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1 Characteristics of stellar winds

Solar wind

Velocity at earth’s orbit:

(1)

Density:

(2)

Temperature:

(3)

Speed of sound:

(4)

v 400 km/s

n 107 m 3–

T 105 K

cs 50 km/s=
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Mass flux (spherically symmetric wind):

(5)

Other stars

Red giants:  

O&B type stars: 

Protostars: 

M· 4nmvrr2 3
14–10 solar masses /yr= =

M· 10 11– Msun/yr

M· 10 7– 10 6–– Msun/yr

M· 10 4– Msun/yr
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2 Why winds?

 

Yohkoh Soft X-ray Tele-
scope (SXT) full-field imag-
es from the Hiraiso Solar 
Terrestrial Research Center / 
CRL

White-light Mk. 4
coronameter images

http://umbra.nas-
com.nasa.gov/images/
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The Sun's outer atmosphere as it ap-
pears in ultraviolet light emitted by 
ionized oxygen flowing away from the 
Sun to form the solar wind (region 
outside black circle), and the disk of 
the Sun in light emitted by ionized 
iron at temperatures near two million 
degrees Celsius (region inside circle). 
This composite image taken by two in-
struments (UVCS, outer region and 
EIT, inner region) aboard the SOHO 
spacecraft shows dark areas called 
coronal holes at the poles and across 
the disk of the Sun where the highest 
speed solar wind originates. UVCS 
has discovered that the oxygen atoms 

flowing out of these regions have extremely high energies corresponding to temperatures of 
over 200 million degrees Celsius and accelerate to supersonic outflow velocities within 1.5 
solar radii of the solar surface. The structure of the corona is controlled by the Sun's magnetic 
field which forms the bright active regions and the ray-like structures originating in the coro-
nal holes. The composite image allows one to trace these structures from the base of the co-
rona to millions of kilometers above the solar surface. (http://sohowww.nascom.nasa.gov/
gallery/UVCS/)
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2.1 Hydrostatic atmospheres
Analysis of the X-ray and radio emission from the solar corona

indicates a . Gas at this temperature cannot
be held in by the gravitational field of the Sun.To show this, we
first consider hydrostatic atmospheres and show that an hydro-
static atmosphere is not feasible.

The momentum equations are:

(6)

(7)

temperature 106K

t

vi vj xj

vi+
1

---

xi
p

–
xi


–=

 Gravitational potential=
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Hydrostatic solutions

(8)

Spherical symmetry

(9)

vi 0=

1

---

xi
p

xi


–=

1

---

dp
dr
------

d
dr
------–=
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Suppose we consider isothermal solutions with the pressure de-
fined by the following equation:

(10)

p
kT
m
----------=

Molecular weight 0.62
Atomic mass unit

1.66
27–10  Kg

Temperature 106K
Boltzmanns constant 1.38

23–10 J K 1–
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The potential exterior to a spherical star is

(11)

 GM
r

---------–=

Newtons gravitational constant

6.67
11–10 SI units=

Mass of sun

2.0
3010  kg=
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For an isothermal atmosphere, the hydrostatic equation be-
comes:

(12)

kT
m
--------

1

---

d
dr
------

d
dr
------–=

Integrating ln m
kT
--------– Constant+=
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Suppose the density at a point  within the corona is . Then

the constant of integration is

(13)

r0 0

Constant 0ln
m
kT
--------0+=


0
------ln m

kT
--------  0– –

GMm
kT

------------------
1
r
---

1
r0
-----– 

 = =


0
------ GMm

kT
------------------

1
r
---

1
r0
-----– 

 exp=
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Since the pressure is proportional to the density, the pressure in
this atmosphere is given by:

(14)

