
Synchrotron Radiation I

1 Examples of synchrotron emitting plasma

Following are some examples of astrophysical objects that are emit-
ting synchrotron radiation. These include radio galaxies, quasars and
supernova remnants.
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A 20 cm radio image from the
VLA of the radio galaxy IC 4296.
See Killeen, Bicknell & Ekers,
ApJ 325, 180.

This images shows the jets and
lobes of the radio emission corre-
sponding to a relatively nearby gi-
ant elliptical galaxy.
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The inner part of the radio galaxy M87 from a 2cm VLA image 
by Biretta, Zhou & Owen. 
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VLA 4.9 GHz image of the
 quasar 3C204.

The linear size is 
Note the periodic knotty
structure in jets that may be

the result of internal shocks and the very bright core. See http://
www.cv.nrao.edu/~abridle/images.htm

z 1.112=
159 h  kpc
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The Supernova Remnant Cassio-
peia A

Cassiopeia A gets its name from radio 
astronomers, who “rediscovered” it in 
1948 as the strongest radio source in the 
constellation of Cassiopeia. About 5 
years later optical astronomers found the 
faint wisps, and it was determined that 
Cas A is the remnant of an explosion 
that occurred about 300 years ago. The 
radio emission is synchrotron emission.
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The X-ray image of the Cassiopeia A su-
pernova remnant on the left was obtained 
by the Chandra X-ray Observatory using 
the Advanced CCD Imaging Spectrome-
ter (ACIS). Two shock waves are visible: 
a fast outer shock and a slower inner 
shock. The inner wave is believed to be 
due to the collision of the ejecta from the 
supernova explosion with a shell of ma-
terial, heating it to a temperature of ten 
million degrees. The outer shock wave is 
a blast wave resulting from the explo-
sion.
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2 What can we learn from synchrotron emission from an astro-
physical object?

•  Estimates of total radiative luminosity
•  Total minimum energy (particles plus field) in the radio emitting 
particles

•  Direction of the magnetic field
•  Constraints on energy density of emitting particles and estimates 
of magnetic field

•  Total amount of matter converted into energy (relevant for radio 
galaxies and quasars)

•  Accretion rate onto central black hole (radio galaxies and quasars)
•  Constraints on the mass of the black hole (radio galaxies and qua-
sars)

•  Information relating to source dynamics, e.g. strengths of shock 
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waves; velocities of jets

3 Background theory

3.1 Electric field
We have the expression for the Fourier component of electric field
of the pulse from a moving electron derived from the Lienard-
Weichert potentials:

(1)
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The Fourier components of a transverse radiation field can be ex-
pressed in terms of unit vectors  and  perpendicular to the wave

direction such that

(2)

In any particular application we choose  and  so as to simplify

the expression for the resultant electric field and Stokes parameters,
defined by:

e1 e2

E   E1  e1 E2  e2+=

e1 e2
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(3)
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Interpretation of T

Another way to interpret the parameter  which is appropriate when
considering radiation from a distribution of particles is:

(4)

or

(5)

In the latter case each pulse originates from a different electron in the
distribution.

Nomenclature

We refer to the  and  components of the electric field as the two

modes of polarisation.

T

T time between pulses=

T 1– No of pulses per unit time=

e1 e2
High Energy Astrophysics: Synchrotron Radiation I     11/106



3.2 Emissivities
The basic relation is:

(6)
dW

dddt
---------------------
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In terms of 

(7)

I Q U V  

jI  
dW11

dddt
---------------------

dW22
dddt
---------------------+=

jQ  
dW11

dddt
---------------------

dW22
dddt
---------------------–=

jU  
dW12

dddt
---------------------

dW12
*

dddt
---------------------+=

jV   i
dW12

dddt
---------------------

dW12
*

dddt
---------------------–=
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3.3 Helical motion of a relativistic particle
For synchrotron emission, we evaluate the above integrals using the
expression for helical motion:

B

B
1 



v

Pitch angle
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(8)

(9)

The derivation of the equations for the helical trajectory of a charged
particle in a magnetic field are given in the background notes.

v c

 Bt 0+ cossin

  Bt 0+ sinsin–

cos

=

B Gyrofrequency
q B
m
---------  1– q B

m
---------  1– 0= = = =

0 Non-relativistic gyrofrequency=

 q
q
----- sign of charge= =

 pitch angle=
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Usually we are concerned with electrons ( ) so that:

(10)

Note that the motion of the velocity vector is anti-clockwise for an
electron.

