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Emission and Absorption 

 

1 Motivation - the Quasar 3C 273

A MERLIN radio image of
the quasar 3C 273.

This shows the point source at
the nucleus and the jet.
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HST optical image of
3C273

Note the very strong cen-
tral point source and the
less luminous jet.

Objects such as 3C273
radiate as much energy
from a region the size of
the solar system as the
entire galaxy.
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Set of 3 images of the jet
of 3C273.

Left: HST

Middle: Chandra X-ray

Right: Merlin radio

Credits:

Optical: NASA/STScI 

X-ray: NASA/CXC 

Radio: MERLIN
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Integrated spectral
energy distribu-
tion of 3C 273

from  to 
Hz. From Elvis et
al. 1994, ApJS,
95, 1 

Note the rising
spectrum in the ra-
dio.

108 1019
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2 Radio-loud and radio quiet

Spectra of a typical radio
loud quasar and a typical
radio quiet object.

Note that apart from the
radio emission the major
differences are:

•  The slopes of the hard 
X-ray component

•  The XUV excess in 
the radio quiet object
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3 Absorption in general

 

For every emission process, there is an absorption process, wherein
an electromagnetic wave can affect the energy of particles thereby
losing energy itself. We have dealt with the emission of synchrotron
radiation in some detail. The corresponding process of synchrotron
self-absorption whereby synchrotron emitting particles can absorb
the radiation they emit is an important process in very compact
sources. If it is present, it can be used to estimate the magnetic field
in a source.

There are two ways of calculating the absorption coefficient.

1. Calculate the dielectric tensor of the plasma and then use this ten-
sor to calculate the effect on an electromagnetic wave.This method 
is valuable when more information is required such as when treat-
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ing the radiative transfer of polarised radiation.

2. Use a remarkable set of generic relations discovered by Einstein 
in order to relate absorption to emission for any process. This 
method leads quickly to an expression for the absorption coeffi-
cient and we shall use it here since it is of general interest.

 

4 Radiative transfer in a thermal gas

 

This section is important as a prelude to the treatment of the Einstein
coefficients and is also important for our discussion of the emission
from accretion disks.
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4.1 The source function

 

Consider the radiative transfer equation:

Divide through by 

dIν
ds

-------- jν ανIν–=

αν

1
αν
------

dIν
ds

--------
jν
αν
------ Iν–=

dIν
dτ
-------- Sν Iν–=
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where

is the 

 

source function.

 

4.2 Thermodynamic equilibrium

 

Now consider the situation where the matter and radiation are in
thermodynamic equilibrium.

Sν
jν
αν
------=
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In this case we know that the equilibrium ra-
diation field is described by the Planck func-
tion, viz.

Since  inside the enclosure, the source function is given by

 

.

Matter and radiation 
in an enclosure.

Iν Bν T( ) 2hν3

c2
------------ e

hν
kT
------

1–

1–

= =

dIν
ds

-------- 0=

Sν Bν=
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The surface brightness (specific intensity) of a black body is given
by .

4.3 Kirchhoff’s law
In a thermal plasma in which the matter is in thermal equilibrium, but
not necessarily with the radiation, the coefficients of emission and
absorption are functions of the temperature only so that the source
function is given by

Bν

Sν Bν T( )=
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This holds irrespective of whether the matter and radiation are in
thermal equilibrium or not. This then relates absorption to emission
via

This relationship is known as Kirchhoff’s law.

For a thermal plasma, in which the matter is in thermal equilibrium,
Kirchhoff’s law is sufficient to characterise the source function and
the absorption. There are two important cases where Kirchhoff’s law
is insufficient:

1. The plasma is thermal but the levels of the various atoms are not 
in thermal equilibrium.

αν Bν T( )[ ] 1– εν
c2

2hν3
------------ e

hν
kT
------

1– εν= =
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2.The plasma is nonthermal, i.e. no component of it is described in 
terms of a single temperature. 

In both of these cases, one is required to go one step beyond Kirch-
hoff’s law to the Einstein relations.

5 Properties of blackbody radiation

5.1 Energy density
Recall the expression for the energy density per unit frequency

uν
4π
c

------Jν= Jν
1

4π
------ Iν Ωd

4π
∫=
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The total energy density is:

εrad uν νd
0
∞
∫

4π
c

------ Bν T( ) νd
0
∞
∫= =

8πh

c3
---------- ν3

hν
kt
------ 

 exp 1–

------------------------------------ νd
0
∞
∫=

8πk4T 4

h3c3
------------------- hν kt⁄( )3

hν
kt
------ 

 exp 1–

------------------------------------ hν
kt
------ 

 d
0
∞
∫=
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The integral is  so that

This is known as Stefan’s Law.

5.2 Flux from the surface of a black body

The total (frequency integrated) flux is given by:

π4 15⁄

εrad
8π5k4

15h3c3
------------------T 4 aT 4= =

a
8π5k4

15h3c3
------------------         =

F πBν T( ) νd
0
∞
∫

c
4
--- 4π

c
------ Bν T( ) νd

0
ν

∫× ac
4

------T 4 σT 4= = = =
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where  is the Stefan-Boltzmann constant.σ ac
4

------=

θ n

Iν

Fν dφ Bν T( ) θ θsincos θd
0
π
∫0

2π
∫ πBν T( )= =
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6 The Einstein relations

6.1 Definition of the Einstein coefficients
These relations are arrived at in a similar manner to Kirchhoff’s law
via the inclusion of a new process – stimulated emission. Einstein
found it necessary to include stimulated emission in the analysis of
radiation processes. Neglecting it led to inconsistencies.