The pressure at  – the pressure cooker model

The pressure described by the above equation decreases as
. However, it does not decrease to zero. The asymptotic

value is

(15)

p
p0
-----

GMm
kT

------------------
1
r
---

1
r0
-----– 

 exp
GMm

kTr0
------------------– 1

r0
r
-----– 

 exp= =

r =

r 

P
P0
-------

GMm
kTr0

------------------–exp=
Astrophysical Gas Dynamics: Stellar Winds 12/66



The interpretation of this pressure is that this is what is required
in addition to the gravitational field to confine the atmosphere.
In the case of the sun, this confining pressure has to be provided
by the interstellar medium. 
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2.2 Some numbers

Excerpt from the Handbook
of Astronomy and Astrophys-
ics, available from:

http://adsabs.harvard.edu/
books/hsaa/idx.html
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For indicative calculations let us insert some numbers into the
above equations, with the view in mind of determining what
pressure we would need to hold the sun’s corona in. The follow-
ing parameters relate to the corona at a solar radius.

(16)

 0.62= G 6.67
11–10 SI=

m 1.66
27–10 kg=

T 1.5
610 K= Solar radius 6.96

810  m=

Electron density 1.55
810 cm 3– 1.55

1410  m 3–= =
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For order of magnitude purposes, it is not necessary to distin-
guish between electron density and total number density. How-
ever, it is useful to go though the exercise, linking electron
density to total number density and mass density.

Number density, electron density and mass density in a fully
ionised plasma

Suppose that the plasma consists of ionised Hydrogen, and fully
ionised Helium and the associated electrons. Then,

(17)

Electron density ne nH 2nHe+= =

nH 1 2
nHe
nH
---------+

 
 
 

=
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The total number density is:

(18)

The mass density is given by:

(19)

n nH nHe ne+ +=

2nH 3nHe+ =

nH 2 3
nHe
nH
---------+

 
 
 

=

 nHm 4nHem+=

nHm 1 4
nHe
nH
---------+

 
 
 

=
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If we adopt a solar abundance of Helium, then

(20)

Usually, based on more accurate composition and allowing for
metals, i.e. elements heavier than Helium, we adopt 
and

(21)

Also from the above numbers:

(22)

nHe
nH
--------- 0.085 ne 1.17nH n 2.26nH

 1.34nHm 0.59m

 0.62=

 0.62nm=

n 1.9ne
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Required pressure for the pressure-cooker model

(23)

At a solar radius , we have

(24)

The pressure at the base of the corona, is

(25)

p
p0
-------

GMm
kTr0

------------------–exp=

r0 6.96
810  m=

GMm
kTr0

------------------ 7.2=
p
p0
------- 7.5

4–10

p0 nkT 1.9nekT 8.1
3–10  N m 2–= = =
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Therefore, the ISM pressure required by the pressure cooker
model is:

(26)

The ISM is a multi-phase medium, with all phases in pressure
equilibrium. Take the warm phase, for example:

(27)

The ISM pressure fails by a factor of about  to contain
the solar atmosphere! Hence, the solar atmosphere flows out in
a wind.

p 7.5
4–10 8.1

3–10  N m 2– 6.1
6–10  N m 2–= =

n 1 cm 3– 106 m 3–  T 104K

pISM 1.4
13–10  N m 2–

4
710
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2.3 Preliminary estimate of mass flux
In order to gain some idea of the mass flux we might expect, let
us suppose that the solar wind flows out spherically from a solar
radius at the escape velocity from the Sun.

(28)
Escape velocity

2GM
r0

------------- 
  1 2/

6.2
510  m s 1–= =

620 km s 1–=
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(29)

This estimate is out by about three orders of magnitude mainly
because our estimate of the density of the outflowing wind is in
error. It is interesting to see how the correct theory makes allow-
ance for this.