 1–=

v c

 Bt 0+ cossin
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Coordinates of particle

Integrating the velocity gives for the position vector:

(11)X t  c

sin
B

----------- Bt 0+ sin

 sin
B

----------- Bt 0+ cos

t cos

X0+=
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This consists of a linear motion in the -direction superimposed
upon a circular motion in the  plane. The radius of the circular
motion is the gyroradius

(12)

z
x y–

rG
c sin
B

------------------
mc sin

q B
-------------------------= =
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3.4 Approximations for ultrarelativistic particles

•  . Sometimes  is appropriate.

•  Most of the radiation beamed into a cone of half-angle . This 
means that we can expand functions in terms of small powers of 
the angle between the particle velocity and the direction of emis-
sion.

We set up the calculation in the following way (following Rybicki &
Lightman):

 1»  1
1

22
--------–  1

1 
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•  The origin of time  is defined as the instant where the parti-

x

y

z



v

vt a

e1

e2

e3



B

To observer

n

Normal to
trajectory

Tangent to particle motion at .t 0=

t 0=
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cle’s velocity comes closest to the direction of the observer.
•  The –axis represents the instantaneous direction of motion at 

.
•  The –axis represents the direction of the centre of curvature.
•  The –axis completes the system of coordinates (i.e. 

).

•   is the direction of the observer and makes an angle  to the 
direction of the electron at . We take  small.

•  Since  represents the instant at which the angle between the 
velocity and the observer’s direction is a minimum, the component 
of  in the direction of the normal,  is zero.

•  The parameter  is the instantaneous radius of curvature of the 
particle

x
t 0=

y
z

e3 e1 e2=

n 
t 0= 

t 0=

n m
a
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•  Formally, the pulse of radiation reaching the observer originates 
from the entire trajectory of the particle. However, most of this 
radiation originates from a very small region of the particle’s orbit 
near the origin of the above coordinate system.

3.5 Radius of curvature
Summary of the theory of 3 dimensional curves:

(13)

x x t = Velocity vector v
dx
dt
------= =

Unit tangent vector t
v
v
--= =

Arc length:
ds
dt
----- v=
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The curvature ( ), radius of curvature ( ) and curvature normal ( )
are given by:

(14)

Using the previous expression for velocity:

(15)

 a m

dt
ds
----- m

1
a
---m= =

dt
ds
-----

dt
dt
-----

dt
ds
-----

1
v
---

dt
dt
-----= =

v c  Bt cossin  Bt sinsin cos=

t
v
v
--  Bt cossin  Bt sinsin cos= =
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Since the particle passes through the origin at  the position
vector is:

(16)

Remember that the gyroradius

(17)

t 0=

x
c sin
B

------------------ Bt sin
c sin
B

------------------ 1 Bt cos–  ct cos=

rG Bt sin rG 1 Bt cos–  ct cos=

rG
c sin
B

------------------=
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The curvature is determined from:

(18)

This implies

(19)

NB. The radius of curvature is not the same as the radius of the pro-
jection of the orbit onto the plane perpendicular to . As one ex-
pects,  when .

1
v
---

dt
dt
----- m

B sin

c
-------------------- Bt sin– Bt cos 0= =

m Bt sin– Bt cos 0=


B sin

c
--------------------= a

c
B sin
--------------------

rG

sin2
--------------= =

B
a rG=   2=
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3.6 The magnetic field in the particle-based system of coordinates

•  Since the normal vector  is per-

pendicular to the magnetic field, then the magnetic field lies in the 
plane of  and . i.e. in the same plane as .