Spontaneous 
emission

Absorption

1

2

Processes in a 2-level atom

Stimulated 
emission

Energy E2=

Energy E1=



High  Energy Astrophysics: Emission and Absorption 18/114

The above diagram refers to a 2-level atom with energy levels 

and .1 Emission corresponds to a transition of an electron from

level 2 to level 1, with the emission of a photon with frequency given
by

where  is Planck’s constant. The transition is not exactly sharp as
indicated. Absorption is the reverse process, whereby a photon with

 causes a transition from level 2 to level 1. In gen-

eral the emitted and absorbed radiation is described by a profile func-
tion  sharply peaked on . This function expresses the

fact that in emission there is a range of photon energies resulting

1.Generalisation to a multilevel atom is trivial since we consider levels in pairs.

E1

E2

hν21 E2 E1–=

h

energy E2 E1–=

φ ν( ) ν ν21=
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from the transition. In absorption, photons with a frequency slightly
different from  also cause a transition. We assume that  for

emission and absorption are equal. This is an adequate assumption
for the present purposes. 

The description of the various terms is as follows:

Spontaneous emission

This is the emission that occurs in the absence of a radiation field.
This is what we calculate from the Quantum Mechanics of the atom
in question or in the case of continuum radiation, this is what we cal-
culate from the application of electromagnetic theory.

ν21 φ ν( )
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Let the probability that an atom makes a spontaneous transition from
level 2 to 1 in time , emitting a photon within solid angle  be
given by . Another way of saying this is that the probabil-

ity per unit time is . 

Now let  be the number of atoms per unit volume in level 2. The

contribution to the emissivity from spontaneous emission is then

dt dΩ
A21dΩdt

A21dΩ

N2

jν
spont N2hν21φ ν( )A

21
=
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Stimulated emission

This is another component of the emission which occurs as a result
of the radiation field. The presence of a photon field stimulates the
production of additional photons. The stimulated photons have the
same direction and polarisation as the original photons.

Let  be the probability of stimulated emission in time 

into solid angle  and let the number of atoms per unit volume in
level 2 be . The contribution to the emissivity from stimulated

emission is then

Note that the stimulated photons are emitted in the same direction as
the incident photons and with the same polarisation. 

B21IνdΩdt dt

dΩ
N2

jν
stim N2hν21φ ν( )B

21
Iν=
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Absorption

Absorption occurs when a photon interacts with the atom and causes
a transition from level 1 to level 2. Let  be the probabil-

ity that an atom absorbs a photon from solid angle  in time . 

Then the absorption is given by

.

The coefficients ,  and  are the Einstein coefficients.

B12IνdΩdt

dΩ dt

ανIν N1B12hν21φ ν( )I
ν

=

A21 B21 B12



High  Energy Astrophysics: Emission and Absorption 23/114

Differences in notation and approach. 

The Einstein coefficients are sometimes described in terms of the
mean intensity. This is valid when the emissivity is isotropic. They
are also sometimes defined in terms of the photon energy density in
which case there is a factor of  difference in the definition. 

In many treatments of the Einstein relations (including the original
paper), it is assumed, either implicitly or explicitly, that the profile
function,  is a delta function.

4π c⁄

φ ν( )



High  Energy Astrophysics: Emission and Absorption 24/114

6.2 The radiative transfer equation in terms of the Ein-
stein coefficients
Taking into account spontaneous and stimulated emissivity, the total
emissivity is

Hence the radiative transfer equation is:

jν N2hν21φ ν( )A
21

N2hν21φ ν( )B
21

Iν+=

dIν
ds

-------- jν ανIν–=

N2hν21φ ν( )A
21

=

N2hν21φ ν( )B
21

Iν N1B12hν21φ ν( )I
ν

–+
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Nett absorption

The stimulated emission term has the same form as the absorption
term and we therefore incorporate it into the absorption term as a
negative absorption, giving:

so that the absorption coefficient

dIν
ds

-------- N2hν21φ ν( )A
21

N1B12 N2B21–[ ] hν21φ ν( )Iν–=

αν
* N1B12 N2B21–[ ] hν21φ ν( )=
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6.3 Derivation of the Einstein relations
We proceed similarly to deriving the Kirchhoff relations. When ra-
diation and matter are in thermal equilibrium, then

and  in our blackbody cavity implies that

Iν Bν T( ) 2hν3

c2
------------ e

hν
kT
------

1–

1–

= =

dIν
ds

-------- 0=

N2hν21φ ν( )A
21

N1B12 N2B21–[ ] hν21φ ν( )Bν=
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Cancelling out common factors:

We know that when a system is in thermodynamic equilibrium, the
population of the various energy levels is given by:

where  is the statistical weight. 

N2A21 N1B12 N2B21–[ ]
2hν21

3

c2
--------------- e

hν21
kT

------------
1–

1–

=

N g
E

kT
------–exp∝

g
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Hence,

N2
N1
-------

g2
g1
-----

E2
kt
------–exp

E1
kT
------–exp

-------------------------
g2
g1
-----

E2 E1–( )
kT

------------------------–exp
g2
g1
-----

hν21
kT

------------–exp= = =
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The equation for radiative equilibrium can be written:

These relationships are independent of the temperature if and only if

A21

N1
N2
-------B12 B21–

2hν21
3

c2
--------------- e

hν21
kT

------------
1–

1–

=

A21⇒
g1
g2
-----

B12
B21
---------e

hν21
kT

------------
1– B21

2hν21
3

c2
--------------- e

hν21
kT

------------
1–

1–

×=

g1
g2
-----

B12
B21
--------- 1= A21 B21

2hν21
3

c2
---------------=
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That is,

These are the Einstein relations. They have been derived for the spe-
cial case where the matter and the radiation are all in thermal equi-
librium. However, they represent general relationships between
emission and absorption coefficients which are valid for all situa-
tions. 