Mass flux 4 r0
2 0 Vesc=

4 6.96
810 2 1.2nem 6.2

510=

1.2
1210  kg s 1–=

2.0
11–10  solar masses per year=
Astrophysical Gas Dynamics: Stellar Winds 22/66



3 Analysis of spherically symmetric winds

3.1 Fundamental equations

Euler equations

(30)

See Landau & Lifshitz Fluid Mechanics for expressions for the
gas dynamics equations in cylindrical and spehrical coordinates.

t

vi vj xj

vi+
1

---

xi
p

–
xi


–=

Spherical symmetry vr r

vr 1

---

r
p

–
r


–=
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For a spherical star of mass 

(31)

Equation of state

(32)

In the latter,  is not necessarily .  (in

an expanding flow).

M

 GM
r

---------–=

r


–
GM

r2
---------–=

Adiabatic:  p K s =

Polytropic:  p C=

 cp cv  5 3 Heating
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Isothermal equation of state

(33)

Source of heat for the solar wind: Dissipation by waves in solar
wind generated in photosphere/chromosphere.

Speed of sound

(34)

where the derivative is no longer at constant entropy. We also
define the

(35)

p
kT
m
--------= T constant=

as
2

d
dp C 1–= =

Isothermal sound speed
kT
m
--------=
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Radial momentum equation

Pressure gradient:

(36)

so that

(37)

rd
dp

d
dp

rd
d

as
2

rd
d

= =

vr rd

dvr as
2


------

rd
d GM

r2
---------––=
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Mass flux

(38)

(39)

From now on .

t


xi
 vi +

1

r2
-----

rd
d

r2vr  0= =

r2vr Constant
M·

4
------= =

M· vinidS

Sphere
 4r2vr= =

vr v=
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Also note that this equation gives us a way of estimating the den-
sity given the velocity. Solving for :

(40)

vr



 M·

4vr2
---------------=
Astrophysical Gas Dynamics: Stellar Winds 28/66



3.2 Sonic point
An important feature of all winds is the existence of a sonic point
where the flow makes a transition from subsonic to supersonic
flow. To show the existence of this we consider both the mass
flux equation and the momentum equation.

Mass flux

(41)4vR2 M·=
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Taking logs and differentiating:

(42)

4ln  vln+ln 2 Rln+ + M·ln=

1

---

rd
d 1

v
---

rd
dv 2

r
---+ + 0=

1

---

rd
d 1

v
---

rd
dv 2

r
---+ 

 –=
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Substitute  into momentum equation:

(43)

 1–
rd

d

v
rd

dv as
2

v
------

rd
dv

2
as

2

r
------

GM

r2
---------–+=

v2 as
2– 

rd
dv

v 2
as

2

r
------

GM

r2
---------–

 
 
 

=

rd
dv

v 2
as

2

r
------

GM

r2
---------–

 
 
 

v2 as
2– 

----------------------------------=
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The equation for v has a critical point where the numerator and
denominator of the right hand side of this equation are both zero.
That is, where:

(44)

v as
kTc
m

-----------= =

2
as

2

r
------

GM

r2
---------= rc GM

2as
2

---------
GMm
2kTc

------------------= =
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e.g. the Sun ( ):

(45)

Solar radius: .

 1

vc 170 km/s
T

106
--------- 
  1 2/



rc 4.8
910  

T

106
--------- 
  1–

metres 6.9Rsun
T

106
--------- 
  1–

=

Rsun 6.96
810=  m 
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The actual measured coronal temperature is approximately

. This implies that:

(46)

3.3 A better estimate of mass flux
Let us suppose that the corona of the Sun is approximately deter-
mined by the hydrostatic solution out to the sonic point. Then

(47)

2
610 K

rc 2.0
910  m 3.5 solar radii=

vc 340 km s 1–


0
------

GMm
kTr0

------------------– 1
r0
r
-----– 

 exp=
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We have

(48)

Hence our mass flux estimate becomes:

(49)

We are now only about an order of magnitude out!