•  Also since the velocity makes an angle of  with the magnetic 
field, the direction of  is as shown in the diagram.

m Bt sin– Bt cos 0=

e1 e3 n


B
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4 Semi-quantitative treatment of synchrotron emission

4.1 Small angle approximation
Recall the expression for the electric field of a radiating charge:

(20)

For a relativistically moving particle, the electric field is highly
peaked in the direction of motion, i.e. when

Erad
q

4c0r
--------------------

n – ·  n ·  1  n– – 
1  n– 3

---------------------------------------------------------------------------------=
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 is close to zero. Since  is the angle between  and 

(21)

So  is a minimum at  and increases rapidly for
, i.e. for . Since , then the angles we are dealing

with are very small. 

The expression for  introduces the variable

(22)

This variable occurs frequently in the following theory.

1  n–    n

1  n–  1  cos–  1 1
1

22
--------– 

  1
1
2
---2– 

 –=

1

22
--------

1
2
---2+

1

22
-------- 1 22+ = =

1  n–  0=
 1  1   1»

1  n–

 1 22+ 1 2/=
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4.2 Estimate of critical frequency

Observer

1 
1 

2 

Centre of curvature

P1 P2
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The angle turned through and the arc length of the particle orbit are
related by:

(23)

where  is the previously determined radius of curvature.

From the above geometry 

(24)

Time taken for trajectory to sweep through relevant angle

(25)

d
ds
-------

1
a
---=

a

 2

---= s a 2

a

---= =

t2 t1–
s
c
-----

2a
c
------= =
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This is not the period for which the pulse is observed

Partticle moves distance  in time .

Front of pulse emitted 
from here at t1

s D distance to observer=

P1 P2

Back of pulse emitted 
from here at t2

s t2 t1–
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Times of arrival of front and back of pulse:

(26)

i.e. the time between pulses is reduced because the trailing part of the
pulse has less distance to travel. This is one example of the effect of
time retardation.

t1 t1
D s+

c
----------------+= t2 t2

D
c
----+=

t2 t1– t2 t1–
s
c
-----– t2 t1–  v

c
-- t2 t1– –= =

1
v
c
--– 

  t2 t1– =
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The factor  can be expanded in powers of  as follows:

(27)

Since

(28)

then

(29)

1
v
c
--– 1 –= 

 1
1

22
--------–

1 –
1

22
--------
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The observed duration of the pulse is therefore

(30)

Fourier theory tells us that if the length of a pulse is  then the typ-

ical frequencies present in such a pulse are . Hence the
typical frequencies expected in a synchrotron pulse are given by:

(31)

1 –  t2 t1–  1

22
-------- t2 t1–  a

c3
-------- c

B sin
--------------------

1

c3
--------=

1

B
3 sin

--------------------------=

t

 t  1–

 B
3 sin q B

m
--------- 3 sin q B

m
---------2 sin= =
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The critical frequency resulting from the exact synchrotron theory
(to follow) is close to this estimate:

(32)

The critical frequency which characterises synchrotron emission is a

factor of  higher than the cyclotron frequency  and a factor of

 higher than the gyrofrequency at which particles gyrate around
the magnetic field lines.

c
3
2
---B 3sin

3
2
---

q B
m
---------3 sin

3
2
---

q B
m

---------2 sin= = =

2 q B
m

---------

3
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4.3 Typical example - relativistic electron in a typical interstellar 
magnetic field

(33)

Note that the critical frequency in this example is about  – a
microwave radio frequency. 

B 10 5– G 1nT= =  104=

B
eB
me
--------- 1.8

2–10 Hz= =

c
3
2
---

eB
m
------2 sin 1.3

1010 Hzsin= =

rG
c sin
B

------------------ 1.7
1010   msin= =

10 GHz
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4.4 Relation between frequency and Lorentz factor

(34)

 2 3
2
---

eB
m
------2 sin= =

 4
3

------
m
e
---- 

  1 2/
B sin  1 2/– 1 2/=

4.9
310

B sin
nT

--------------- 
  1 2/– 
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----------- 
  1 2/

=

4.9
310

B sin
10G
--------------- 
  1 2/– 
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  1 2/
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5 Detailed development of synchrotron emission