Important features

•  The Einstein relations are independent of the temperature so that 

A21

2hν21
3

c2
---------------B21=

B12

g2
g1
-----B21=
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they are applicable to nonthermal as well as thermal distributions.
•  The Einstein relations would be impossible without the presence 
of stimulated emission represented by the coefficient . If 

 then both spontaneous emission and absorption coeffi-

cients are zero.

B21

B21 0=
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Convenient representation

Finally, for convenience, the relations are usually represented with-
out the 21 subscript on the frequency:

Given any one coefficient, the others can be determined and the
complete emission and absorption properties of the plasma can be
specified. 

A21
2hν3

c2
------------B21=

B12

g2
g1
-----B21=
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6.4 Special cases
The emissivity and absorption coefficient are given by

Hence the source function,

where we have used the Einstein relations.

jν N2hν21φ ν( )A
21

=

αν
* N1B12 N2B21–[ ] hν21φ ν( )=

Sν
jν
αν
------

N2A21
N1B12 N2B21–[ ]

---------------------------------------------
N1B12
N2B21
----------------- 1–

1– A21
B21
---------= = =

2hν3

c2
------------

N1g2
N2g1
------------- 1–

1–
=
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The absorption coefficient

Local thermodynamic equilibrium => Kirchhoff’s Law

In LTE we know that

so that for LTE, we recover Kirchhoff’s law,

αν
* N2B

21
hν21φ ν( )

N1g2
N2g1
------------- 1–=

N1g2
N2g1
-------------

hν
kT
------ 

 exp=

Sν
2hν3 c2⁄

ehν kT⁄ 1–[ ]
--------------------------------=
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Non Local Thermodynamic Equilibrium (Non LTE)

Non Local Thermodynamic Equilibrium is a situation in which 

where  is the difference in energy between any two levels.

Masers and lasers

If

N1g2
N2g1
------------- ∆E

kt
-------exp≠

∆E

N1g2
N2g1
------------- 1– 0<
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i.e. 

then, the absorption coefficient is negative. Radiation in this case is
amplified, not absorbed. A population for which this is the case is
called an inverted population because there are more particles in the
upper level than in the higher (modulo the statistical weight.) Invert-
ed populations like this in the laboratory give lasers. In astronomical
contexts, they give masers. In LTE and in may other contexts,

 so that the situations which give rise to masers are

somewhat unusual. They arise from pumping of the upper level by

N1

g1
g2
-----N2<

N2 g1 g2⁄( )N1<
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some source of radiation, usually in the infrared. The velocities of
masers have proven of great importance in the detection of black
holes.
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7 The Einstein relations for continuum radiation

The Einstein relations can be generalised to polarised continuum ra-
diation provided one makes the correct identification of the relevant
number densities. Since we are dealing with continuum radiation
there are no discrete energy levels and the emitted photons do not
have discrete energies, i.e. there are no emission lines. We therefore
consider the distribution of particles in momentum space and make
an appropriate identification of the populations of the levels which
we have previously called  and . N1 N2



High  Energy Astrophysics: Emission and Absorption 39/114

7.1 The phase-space distribution function
Remember the phase-space distribution function  which is
defined by 

Hence,

We use this number density in discussing the Einstein relations for
continuum emission.

f x p,( )

The number of particles in

an element of phase space
f x p,( )d3xd3 p=

The number density

in an element of momentum space
f x p,( )d3 p=
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Relation to the number per unit energy

Taking polar coordinates in phase space, the element of volume is

For an isotropic distribution, in which , the
number density of electrons is

after integrating out the angular part. Hence, the number density of
particles per unit momentum is

d3 p p2dpdΩ p2dp θdθdφsin= =

f x p,( ) f x p,( )=

n Ω f p( ) p2 pd
0
∞
∫d

4π
∫ 4π p2 f p( ) pd

0
∞
∫= =

N p( ) 4πp2 f x p,( )=
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The relationship between  and  is

For relativistic particles,  and, dropping the explicit spatial
dependence,

7.2 Einstein relations for continuum emission
7.2.1 Number densities
We consider Einstein coefficients for polarised emission and absorp-
tion of continuum photons as follows. Note that we consider each ra-
diation mode separately.

f x p,( ) N x E,( )

4πp2 f x p,( )dp N x E,( )dE=

E cp=

N E( ) 4π
c3
------E2 f E c⁄( )=
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The wave vector of the emitted photon is  where  is the
wave number and  is the direction of the photon. The momentum is

.

A21
i( ) B21

i( ) B12
i( )

1

2

E hν–

E

Einstein coefficients for transitions between energy 
states in a plasma differing by the energy of the emit-
ted photon, .hν

k kκκκκ= k
κκκκ

hk hν c⁄( )κκκκ=
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Consider a plasma in which the emission of a photon of momentum
 results in a change of the momentum of the emitting particle by

the corresponding amount. 

The relevant number densities are

where

In focusing on  we are considering pairs of particle momenta
which are separated in momentum by the momentum of the photon.
They are separated in energy by .

hk

N1 ∆N p hk–( )= N2 ∆N p( )=

∆N p( ) f x p,( )d3 p=

∆N p( )

hν
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p2

p1
hk

d3 p2

d3 p1

“Excited” state

“Final” state

px

pypz
Momentum of 
emitted photon
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7.2.2 The Einstein coefficients for polarised continuum radiation

dΩ

κκκκ

B

Illustrating the definition of the 
Einstein coefficients for the emis-
sion and absorption of radiation in 
a particular direction given by the 
unit vector .κκκκ
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The Einstein coefficients are defined by:

For polarised emission the Einstein relations are:

A21
i( )dνdΩ

Probability per unit time for spontaneous emission 

of a photon in mode i in the ranges dν  and dΩ
=

B12
i( )IνdνdΩ

Probability per unit time for the absorption

of a photon in mode i in the ranges dν  and  dΩ
=

B21
i( )IνdνdΩ

Probability per unit time for stimulated emission

of a photon in mode i in the ranges dν  and dΩ
=

B21
i( ) B12

i( ) c2

hν3
--------- 

  A21
i( )= =
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The factor of 2 difference is the result of the Planck function for ther-
mal emission being halved for each mode of polarisation when one
considers the detailed balance relations.

