as a

family of such spacelike hypersurfaces. Each hypersurface is
defined as being perpendicular to the 4-velocity so that, in

x1 x2,

x3

nµ 1 0 0 0, , ,( )=

uµ c
dt
dτ
----- 0 0 0, , , 

  c 0 0 0, , ,( ) cnµ= = =

dΣ0
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general, . However, it is possible to make a

Lorentz transformation so that in a new system of coordinates

 and .

The significance of 

What is the significance of a surface  as indicated in the
figure? This is an arbitrary surface tilted with respect to the
original cross-sectional surface .This surface has its own

unit normal  and 4-velocity, . 

u0
µ c 0 0 0, , ,( )≠

n0
µ 1 0 0 0, , ,( )= u0

µ c 0 0 0, , ,( )=

dΣ

dΣ

dΣ0

nΣ
µ uΣ

µ cnΣ
µ=
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In the coordinate system in which the normal to  has

components , let us assume that the 4-ve-

locity of  is . That is,  represents a sur-

face that is moving with respect to  at the velocity  with

Lorentz factor, . The unit normal to  is

(80)

Relation between volumes in the two frames

Let  be the primed (moving) frame. The element of vol-
ume of  is

dΣ0

n0
µ 1 0 0 0, , ,( )=

dΣ uΣ
µ γc γv,( )= dΣ

dΣ0 v

γ dΣ

nΣ
µ γ γββββ,( )=

dΣ
dΣ
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(81)

At an instant of time in the primed frame denoted by 

(82)

Hence,

(83)

Expression of the Lorentz factor in invariant form

Consider the invariant scalar product

dΣ dx1′dx2′dx3′=

dt′ 0=

dx1 γ dx1′ vdt′+( ) γdx1′= =

dx2 dx2′= dx3 dx3′=

dΣ0 dx1dx2dx3 γdx1′dx2′dx3′ γdΣ= = =
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(84)

Dropping the  subscript on  and using  we

have

(85)

Hence,

(86)

Note that the “projection factor” is greater than unity, perhaps
counter to intuition.

nΣ
µn0 µ, γ γβ,( ) 1 0 0 0, , ,–( )⋅ γ–= =

Σ nΣ
µ n0 µ, c 1– uµ=

γ c 1– uµnµ–=

dΣ0 c 1– uµnµ–( )dΣ=



High Energy Astrophysics: Relativistic Effects    69/92

Number of world lines in terms of 

We defined the distribution function by:

(87)

Hence, our new definition for an arbitrary :

dΣ

Number of world lines within

the world tube with momenta 

within dω

f xµ pµ,( )dΣ0dω=

dΣ

Number of world lines within

the world tube crossing  dΣ

with momenta within dω

f xµ pµ,( ) c 1– uµnµ–( )dΣdω=
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Counting is an invariant operation and all of the quantities ap-
pearing in the definition of  are invariants, therefore 

(88)

4.3 An important special case
Take the normal to  to be parallel to the time direction in an
arbitrary Lorentz frame. Then

(89)

and

(90)

f

f xµ pµ,( ) Invariant=

Σ

n0 1 0 0 0, , ,( )=

uµnµ– u0n0–( )– u0= =
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Also

(91)

Now

(92)

Therefore,

(93)

dΣ d3x=

p0 mc χcosh= u0⇒ χcosh=

f xµ pµ,( ) uµnµ–( )dΣdω f xµ pµ,( ) χd3xdωcosh=

f xµ pµ,( )d3xd3 p=
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Our invariant expression reduces to the noninvariant expres-
sion when we select a special 3-volume in spacetime. Thus
the usual definition of the distribution is Lorentz-invariant
even though it does not appear to be.

5 Distribution of photons

5.1 Definition of distribution function
We can treat massless particles separately or as a special case
of the above, where we let  and  in such a

way that . In either case, we have for pho-

tons,

m 0→ χcosh ∞→

mc χcosh
hν
c

------→
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(94)

and the distribution function is still an invariant.

5.2 Relation to specific intensity
From the definition of the distribution function, we have

(95)

f xµ pµ,( )d3xd3 p
No of photons within d3x

and momenta within d3 p
=

Energy density of photons

within d3 p
hνf d3 p hνf p2dpdΩ= =
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The alternative expression for this involves the energy densi-
ty per unit frequency per unit solid angle, . We know

that

(96)

Hence, the energy density within  and within solid angle 
is

(97)

Therefore,

uν Ω( )

uν Ω( )
Iν
c
-----=

ν dΩ

uνdνdΩ c 1– IνdνdΩ=
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(98)

This gives the very important result that, since  is a Lorentz
invariant, then 

(99)

Thus, if we have 2 relatively moving frames, then

hνf p2dpdΩ hνf
hν
c

------ 
  2

d
hν
c

------ 
  dΩ c 1– IνdνdΩ= =

f⇒
c2

h4
------

Iν

ν3
------=

f

Iν

ν3
------ Lorentz invariant=
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(100)

Take the primed frame to be the rest frame, then

(101)

where  is the Doppler factor.