Angle turned through in time :

(35)

t

d
ds
-------

1
a
---=

1
v
---

d
dt
-------

1
a
---=  vt

a
------=
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In the new set of axes, the motion is circular with no component in
the –direction. The velocity in these axes is therefore:

(36)

z

v c vt
a

------cos vt
a

------sin 0=

i.e.        vt
a

------cos vt
a

------sin 0=
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5.1 Axes based upon instantaneous orbital plane

x

y

z



v
vt a

e1

e3



B

To observer

n

Normal to
trajectory

Tangent to particle motion at .t 0=

e||

eCentre of motion

e2
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Rotate axes by angle  about  - gives new unit vectors  

5.2 Significance of  and 

The axes  and  are respectively parallel and perpendicular to the

projection of the magnetic field on the plane perpendicular to the line
of sight given by the vector .This is the plane of propagation of the
radiation.

 e2 e e|| n 

e|| e

e|| e

n
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5.3 Integral to evaluate
We have our expression for the Fourier component of the electric
field of a pulse:

(37)

5.4 Determination of 

We first calculate a simple expression for the quantity .

rE   iq–
4c0
---------------e

ir c
n n  

–


=

i t n X t 
c

--------------------– 
  dtexp

n n  

n n  
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Use:

 (38)

This gives:

(39)

n e1cos e3sin+=

  vt
a

------ 
 cos e1  vt

a
------ 
 sin e2+=

n   vt
a

------ 
 n e1cos  vt

a
------ 
 n e2sin+=

 vt
a

------ 
  esincos  vt

a
------ 
  e||sin+=

n n     vt
a

------ 
  e||cossin –

vt
a

------ 
  esin=
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We make the following approximations:

(40)

so that

(41)

Note:

In order to determine terms that are relevant to the small amount of
circular polarisation that emerges from a synchrotron source, we
would have to expand to the next order in .

 1 vt
a

------ 
 cos 1 vt

a
------ 
  vt

a
------sin

n n   e||
vt
a

------ 
  e– e||

ct
a

------e–=

1 
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The term 

This term in the argument of the exponential involves . Since

(42)

i t n X t 
c

--------------------–

X t 

dX
dt
------- v c vt

a
------cos vt

a
------sin 0= =

 and   X 0  0=
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then

(43)

giving

(44)

X t  ca
v

--------- vt
a

------sin 1 vt
a

------cos– 
  0=

a vt
a

------sin 1 vt
a

------cos– 
  0=

t n X t 
c

--------------------– t cos 0 sin
a
c
--- vt

a
------sin 1 vt

a
------cos– 0–=

t a
c
---  vt

a
------sincos–=
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5.5 Expansion of in small powers of  and :

(45)

then

(46)

t n X t 
c

--------------------–  t

cos 1
1
2
---2– 

  vt
a

------ 
  vt

a
------

1
6
---

v3t3

a3
------------–sin

t a
c
---  vt

a
------ 
 sincos– t 1

v
c
--– 

  1
2
---

v
c
--t2 1

6
---

v3t3

a2c
------------+ +=
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In the first term, we use  and put  in the remain-

der, giving:

(47)

The characteristic angle  enters into the expression.

1
v
c
--–

1

22
--------= v c=

t a
c
---  vt

a
------ 
  1

22
--------t 1

2
---2t 1

6
---

c2t3

a2
------------+ +sincos–

t n X t 
c

--------------------–
1

22
-------- t 1 22+  1

3
---

c22t3

a2
------------------+=

 1 
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Summary so far

(48)

New variables

We put these equations into a dimensionless form by defining new
variables

n n   e||
vt
a

------ 
  e– e||

ct
a

------e–=

i t
n X t 

c
--------------------–

i
22
-------- 1 22+ t c22

3a2
-----------t3+=
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(49)

•  The purpose of introducing these variables is to make quantities in 
the integrand of the expression for the Fourier transform of order 
unity.

•  In so doing it helps to represent the new dimensionless variables 
in a way that makes their physical significance apparent.