For continuum states, the statistical weights of each level to be unity.

The contribution to the absorption coefficient from states differing in
momentum by the momentum of an emitted photon is:

dαν
i( ) N1B12

i( ) N2B21
i( )–[ ] hν N1 N2–[ ] B21

i( )hν= =

∆N p hk–( ) ∆N p( )–[ ] c2

hν3
---------hνA21

i( )=

∆N p hk–( ) ∆N p( )–[ ] c2

ν2
------ A21

i( )=
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where the  refers to the two modes of polarisation of the emitted
transverse waves. In this equation

Relation between the respective volumes of momentum
space

How do we relate  and ? 

Remember that we are considering momentum states that are related
by 

i( )

∆N p hk–( ) f p hk–( )d3 p1= ∆N p( ) f p( )d3 p2=

d3 p1 d3 p2

p2 p1 hk+=
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This can be thought of as a mapping between different regions of
momentum space with the elementary volumes related by the Jaco-
bean of the transformation which we can write out in full as

The Jacobean of this transformation is just 1. Hence

px 2, px 1, hkx+=

py 2, py 1, hky+=

pz 2, pz 1, hkx+=

d3 p2 d3 p1=
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 Therefore, we can put for the populations in the different states

where

The contribution to the absorption coefficient from particles in this
region of momentum space is therefore:

N1 ∆N p hk–( ) f p hk–( )d3 p= =

N2 ∆N p( ) f p( )d3 p= =

d3 p d3 p1 d3 p2= =

dαν
i( ) f p hk–( ) f p( )–[ ] c2

ν2
------ A21

i( )d3 p=
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We assume that the momentum of the emitted photon is much less
than that of the emitting particle. 

When , we can expand the distribution function to
first order:

For an isotropic distribution of electrons

 

hk hν c⁄ p«=

f p hk–( ) f p( ) hk f p( )∇⋅–=

f p( ) f p( )=

f p( )∇⇒
p∂

∂
f p( ) p̂

df p( )
dp

-------------- p̂= =

hk f p( )∇⋅⇒ hk p̂⋅( )df p( )
dp

--------------=
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Specific case of synchrotron emission

We now utilise one of the features of synchrotron emission, namely
that the photon is emitted in the direction of the particle to within an

angle of  radians, i.e. . Hence,

The difference in the phase-space distribution functions at the two
different momenta is:

γ 1– hk p∝

hk p̂ hk≈⋅ hν
c

------=

f p hk–( ) f p( )–
hν
c

------df p( )
dp

--------------–≈
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Since,

then

N E( ) 4π
c3
------E2 f p( )= and d

dp
------ c

d
dE
-------=

f p hk–( ) f p( )–
hνc3

4π
------------

Ed
d N E( )

E2
-------------–=



High  Energy Astrophysics: Emission and Absorption 54/114

Contribution to the absorption coefficient

The contribution to the absorption coefficient from this volume of
momentum space is therefore:

The total absorption coefficient is therefore:

where the integral is over momentum and solid angle  in momen-

tum space. In order to calculate the absorption coefficient, all we

have to do now is evaluate .

dαν
i( ) hνc3

4π
------------

Ed
d N E( )

E2
-------------–

c2

ν2
------ A21

i( )d3 p×=

αν
i( ) hνc3

4π
------------

Ed
d N E( )

E2
------------- c2

ν2
------ A21

i( ) p2 pd Ωpd∫–=

Ωp

A21
i( )
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Emissivity and 

Recall the definition of the Einstein coefficient:

Therefore, the coefficient  is related to the single electron emis-

sivity  through

A21

A21
i( )dνdΩ

Probability per unit time for spontaneous emission  

of a photon in mode i in the ranges dν  and dΩ
=

A21
i( )

dPν
i( )

dΩ
-------------

νA21
i( )dνdΩ

dPν
i( )

dΩ
-------------dνdΩ=
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The quantity

In Synchrotron Radiation I, we calculated the single electron power
emitted per unit circular frequency

with the + sign for the perpendicular component and the - sign for
the parallel component.

dPν
i( )

dΩ
-------------

Power radiated per unit time

per unit frequency per unit solid angle
=

P i( ) ω( ) 3

16π2ε0c
---------------------q3B αsin

m
---------------------- F x( ) G x( )±[ ]=
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Now recall the above expression for the absorption coefficient

αν
i( ) hνc3

4π
------------

Ed
d N E( )

E2
------------- c2

ν2
------ A21

i( ) p2 pd Ωpd∫–=

c3

4πν2
-------------

Ed
d N E( )

E2
------------- hνA21

i( ) p2 pd Ωpd∫–=

c3

4πν2
-------------–

Ed
d N E( )

E2
-------------

dPν
i( )

dΩ
------------- p2 pd Ωpd∫=
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In this integral we take  and

Integrating over solid angle:

p2d p
1

c3
-----E

2
dE→

αν
i( ) 1

4πν2
-------------

Ed
d N E( )

E2
------------- E2 E

dPν
i( )

dΩ
------------- ΩpdΩp

∫d
E∫–=

dPν
i( )

dΩ
------------- Ωpd∫ Pν

i( ) 2πP i( ) ω( )= =
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Since we use  rather than  we also change the integral
over  into one over , remembering that

 