GMm
kTr0

------------------ 7.2 r
r0
----- 3.5 

0
------ 2.1

3–10

M· 4 3.5 6.96
810 2 2.1

3–10

1.2 1.55
1410 m 3.4

510

2.6
13–10  solar masses per year=
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4 Critical point analysis

4.1 Splitting equations
If we want a wind solution which accelerates to supersonic then
we need to negotiate the critical point:

(50)
rd

dv
v

2as
2

r
---------

GM

r2
---------–

 
 
 

v2 as
2– 

----------------------------------=
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Split this equation into 2 by introducing a parameter  and write
the equations as:

(51)

These equations have no potential infinities anywhere and are
much better behaved numerically and easier to analyse mathe-
matically.

u

dr
du
------ r2 v2 as

2–  f1 r v   = =

dv
du
------ v 2as

2r GM–  f2 r v   = =
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4.2 Critical point
This is now defined by:

(52)

Expansion in neighbourhood of critical point:

(53)

dr
du
------

dv
du
------ 0= =

r rc r'+= v vc v'+=

ud
dr

ud
d

r'=
ud

dv
ud

d
v'=
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(54)

where

(55)

ud
d r'

v'

r

f1
v

f1

r

f2
v

f2

r'

v'
=

f1 r2 v2 as
2– = f2 v 2as

2r GM– =
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The functions  and  involve the function  and in order to

evaluate the partial derivatives of these functions, we need to

evaluate the partial derivatives of . This involves evaluating

Bernoulli’s equation.

4.3 Bernoulli’s equation:
Since 

(56)

then

(57)

f1 f2 as
2

as
2

p C=

1

---

dp
dr
------ C 2– d

dr
------=
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and 

(58)as
2 dp

d
------ C 1–= =
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Hence

(59)

v
rd

dv C 2–
rd

d
–

GM

r2
---------–=

rd
d 1

2
---v2
 
  C 2–

rd
d

–
GM

r2
---------–=

1
2
---v2 C

 1–
----------- 1––

GM
r

--------- constant+ +=

1
2
---v2 C

 1–
----------- 1– GM

r
---------–+ constant=

as
2  1–  constant

GM
r

---------
1
2
---v2–+ 

 =
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The last equation implies:

(60)

Since

(61)

then, at the critical point:

(62)

(63)

r


as
2  1– GM

r2
---------–=

v


as
2  1– v–=

f1 r2 v2 as
2– = f2 v 2as

2r GM– =

r

f1 2r v
2

as
2–  r2

r


as
2–  1– GM= =

v

f1 r2 2v
v


as
2– 

  r2  1+ v= =
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(64)

(65)

r

f2 v 2as
2 2r

r


as
2+ 

  v
GM

r
--------- 2  1– GM

r
---------– 

 = =

r

f2 3 2– vGM
r

---------=

v

f2 2as
2r GM–  2vr

v


as
2+ 2  1– as

2r–= =

v

f2  1– GM–=
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(66)

and

(67)

r

f1
v

f1

r

f2
v

f2

 1– GM  1+ vcrc
2

GM
rc

---------vc 3 2–   1– GM–
=

ud
d r'

v'

 1– GM  1+ vcr2

GM
rc

---------vc 3 2–   1– GM–

r'

v'
=
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The solution of these equations requires the eigenvalues and ei-
genvectors of the matrix. Denoting the eigenvalues by :

(68)

This simplifies to:

(69)



  1– – GM  1+ – vcrc
2

GM
rc

---------– vc 3 2–    1– GM+
0=

2 GM 2 5 3– 
2

-------------------=

 GM
5 3–

2
-------------- 
  1 2/

=
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Eigenvectors:

(70)

Take

(71)

  1– GM–  1+ vrc
2–

X Y

u1

u2

0

0
=

  1– GM– u1  1+ vcrc
2u2– 0=

u2 1= u1
 1+ 

vcrc
2

GM
-----------

5 3–
2

-------------- 
  1 2/

 1– –
------------------------------------------------------=
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The general solution in the neighbourhood of the critical point is:

(72)

where  and  are the two independent eigenvectors.