2 1 22+= y

c
a
--------t=  a

33c
-----------

3=
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Significance of 

The quantity  is the time taken for the particle’s velocity to
swing through an angle . Hence 

(50)

Note:

•   is a dimensionless variable
•  One expects the major contribution to come from the region of the 
integrand wherein .

•  Integration over  will be replaced by integration over .

y

a c 
1 

y
t

Characteristic time 
---------------------------------------------------------=

y

y 1
t y
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Significance of 

(51)

Since the radiation is concentrated at the critical frequency, the dom-
inant contribution to the result will be around .



 a

33c
-----------

3 1
3
---


3c a 

--------------------
3= =

a
c
---

1
c
---

c
B sin
--------------------

1
B sin
--------------------=

 1
3
---


3B sin
--------------------------

3 1
2
---


c
------ 
  

3= =

 1
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Rearrangement of integrand

For :

(52)

n n  

n n   e||
ct
a

------e– e||
c
a
---

a
c

--------ye–=

e||




-----ye–=
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For 

(53)

i t
n X t 

c
--------------------–

i t
n X t 

c
--------------------–

i
22
-------- 1 22+ t c22

3a2
-----------t3+=

i
22
-------- 

2
a
c

--------y
c22

3a2
-----------

a3
3

c33
------------y3+=

i
22
--------

a
3

c
---------y

1
3
---

a
3

c
---------y3+=
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(54)

For  – variable of integration:

(55)

i t
n X t 

c
--------------------–

ia
3

2c3
---------------- y

1
3
---y3+=

i
3
2
---
a

3

3c3
--------------
 
 
 

y
1
3
---y3+=

3
2
---i y

1
3
---y3+=

t

t
a
c

--------y= dt
a
c

--------dy=
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6 Evaluation of Fourier components of electric field

rE   iq–
4c0
---------------e

ir c
n n  

–


=

i t n X t 
c

--------------------– 
  dtexp

n n   e||




-----ye–

i t
n X t 

c
--------------------–

3
2
---i y

1
3
---y3+ dt

a
c

--------dy=
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Therefore we have a parallel component and a perpendicular compo-
nent of the electric field:

(56)

rE||   iq
4c0
---------------

a
c

------------ 
  eir c 3

2
---i y

1
3
---y3+ 

 exp yd
–


–=

rE   iq
4c0
---------------

a
2

c2
---------
 
 
 

eir c y
–




3
2
---i y

1
3
---y3+ 

 exp yd=
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The integrals over  have real and imaginary parts:

(57)

Parallel component

In the integral for  the real part only contributes since the im-

aginary part is odd and the different contributions over  and
 cancel.

Therefore, we evaluate:

y

3
2
---i y

1
3
---y3+ 

 exp
3
2
--- y

1
3
---y3+ 

 cos=

i
3
2
--- y

1
3
---y3+ 

 sin+

rE||  

 0– 
0  
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Perpendicular component

In the integral for  the imaginary part only contributes since

the exponential term is multiplied by . We therefore evaluate:

(58)

3
2
---i y

1
3
---y3+ 

 exp yd
–




3
2
--- y

1
3
---y3+ 

 cos yd
–


=

rE  

y

y
3
2
---i y

1
3
---y3+ 

 exp yd
–


 i y

3
2
--- y

1
3
---y3+ 

 sin yd
–


=
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These integrals are expressed in terms of Bessel functions:

(59)

where  and  are modified Bessel functions of or-

der  and  respectively. These integrals are evaluated in the
Appendix.

3
2
--- y

1
3
---y3+ 

 cos yd
–




2

3
-------K1 3  =

y
3
2
--- y

1
3
---y3+ 

 sin
–




2

3
-------– K2 3  =

K1 3   K2 3  

1 3 2 3
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Final expressions

(60)

rE||   iq

2 3c0

-----------------------
a

c
------------ 
  e

ir
c

--------
K1 3  –=

rE   q

2 3c0

-----------------------
a

2

c2
---------
 
 
 

e

ir
c

--------
K2 3  =
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7 Ellipticity of single electron emission

The waves corresponding to the above Fourier components are, for
the parallel component:

(61)

(using the reality condition of the Fourier transform).