This gives

N γ( ) N E( )
E γ

N E( ) 1

mec2
------------N γ( )=

αν
i( ) 3

32π2
------------ 1

ν2
------ 

  e2

ε0mec
---------------

 
 
 

Ω0 θsin( )–=

γ2
γd

d N γ( )
γ2

------------ F x( ) G x( )±[ ] γdγ1

γ2
∫×
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We shall use the following below:

αν
⊥ αν

||+

2
--------------------- 3

32π2
------------–

1

ν2
------ 

  e2

ε0mec
---------------

 
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 
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d N γ( )
γ2
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γ2
∫=
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||–

2
--------------------- 3

32π2
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1

ν2
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  e2

ε0mec
---------------

 
 
 

Ω0 θsin( ) γ2
γd

d N γ( )
γ2

------------ G x( ) γdγ1

γ2
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The first quantity is often referred to as the mean absorption coeffi-
cient. The ratio

7.3 Absorption coefficients for a infinite power-law distri-
bution
For a power-law distribution:

αν
⊥ αν

||–

αν
⊥ αν

||+
---------------------

γ2
γd

d N γ( )
γ2

------------ G x( ) γdγ1

γ2
∫

γ2
γd

d N γ( )
γ2

------------ F x( ) γdγ1

γ2
∫
----------------------------------------------------------=

N γ( ) Kγ a–= γ2
γd

d N γ( )
γ2

------------ 
 ⇒ a 2+( )Kγ a 1+( )––=
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and

As with computing the emission coefficient, we change the variable
of integration to , using:

αν
i( ) 3

32π2
------------ a 2+( ) 1

ν2
------ 

  e2

ε0mec
---------------

 
 
 

Ω0 θsin( )K=

γ a 1+( )– F x( ) G x( )±[ ] γdγ1

γ2
∫×

x

γ 2
3
--- ω

Ω0 θsin
------------------ 

  1 2/
x 1 2/– 4π

3
------ ν

Ω0 θsin
------------------ 

  1 2/
x 1 2/–= =

dγ 1
2
--- 4π

3
------ ν

Ω0 θsin
------------------ 

  1 2/
x 3 2/– dx–=



High  Energy Astrophysics: Emission and Absorption 63/114

so that

αν
i( ) 3

64π2
------------ 3

4π
------ 

  a 2/
a 2+( ) e2

ε0mec
---------------

 
 
 
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2
-----------------
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2
-----------------–
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x

a 2–( )
2
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x2

x1
∫× F x( ) G x( )±[ ] dx
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That is,
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⊥ 3

64π2
------------ 3

4π
------ 
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Consequently,

and
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⊥ αν

||+

2
---------------------

3

64π2
------------ 3

4π
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  a 2/
a 2+( ) e2
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As before, when the frequency  is well inside the limits determined
by the upper and lower cutoff Lorentz factors, the limits of the inte-
gral may be taken to be zero and infinity, respectively. Using the ex-
pressions for the integrals of a power times  and , we have,

ν

F x( ) G x( )

x
0
∞
∫

a 2–( )
2

----------------
F x( )dx

2

a 2+
2

------------

a 2+
--------------Γ a

4
--- 11

6
------+ 

  Γ a
4
--- 1

6
---+ 

 =

x
0
∞
∫

a 2–( )
2

----------------
G x( )dx 2

a 2–( )
2

----------------
Γ a

4
--- 5

6
---+ 

  Γ a
4
--- 1

6
---+ 

 =
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Therefore,

This gives for the ratio of absorption coefficients:

αν
⊥ αν

||–

αν
⊥ αν

||+
---------------------

2

a 2–( )
2
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Γ a

4
--- 5
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---+ 
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 
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a
10
3
------+

---------------= =
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⊥

------- 2
3a 8+
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The mean absorption coefficient is:

where

As with the expression for the emission coefficient, this expression
is separated into a numerical coefficient which depends upon , a
factor involving physical constants, a part involving the non-relativ-
istic gyrofrequency, a factor involving the parameter for the electron
density and a factor involving a power of the frequency. This is often

αν
⊥ αν

||+

2
--------------------- C3 a( ) e2

ε0mec
---------------

 
 
 

K Ω0 θsin( )
a 2+

2
------------

ν
a 4+( )

2
-----------------–

=

C3 a( ) 3

a 1+( )
2

-----------------
2

a 10+( )
2

--------------------–
π

a 4+
2

------------ 
 –

Γ a
4
--- 11

6
------+ 

  Γ a
4
--- 1

6
---+ 

 =

a
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the absorption coefficient which is quoted in text books. However,
this coefficient alone does not convey the whole story since synchro-
tron absorption unlike many other absorption processes is polarised.
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7.4 Numerical value of 

At the left is a plot of the
function  appearing

in the above expression for
the synchrotron absorption
coefficient.
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8  The transfer of polarised synchrotron radiation in an 
optically thick region

The transfer equations for the two modes of polarisation are:

dIν
⊥

ds
--------- jν

⊥ αν
⊥ Iν

⊥–=

dIν
||

ds
--------- jν

|| αν
|| Iν

||–=
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Recall that the perpendicular and parallel components of intensity
are related to the Stokes parameters by:

The reverse transformation is:

Iν
⊥ 1

2
--- Iν Qν+( )=

Iν
|| 1

2
--- Iν Qν–( )=

Iν Iν
⊥ Iν

||+=

Qν Iν
⊥ Iν

||–=
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We write the transfer equations in terms of source functions.