5.3 Transformation of emission and absorption 
coefficients
Consider the radiative transfer equation:

Iν′

ν′( )3
------------

Iν

ν3
------= Iν

ν
ν′
----- 
  3

Iν′=⇒

Iν δ3Iν′=

δ
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(102)

Obviously, the source function must have the same transfor-
mation properties as . Hence

(103)

Emission coefficient

The optical depth along a ray passing through a medium with
absorption coefficient  is, in the primed frame

dIν
dτν
--------- Sν Iν–= Sν

jν
αν
------=

Iν

Sν

ν3
------ Lorentz invariant=

αν
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(104)

The optical depth in the unprimed frame is

θ′ θ
l′ l

In SIn S′

τ
l′αν′

θ′sin
------------=
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(105)

and is identical. The factor  counts the number of photons
absorbed so that  is a Lorentz invariant. Hence

(106)

The aberration formula gives

(107)

τ
lαν

θsin
-----------=

e τ–

τ

lαν
l′αν′
------------ θ′sin

θsin
------------ 1=

θ′sin θsin
Γ 1 β θcos–( )
--------------------------------- δ θsin= =



High Energy Astrophysics: Relativistic Effects    80/92

and the lengths  and  are perpendicular to the motion, so
that . Hence,

(108)

i.e.  is a Lorentz invariant.

The emission coefficient

(109)

l l′
l l′=

αν
αν′
-------- δ 1–

ναν
ν′αν′
-------------→ 1= =

ναν

Sν

ν3
------

jν

ν3αν
-------------

jν

ν2
------
 
 
 

ναν( ) 1– Lorentz invariant= = =
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Hence,  is a Lorentz invariant.

5.4 Flux density from a moving source
The flux from an arbitrary source is given by

(110)

jν ν2⁄

D

dΩ

V

Observer

Fν Iν θ Ωdcos
Ω
∫ Iν Ωd

Ω
∫≈

1

D2
------- jν Vd

V
∫= =
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Now relate this to the emissivity in the rest frame. Since

(111)

Therefore,

(112)

The apparent volume of the source is related to the volume in
the rest frame, by

jν

ν2
------ Lorentz invariant=

jν
ν
ν′
----- 
  2

j′ν′ δ2 j′ν′= =

Fν
1

D2
------- δ2 j′ν′ Vd

V
∫

δ2

D2
------- j′ν′ Vd

V
∫= =
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(113)

This is the result of a factor of  expansion in the direction of
motion and no expansion in the directions perpendicular to
the motion. Hence the flux density is given in terms of the rest
frame parameters by:

(114)

Effect of spectral index

For a power-law emissivity (e.g. synchrotron radiation),

dV δdV′=

δ

Fν
1

D2
------- δ2 j′ν′ Vd

V
∫

δ3

D2
------- j′ν′ V′d

V
∫= =
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(115)

Therefore,

(116)

This gives a factor of  increase for a blue-shifted source
of radiation, over and above what would be measured in the
rest frame at the same frequency.

jν′ j′ν
ν′
ν
----- 
  α–

δα j′ν= =

Fν
δ3 α+

D2
--------------- j′ν Vd ′

V
∫=

δ3 α+
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Example:

Consider the beaming factor in a  jet viewed at the an-
gle which maximises the apparent proper motion.

The maximum  occurs when .

(117)

Hence,

Γ 5=

βapp θcos β=

Γ 5= β⇒ 1 1

52
------– 0.9798= =

δ 1
Γ 1 β θcos–( )
--------------------------------- 1

Γ 1 β2–( )
------------------------ Γ= = =
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(118)

for a spectral index of 

δ3 α+ 53.6 330= =

0.6
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5.5 Plot of δ
δ

θ

Plot of the 
Doppler fac-
tor as a func-
tion of view-
ing angle.
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Appendix A

Line element in momentum space in terms of hyper-
spherical angles

We have the hyperspherical angle representation of a point in
momentum space:

(119)

We can write:

p0 mc χcosh=

p1 mc χ θ φcossinsinh=

p2 mc χ θ φsinsinsinh=

p3 mc χ θcossinh=
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(120)

where

(121)

d p0

d p1

d p2

d p3

A

d mc( )
dχ
dθ
dφ

=

A

χcosh mc χsinh 0 0

χsinh

θsin× φcos

mc χcosh

θsin× φcos

mc χsinh

θ φcoscos×

mc χsinh–

θ φcossin×
χsinh

θ φsinsin×

mc χcosh

θ φsincos×

mc χsinh

θ φsincos×

mc χsinh

θ φcossin×
χ θcossinh mc χ θcoscosh mc χ θsinsinh– 0

=
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Hence

(122)

where

ηµνd pµd pν d mc( ) dχ dθ dφ A†A

d mc( )
dχ
dθ
dφ

=
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(123)

On matrix multiplication we obtain:

(124)

A†

χcosh–
χsinh

θsin× φcos

χsinh

θ φsinsin×
χ θcossinh

m– c χsinh
mc χcosh

θsin× φcos

mc χcosh

θ φsincos×
mc χ θcoscosh

0
mc χsinh

θ φcoscos×

mc χsinh

θ φsincos×
mc χ θsinsinh–

0
mc χsinh–

θ φcossin×

mc χsinh

θ φcossin×
0

=

ηµνd pµd pν d mc( )[ ]2– dχ( )2 χsinh2 dθ( )2 θsin2 dφ( )2+[ ]+ +=
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A†A

1– 0 0 0

0 1 0 0

0 0 χsinh2 0

0 0 0 χsinh2 θsin2

=