E|| r t  1
2
------ E||  e it– E|| – eit+ =

1
2
------= E||  e it– E||

*  eit+ 
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and for the perpendicular component

(62)

E r t  1
2
------ E  e it– E – eit+ =

1
2
------ E  e it– E

*  eit+ =
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Using the expressions for the Fourier components:

(63)

E|| r t  q

4 32c0r
----------------------------

a
c

------------ 
 K1 3  =

ie–
i r

c
-- t– 
 

ie
i r

c
-- t– 
 –

+

q

2 32c0r
----------------------------–

a
c

------------ 
 K1 3    t

r
c
--– 

 sin=
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(64)

E r t  q

4 32c0r
----------------------------

a
2

c2
---------
 
 
 

K2 3  =

e
i r

c
-- t– 
 

e
i r

c
-- t– 
 –

+

q

2 32c0r
----------------------------

a
2

c2
---------
 
 
 

K2 3    t
r
c
--– 

 cos=
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Now consider the path traced out with time by the –vector at a
fixed . Write

(65)

This describes an ellipse in the  coordinate system. We shall

see that  but that  can be positive or negative.

E
r

E|| r t  a||  t
r
c
--– 

 sin=

E r t  a  t
r
c
--– 

 cos=

e e|| 

a 0 a||
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E|| E||

E E

 t
r
c
--– 

 

E|| r t  a||  t
r
c
--– 

 sin= E r t  a  t
r
c
--– 

 cos=

a|| 0 a|| 0
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(66)

•  The semi-major and semi-minor axes of the electric vector depend 
upon  (through the variable ) and we have to bear in mind the 

a||
q

2 32c0r
----------------------------–

a
c

------------ 
 K1 3  =

q

2 32c0r
----------------------------

a

c2
-------- 
  –  K1 3  =

a
q

2 32c0r
----------------------------

a
2

c2
---------
 
 
 

K2 3  =

q

2 32c0r
----------------------------

a

c2
-------- 
  

2 K2 3  =

 
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fact that 

(67)

•  The rotation of the electric vector and the shape of the polarisation 
ellipse depends upon  

•   The angular dependence of the radiation field can be understood 
from the plots of the functions

(68)

 1
2
---

c
------ 1 22+ 3 2/=



f|| x   –  K1 3  =

f x   
2K2 3  =
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where

(69)

These are plotted below for . The variation is similar for all .

x

c
------=

x 1= x
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As can be seen both the parallel and perpendicular components of the
electric field vanish rapidly for .

Axes of ellipse

This plot shows the variation 
of the ratio of 

 for . 

Since this ratio is always less 
than 1 for all  the parallel 
axis is always the minor axis 
and the perpendicular axis is 
always the major axis.

 1
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a|| a f|| f= x 1=
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Summary of polarisation properties of single electron emission

From the above:

•   is positive for  and negative for 

•  Therefore the radiation is always left polarised for  and right 
polarised for 

•  The ratio  so that the major axis is always .

•  That is the major axis of the polarisation ellipse is perpendicular 
to the projection of the magnetic field on the plane of propagation. 

The following figure summarises the above. Note that  corre-
sponds to looking exactly along the direction of the electron veloci-
ty.

a||  0  0

 0
 0

a|| a 1 e

 0=
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8 Integrated single electron emissivity

•  This is a good example of how the integrated emission from a 
source can exhibit polarisation properties that are different from 
the individual components.

•  A qualitative feature that one can note from the above is that the 

e

e||
 0

 0

Right polarised

Left polarised

V 0

V 0

B

n

v

v
n
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integrated emission from a single electron will have a low circular 
polarisation because of the positive and negative contributions to 

 from negative and positive 
•  Note that  because the axis of the ellipse is in the  direc-

tion.