In a slab geometry with all parameters constant, the solutions are:

dIν
⊥

ds
--------- jν

⊥ αν
⊥ Iν

⊥–=
dIν

⊥

dτν
⊥

----------⇒
jν
⊥

αν
⊥

------- Iν
⊥– Sν

⊥ Iν
⊥–= =

dIν
||

ds
--------- jν

|| αν
|| Iν

||–=
dIν

||

dτν
||

---------⇒
jν
||

αν
||

------- Iν
||– Sν

|| Iν
||–= =

Iν
⊥ Sν

⊥ 1 τν
⊥–exp–( )=

Iν
|| Sν

|| 1 τν
||–exp–( )=
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For small optical depths , these relations become the

standard ones for optically thin emission. In the opposite limit of in-
finite optical depth,

τν
⊥ τν

||, 1«

Iν
⊥ Sν

⊥
jν
⊥

αν
⊥

-------= =

Iν
|| Sν

||
jν
||

αν
||

-------= =
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The ratio

We have:

Q
I
----

Iν
⊥ Iν

||–

Iν
⊥ Iν

||+
------------------

jν
⊥
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⊥

-------
jν
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-------–
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⊥
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⊥

-------
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⊥
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⊥
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3a 8+
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⊥

------ 2
3a 5+
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Using the previously determined ratios for these quantities

An important result here is that the ratio is negative signifying that
the parallel component of the intensity is the larger. This means that
the major axis of the polarisation ellipse is parallel to the magnetic
field. As one can see from the following plot the fractional polarisa-
tion

is lower for optically thick emission.

Qν
Iν
------- 3

6a 13+
------------------–=

Π 3
6a 13+
------------------=
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The fractional polarisation
of a self absorbed synchro-
tron source.
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9 The spectral slope for optically thick emission

For optically thick emission, we have:

Iν
⊥ Sν

⊥
jν
⊥

αν
⊥

-------= = Iν
|| Sν

||
jν
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αν
||

-------= =

Iν⇒ Sν
⊥ Sν

||+
jν
⊥

αν
⊥

-------
jν
||

αν
||

-------+= =
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Write this in terms of the total emissivity and the mean absorption
coefficient in the following way:

where  is the mean absorption coefficient.

We have already determined the ratios

Iν
jν
αν
------

jν
⊥ jν⁄

αν
⊥ αν⁄

------------------
jν
|| jν⁄

αν
|| αν⁄

------------------+=

αν
αν

⊥ αν
||+

2
---------------------=

s
jν
||

jν
⊥

------ 2
3a 5+
---------------= = r

αν
||

αν
⊥

------- 2
3a 8+
---------------= =
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Therefore,

Iν
jν
αν
------ 1 1 s+( )⁄

2 1 r+( )⁄
----------------------- s 1 s+( )⁄

2r 1 r+( )⁄
--------------------------+=

jν
αν
------ 6a 13+( ) 3a 10+( )

2 3a 8+( ) 3a 7+( )
-----------------------------------------------=
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Now use

The intensity is then

jν C1 a( ) e2

ε0c
--------

 
 
 

K Ω0 θsin( )
a 1+

2
------------

ν
a 1–( )

2
----------------–

=

αν C3 a( ) e2

ε0mec
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 
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 
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ν
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2
-----------------–
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6a 13+( ) 3a 10+( )
2 3a 8+( ) 3a 7+( )
-----------------------------------------------

C1 a( )
C3 a( )
---------------me Ω0 θsin( ) 1 2/– ν5 2/=

C5 a( )me Ω0 θsin( ) 1 2/– ν5 2/=
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where

.

The important result here is that .

The entire spectrum from optically thick to optically thin regimes is
as indicated in the following plot for the case of 

C5 a( ) 6a 13+( ) 3a 10+( )
2 3a 8+( ) 3a 7+( )
-----------------------------------------------

C1 a( )
C3 a( )
---------------=

Iν ν5 2/∝

a 2.1=
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Plots of perpendicular and parallel components of inten-
sity

Write

Sν
||

jν
||
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||

-------
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||
-------

jν
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jν
-----

jν
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------×
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⊥
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⊥
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⊥
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jν
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jν
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⊥
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⊥
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The mean source function  is given by:

From the above

We define a frequency  at which the mean optical depth is unity by

Sν

Sν
jν
αν
------

C1 a( )
C3 a( )
---------------me Ω0 θsin( ) 1 2/– ν5 2/= =

Sν
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--------------------------------------------Sν= Sν
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ν0
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 
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2
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ν0

a 4+( )
2

-----------------–
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and then put

Then the perpendicular component is

Sν A
ν
ν0
------ 

  5 2/
=

Iν
⊥ 3a 5+( ) 3a 10+( )

2 3a 8+( ) 3a 7+( )
-------------------------------------------- A

ν
ν0
------ 

  5 2/
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1
2 3a 8+( )
3a 10+

----------------------- ν
ν0
------ 

 
a 4+( )

2
-----------------–

–exp–×



High  Energy Astrophysics: Emission and Absorption 86/114

 and the parallel component is:

These equations have used to produce the plots below.

Iν
|| 3a 10+( )

2 3a 7+( )
----------------------- A

ν
ν0
------ 

  5 2/
=

1
4
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------------------ ν
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 
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2
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Polarisation
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The above curve shows the polarisation defined by 

varying between the limits of  (for the optically thick case)

and  for the optically thin regime.

Synchrotron self-absorption is just one of the processes that can lead
to a low frequency cutoff in the spectrum of a radio source. Others
include free-free absorption (due to foreground ionised matter) and
a process known as induced Compton scattering. A low energy cut-
off in the low frequency spectrum can also lead to a low frequency
cutoff.

Π
Qν
Iν
-------=

3–
6a 13+
------------------

a 1+
a 7 3⁄+
-------------------
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10 When is synchrotron self absorption important?