Slopes of lines through critical point and topology of the critical
point:

r'

v'
A1u1 1uexp A2u2 2uexp+=

u1 u2
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(73)

u1

u2

r

V

Critical Point

u2

dv
dr
------

u2
u1
-----

2vc
rc

--------

5 3–
2

-------------- 
  1 2/

  1– –

 1+
----------------------------------------------------= =
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5 Scaling of wind equations for numerical solutions

When we have analytical solutons of differential (or other) equa-
tions, the dependence on physical parameters is evident. Howev-
er, when we construct numerical solutions, it is best to scale the
equations in order to derive solutions depending upon the small-
est number of physical parameters. Numerical solutions of the
wind equations were given in section 5. The physical equations
should be scaled before numerical solutions can be determined.
One reason for this scaling is that the numerical solutions can
then be presented using the smallest number of parameters. Var-
ious parameters (specifically the velocity, radius and density at
the critical point) then enter as scaling parameters.
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The wind equations in physical units are:

(74)

For numerical purposes we scale these by the values of velocity
and radius at the critical point.

Hence

(75)

NB The primed variables here are not the same as the perturba-
tions that were used to study solutions in the neighbourhood of
the critical point.

dr
du
------ r2 v2 as

2– =

dv
du
------ v 2as

2r GM– =

r rcr= v vcv= as vcas=  c=
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5.1 Scaling of the sound speed
The solutions that were shown in this lecture are all constrained
to have the same mass flux. Hence, 

(76)

i.e.

(77)

Also,

(78)

M·

4
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i.e.

(79)as
2   1– =
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5.2 Normalisation of the differential equations

(80)
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The last equation follows from the condition at the critical point

(81)

We now simply make the transformation of the parameter :

(82)

and the normalised equations become:

(83)
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with

(84)

These can be easily solved with a numerical differential equation
solver (I simply use the NAG library). To start solutions near the
critical point, the perturbation equations, developed in this lec-
ture, need to be used.

 v 1– r 2–= as
2  1–=
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6 Numerical solution of equations
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Velocity vs radius for γ = 1.2

This plot shows the 
numerical integration 
of the two curves 
through the critical 
point and the numeri-
cal solution of other 
curves not passing 
through the critical 
point.

Blue curve: wind

Red curve: accretion
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7 Mass flux

We can estimate the mass flux from the sun with this simple
model.

Estimate parameters at the critical point assuming a temperature

of  there.

The mass flux is:

(85)

where the velocity and critical radius are given by

(86)
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and

(87)

Using our numerical solution, we estimate that the density at the

solar radius, i.e. at   is . 

Hence, we can write the mass flux as

(88)
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Earlier we used an electron number density  at the base of the co-

rona of  so that the density

(89)

and

(90)

(91)
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This is about a factor of 20 larger than the observed value. In or-
der to obtain better agreement with observation, theory needs to
take into account the effect of magnetic fields and coronal holes.
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8 Asymptotic wind solutions

8.1 Deductions from Bernoulli’s equation

As  the density in the wind goes to zero and therefore
since

(92)
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We can use Bernoulli’s equation to estimate the asymptotic ve-
locity as follows. The constant on the right hand side of the
above equation can be estimated from the conditions at the crit-
ical point.

(93)

As ,  and  so that
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We have been using , in which case

(95)

Thhis desn’t compare too badly with the observed value of

 measured at the Earth.

Reasons for the discrepancy between theory and observation

•   Magnetic effects are important in the initial phase of the solar 
wind

•  The effective  outside the solar region is greater than 1.2

8.2 Density in the asymptotic region
Since 

 1.2=

v 2.65vc 2.65 127 km s 1– 320 km s 1–= = =

400 km s 1–



M· 4vr2=
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then asymptotically

(96)

This expression for the density is frequently used for stellar
winds well outside the sonic point where the wind can be consid-
ered to have achieved its terminal velocity, . As we have sen

with the sun, the sonic point is reasonably close to the star.

 M·

4vr2
-------------------=

v
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