Recall our expression for the energy of the pulse corresponding to
the various components of the polarisation tensor:

(70)

V 
U 0 e

dW
dd
---------------

c0


--------r2E  E
*  =
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n

vB






Illustrating the calculation
of total emission from a
single electron. We inte-
grate over all directions .n

d d=
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The total spectral energy of the pulse, per unit solid angle is:

(71)

The two terms correspond to emission into the two modes. We can
use this expression to determine the total energy emitted by the elec-
tron in one gyroperiod and hence the total spectral power.

We first consider the total energy per unit solid angle per unit circu-
lar frequency emitted over one entire gyration of the particle. Begin
with the energy radiated per unit solid angle, at a particular point on
the orbit, that we have just calculated:

dW11
dd
---------------

dW22
dd
---------------+

dW||
dd
---------------

dW
dd
---------------+=
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(72)

dW||
dd
---------------

c0


--------r2E||  E||
*  =

2q2

123c0

---------------------
a

c2
-------- 
  2

 2K1 3
2  =

dW
dd
---------------

c0


--------r2E  E
*  =

2q2

123c0

---------------------
a

c2
-------- 
  2


4K2 3

2  =
High Energy Astrophysics: Synchrotron Radiation I     78/106



These expressions are integrated over all solid angles associated
with the directions . Let  be the polar angles for the direction

. The solid angle for emission around this direction is:

(73)

We can use the solid angle corresponding to a complete orbit since
the spectrum of a pulse is independent of .

For a complete orbit:

(74)

We have 

(75)

n  
n

d ddsin=



d 2 dsin=

  +=
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where  is the angle we have used in the previous calculations. Since
the contribution to the integral over solid angle mainly comes from

, then we can put

 (76)



 1 

 
d d=

d 2 dsin
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Hence, the total energy emitted over one gyrational period into the
parallel and perpendicular modes is:

(77)

The integral over  is replaced by an integral over
 because of the concentration of 

around  and the rapid vanishing of the Bessel functions for
. 

dW|| 
d

----------------- 2 
dW||,
dd
--------------- d

0


sin

2 
dW||,
dd
--------------- d

–


sin

 0 2 =
  – = dW||, dd

 0=
 1»
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These expressions give the amount of energy radiated per orbit. The
energy radiated per unit time is given by dividing by the period of
the orbit

(78)

Hence, the power (i.e. energy per unit time per unit circular frequen-
cy) emitted in the parallel mode is

(79)

T
2
B
--------

2m
q B

--------------= =
1
T
--- q B

2m
--------------=

P||   2q2

123c0

---------------------
a

c2
-------- 
  2

2  q B
2m
--------------sin=

 2
2K1 3

2
–


  d
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We change the variable of integration to , thereby introducing an-
other factor of  into the denominator. We also use, for the local ra-
dius of curvature, 

(80)

Various factors in the numerical factor in from of the expression for

 combine to give  in the denominator, where

(81)




a
c

B sin
--------------------=

a2

c2
------ 1

B
2 sin2

-----------------------=

P||   c
2

c
2 9

4
---B

2 6 sin2=
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All of this combines to give:

(82)

The numerical factor in front of the expression for the other power
 is identical and 

(83)

P||   3

163c0
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m
----------------------


c
------ 
  2

=

 2
2K1 3

2    d
–




P  

P   3

163c0
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q3B sin

m
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
c
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
4K2 3

2    d
–


=
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remembering that

(84)

The two integrals involve integration over the variable  and in-
volve as parameter

(85)

 1 22+ 1 2/=  1
2
---

c
------ 1 22+ 3 2/=



x

c
------=
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These integrals were evaluated by Westfold (1959) in one of the fun-
damental papers on synchrotron emission. The results are:

(86)

where the functions are defined by

(87)

 2
2K1 3

2    d
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


3

-------x 2– F x  G x – =


4K2 3

2    d
–





3

-------x 2– F x  G x + =
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x


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Hence the components of the single electron emissivities per unit
frequency are:

(88)

P||   3

1620c
---------------------

q3B sin
m

---------------------- F x  G x – =

P   3

1620c
---------------------

q3B sin
m

---------------------- F x  G x + =
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The total synchrotron power per unit circular frequency from a sin-
gle electron is:

(89)

Ptot   P||   P  +
3

820c
------------------

q3B sin
m

----------------------F x = =

x

c
------=
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The functions  and  are plotted on linear and logarithmic
scales in the following figures. The asymptotic forms are as follows:

(90)

F x  G x 

Small x

F x  4
3 1 3 21 3/

--------------------------------------x1 3/

G x  2
3 1 3 21 3/

--------------------------------------x1 3/

Large x
F x  x

2
------e x–

G x  x
2

------e x–
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Features

• Peak of  at 

• Emission is fairly broadband 

with 
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Logarithmic version of the
plot of  and , show-
ing the power law depend-
ence of  and  for
small .