Consider the optical depth based upon the mean absorption coeffi-
cient:

We also consider optically thin emission and consider the transition
to the optically thick regime. Therefore, the surface brightness is

τν αν s ανL≈d
slab
∫=

Iν jν sd
slab
∫ jνL≈=



High  Energy Astrophysics: Emission and Absorption 91/114

We can therefore relate the optical depth to the surface brightness
via:

where  is the “mean” source function. 

τν
Iν
-----

ανL

jνL
----------≈

αν
jν
------=

τν⇒
αν
jν
------Iν

1
Sν
------ Iν×= =

Sν
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Using again the relations for emissivity and mean absorption coeffi-
cient:

we obtain

jν C1 a( ) e2

ε0c
--------

 
 
 
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ν
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The mean optical depth is then given in terms of the optically thin
surface brightness by:

τν
C3 a( )
C1 a( )
---------------me

1– Ω0 θsin( )1 2/ Iνν 5 2/–( )×=
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Note that this expression depends upon the magnetic field only and
not on the parameter . Now in the optically thin regime, we can
write:

K

Iν Iν0

ν
ν0
------ 

  α–
=

τν
C3 a( )
C1 a( )
---------------me

1– Ω0 θsin( )1 2/ Iν0
ν0

5 2/– ν
ν0
------ 

  α 5 2⁄+( )–
×=⇒

C3 a( )
C1 a( )
--------------- e1 2/

me
3 2/

------------ B θsin[ ] 1 2/ Iν0
ν0

5 2/– ν
ν0
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  α 5 2⁄+( )–
=
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Now let us put in some fiducial values:

The result is:

B 1G 10 4–  T= =

Iν0

1 Jy
sq. arcsec
----------------------- 4.3

16–×10  W m 2–  Hz 1–  Sr 1–= =

ν0 1 GHz=

τν 6.26
5–×10

C3 a( )
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--------------- B θsin

G
---------------

1 2/ Iν0
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--------------------------- ν
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----------- 
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For typical kpc scale regions of radio galaxies, supernova remnants
etc., we can see that there is no chance of plasma becoming optically
thin, except at very low frequencies. Typical values would be

However, in the cores of radio galaxies and quasars, we can have 

In which case the optical depth at  would be

B 10 5–  G∼ Iν0
10 mJy arcsec 2–∼

Iν0
1 Jy mas 2–∼ B 10 2–∼  G

1 GHz

τν 6.3
C3 a( )
C1 a( )
--------------- B θsin

0.01G
---------------

1 2/ I1GHz

Jy mas 2–
---------------------- ν

Ghz
---------- 

  α 5 2⁄+( )–
=
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For a spectral index , ,  and

and the plasma can clearly be optically thick at frequencies much
higher than a GHz. This is a characteristic feature of quasar spectra.

α 0.6= a 2.2= C3 C1⁄ 29.8≈

τν 186
B θsin
0.01G
---------------

1 2/ I1GHz

Jy mas 2–
---------------------- ν

Ghz
---------- 

  α 5 2⁄+( )–
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11 Brightness temperature

11.1 Definition
A concept which commonly enters in to radio astronomy and which
is tied in with the notion of self absorption is brightness temperature.
Consider the blackbody spectrum:

In the classical limit , this becomes the Rayleigh-Jeans law:

Iν
2hν3

c2
------------ e

hν
kT
------

1–

1–

=

hν kT«

Iν
2kT

c2
----------ν2=
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This is the emission at low frequencies (long wavelengths) from a
blackbody (optically thick thermal emitter). This spectrum is the re-
sult of the balance of emission and absorption in the emitting region.

Astronomers use the Rayleigh-Jeans law to ascribe a brightness tem-
perature to a source:

 

For a nonthermal source, the brightness temperature is a strong func-
tion of frequency:

Tb
c2

2k
------ν 2– Iν=

Tb
c2

2k
------Iν0

ν0
2– ν

ν0
------ 

  α 2+( )–
=
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and increases rapidly at low frequency. Eventually, at low enough
frequency, the brightness temperature exceeds the kinetic tempera-
ture of the emitting electrons.

The characteristic of a nonthermal source is that the particles have
not come into an equilibrium distribution (i.e. a relativistic Max-
wellian of a single temperature) because the collision times are too
long to achieve this. However, we can ascribe a temperature to par-
ticles of a given energy. Moreover, in a self-absorbed source, the
photons which are absorbed are similar in energy to the photons
which are emitted since the absorption process is the reverse of the
emission process. Therefore, at each energy, we expect something
similar to a blackbody equilibrium. A characteristic of such an equi-
librium is that the brightness temperature of the radiation cannot ex-
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ceed the equivalent temperature of the electrons. This gives a simple
explanation of the frequency dependence of the surface brightness of
a self-absorbed source.

11.2 Equivalent temperature
For a gas in which the ratio of specific heats is  and the number den-
sity of particles is  the energy density is given by 

χ

u
NkT
χ 1–
------------ nKT

4 3⁄ 1–
------------------- 3NkT= = =



High  Energy Astrophysics: Emission and Absorption 102/114

for a relativistic gas in which . Hence, for electrons of
Lorentz factor  we have an equivalent temperature defined by:

We know from the theory of synchrotron emission that the circular
frequency of emission is given by:

χ 4 3⁄=
γ

Nγmec2 3NkT=

T⇒ 1
3
---γ

mec2

k
------------=

ω
3Ω0

2
----------γ2∼ ν⇒

3Ω0
4π

---------- 
  γ2=

γ 4πν
3Ω0
---------- 

  1 2/
∼⇒
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Hence,

T
1
3
---

mec2

k
------------ 4πν

3Ω0
---------- 

  1 2/
∼
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11.3 Condition for optically thick radiation - a thermody-
namic argument
As stated above, the brightness temperature of the radiation cannot
exceed the kinetic temperature of the particles producing it. Hence,
a synchrotron source becomes optically thick when

T Tb∼

1
3
---

mec2

k
------------ 4πν

3Ω0
---------- 

  1 2/ c2

2k
------ν 2– Iν∼⇒

ν 5 2/– Iν
2
3
--- 4π

3
------ 

  1 2/
meΩ0

1 2/–∼⇒
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This defines a critical frequency at which the source becomes self-
absorbed. For lower frequencies the processes of emission and ab-
sorption must be balanced to guarantee the equilibration between
brightness temperature and kinetic temperature, so that

This is close to the relation for optically thick sources that we de-
rived above from the theory of synchrotron absorption. This deriva-

tion also gives a physical explanation for the  dependence of a

synchrotron self-absorbed source as opposed to the  dependence

for a thermal source. The extra factor of  arises from the fre-
quency dependence of the kinetic temperature.