9 Synchrotron cooling

9.1 Integration of synchro-
tron power
A fairly immediate implication of the power radiated by a single
electron is the loss of energy by the electron.
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Since the power per unit frequency is:

(91)

then the total power radiated over all frequencies is

(92)

P   3
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The integral

(93)

and

(94)

Therefore,

(95)

F x  xd
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-------2 sin2=

P
1

60c
---------------

q4B2 sin2

m2
---------------------------2=
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In terms of energy ( ):

(96)

The power of  appearing in this expression is why synchrotron
emission from protons is not usually considered.

9.2 Other expressions for total power emitted by electrons

Take  so that the total power emitted by an electron is

(97)

E mc2=

P
1

60
------------

q4B2 sin2

m4c5
--------------------------- 
 E2=

m4

q e=

P
1
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e4B2 sin2

m2
---------------------------2=
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This is often expressed in terms of the Thomson cross-section for an
electron.

The classical radius of an electron is defined by

(98)

Electrostatic potential energy Rest mass energy=

e2

40r0
------------------ mec2=

r0 e2

40mec2
-------------------------=

2.818
15–10  m=
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The Thomson cross-section is

(99)

This cross-section is important, inter alia, when considering the
scattering of photons by electrons.

In terms of  the power emitted by an electron is:

(100)

T
8
3

------r0
2 e4

60
2me

2c4
-------------------------- 6.65

29–10   m2= = =

T

P
1
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o
------
 
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sin2 2= =
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9.3 Synchrotron cooling of electrons
By conservation of energy, the rate of energy lost by the electron is

(101)

Hence, the rate of change of Lorentz factor is:

(102)

dE
dt
------- P– cT  B2
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 
 
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 
 
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sin2 2–= =
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This equation can be put in the form

(103)

Let  be the value of  at , then assuming that  and  remain

constant during the time , then

(104)
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This defines a synchrotron cooling time:

(105)

Features

•   decreases with increasing  – the higher energy electrons 

cool the fastest
•   decreases with increasing magnetic field.

tsyn

mec
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---------------------
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Example

Take typical values for the lobes of a radio galaxy:

(106)

(107)

Estimates of the ages of radio galaxies often exceed  years.
Hence there is a need to re-energise particles in the lobes of radio
galaxies. This introduces the need for particle acceleration.

B 10G 1 nT= = 0 104=

tsyn
9.11

31–10 3
810

6.65
29–10

--------------------------------------------------
1

9–10 2

4 10 7–
--------------------------

1–

0
1–=

1.6
710  yrs 

 sin2
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=

108
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10 Appendix: Evaluation of synchrotron integrals

The evaluation of the synchrotron integrals follows from the result
(Abramowitz and Stegun, eqn. 10.4.32)

(108)

where  is the Airy function. In our case,

 (109)

I a x  ay3 xy+ cos yd
0
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Ai z 

x
3
2
---= a

1
2
---=
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Differentiating,  with respect to  gives:

(110)

so that

(111)

I a x  x

x


I a x  y ay3 xy+ sin yd
0


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
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Furthermore, the Airy function and its derivative are related to the
modified Bessel functions of order  and  via:

(112)

See equations (10.4.26) and (10.4.31) of Abramowitz and Stegun.

For  and , the argument of the Airy function and
its derivative is

. (113)
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Hence, the argument, , of the corresponding Bessel functions is .
Hence,

(114)

 
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and

(115)
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Finally, the integrals from  to  are twice the integrals from  to
:

 (116)
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