Iν
2
3
--- 2π( )1 2/ meΩ0

1 2/– ν5 2/∼

ν5 2/

ν2

ν1 2/
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12 Preliminary estimate of the magnetic field and particle 
energy density in a quasar

We can use the above theory to estimate both the magnetic energy
density and magnetic field in a self-absorbed source. This excursion
into the estimation of observational parameters is only preliminary
since relativistic effects mislead us in our estimation of the rest frame
flux density. However, it is instructive to go through the exercise to
see what deductions we can make.

When a source is self-absorbed, we have two constraints on the
number density and magnetic field, derived from the surface bright-
ness and the optical depth.
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The emissivity and absorption coefficient are given by:

 

jν C1 a( ) e2

ε0c
--------

 
 
 

K Ω0 θsin( )
a 1+

2
------------

ν
a 1–( )

2
----------------–

=

αν C3 a( ) e2

ε0mec
---------------

 
 
 

K Ω0 θsin( )
a 2+

2
------------

ν
a 4+( )

2
-----------------–

=
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Let the path length through the source be , so that at the peak of the
spectrum

These are our two constraints on the parameters  and .

We usually write the surface brightness as

L

Iν jνL≈ C1 a( ) e2

ε0c
--------

 
 
 

KL( ) Ω0 θsin( )
a 1+

2
------------

ν
a 1–( )

2
----------------–

=

1 ανL≈ C3 a( ) e2

ε0mec
---------------

 
 
 

KL( ) Ω0 θsin( )
a 2+

2
------------

ν
a 4+( )

2
-----------------–

=

KL Ω0 θsin

Iν
Fν
ψ2
-------=
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where  is the flux density from a region of angular size . We also

use the relationship  in the above so that our equations
read:

Fν ψ

a 2α 1+=

C1 a( ) e2

ε0c
--------

 
 
 

KL( ) Ω0 θsin( )1 α+ ν α– Iν=

C3 a( ) e2

ε0mec
---------------

 
 
 

KL( ) Ω0 θsin( )α 3 2⁄+ ν α 5 2⁄+( )– 1=



High  Energy Astrophysics: Emission and Absorption 110/114

These equations can be solved (using Maple or brute force) to give
the solutions for  and :

Numerically,

Ω0 KL

Ω θsin
C1
C3
-------

 
 
  2

me
2Iν

2– ν5
C1
C3
-------

 
 
  2

me
2Fν

2– ψ4ν5= =

KL
ε0c

e2me
2

-------------
 
 
  C3

2

C1
3

-------
 
 
 

Iν
3ν 5– me

1–
C3
C1
-------Iνν 2–

2α
=

ε0c

e2me
2

-------------
 
 
  C3

2

C1
3

-------
 
 
 

Fν
3ψ6ν 5– me

1–
C3
C1
-------Fνψ 2– ν 2–

2α
=
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Ω θsin 4.6
3×10

C1
C3
-------

 
 
  2 Fν

Jy
------ 

 
2– ψ

mas
--------- 

  4
ν9

5=

B θsin⇒ 1.2
4–×10

C1
C3
-------

 
 
  2 Fν

Jy
------ 

 
2– ψ

mas
--------- 

  4
ν9

5=

KL 9.62
21×10

C3
2

C1
3

-------
 
 
  Fν

Jy
------ 

 
3

θ
mas
--------- 

  6–
ν9

5– 2α( )=

467
Fν
Jy
------ 

  ψ
mas
--------- 

  2–
ν9

2–×
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Units:

Let us estimate the parameters for a typical quasar with

For ,  and , so that

and for a typical path length through the source,

, . 

KL m 3– m× m 2–= =

B Tesla (T)=

Fν 1 Jy= ψ 1 mas= νpeak 1 GHz= α 0.6=

a 2.2= C1 4.44
3–×10= C3 0.132=

B θsin 1.4
7–×10  T= KL 3.1

30×10 m 2–=

L 1 pc 3.1
16×10= =  m K 9.8

13×10  m 3–=
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The energy density in particles for a lower cutoff Lorentz factor  is

For  this is approximately  and for 

.

For comparison, the energy density in the magnetic field is:

approximately nine orders of magnitude lower and it would appear
that the plasma is well removed from equipartition.

γ1

ε
Kmec2

a 2–
-----------------γ1

a 2–( )– 40γ1
0.2–  J m 3–= =

γ1 10= 25 J m 3– γ1 100=

ε 16 J m 3–≈

B2

2µ0
--------- 7.3

9–×10  J m 3–∼



High  Energy Astrophysics: Emission and Absorption 114/114

Note however the sensitive dependence of the magnetic field and
particle energy on the flux density:

so that the ratio of particle energy density to magnetic energy density

is proportional to . It is this single factor which is

most affected by relativistic beaming from the moving plasma.

B Fν
2–∝ KL Fν

3 2α+∝

Fν
7 2α+ Fν

8.2≈


