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Solutions to Exercises in Astrophysical Gas Dynamics

1. (a) i. Since u1, vi are vectors then, under an orthogonal transformation,

u′i = aijuj v′i = aikuk

Therefore,

u′iv
′
i = aijaikujvk = δjkujvk = ujvj

Hence. uivi is invariant under transformation and is a scalar.
ii.

u′iv
′
j = aikukajlvl = aikajlukvl

and this is the transformation law for a second rank tensor.

iii.

∂u′i
∂x′j

=
∂(aikuk)

∂xl

∂xl
∂x′j

using the chain rule for partial differentiation. Now, since

x′j = ajkxk ⇒ xl = aklx
′
k

⇒ ∂xl
∂x′j

= akl
∂x′k
∂x′j

= aklδkj = ajl

then
∂u′i
∂x′j

= aikajl
∂uk
∂xl

and is therefore a second rank tensor.
(b) i.

3∑
i=1

u′i =

3∑
i=1

aijuj =

[
3∑

i=1

aij

]
uj

For the terms on the right hand side to equal
∑3

j=1 uj we require
∑3

i=1 aij = 1 for

each j, i.e. each row of the transformation matrix should sum to unity. This is an

over-restriction on the properties of the orthogonal matrix.

ii. The proof is similar.

Since these quantities are not invariant, they are unsuitable choices for the magnitude of a vector.

The quantity
√
uiui is invariant and is therefore a suitable choice for the magnitude of ui.

2. Write

Tij =
1

2
(Tij + Tji) +

1

2
(Tij − Tji)

The tensor

Sij =
1

2
(Tij + Tji)

is symmetric and the tensor

Aij =
1

2
(Tij − Tji)
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is antisymmetric. We can further write

Sij =
1

3
Skkδij +

(
Sij −

1

3
Skkδij

)
=

1

3
Tkkδij +

1

2

(
Tij + Tji −

2

3
Tkkδij

)
The tensor 1

2

(
Tij + Tji − 2

3Tkkδij
)

is traceless. Hence,

Tij =
1

3
Tkkδij +

1

2

(
Tij + Tji −

2

3
Tkkδij

)
+

1

2
(Tij − Tji)

3. Energy density and energy flux in a sound wave. Mass momentum and energy flux

Use the perturbation equations derived in lectures for a sound wave, viz,

∂ρ′

∂t
+ ρ0

∂v′i
∂xi

= 0

ρ0
∂v′i
∂t

+ c20
∂ρ′

∂xi
= 0

Thus
∂εSW
∂t

=
1

2
ρ0
∂(v′iv

′
i)

∂t
+
c20
ρ0
ρ′
∂ρ′

∂t

Now,

ρ′
∂ρ′

∂t
= −ρ0ρ′

∂v′i
∂xi

and ρ0v
′
i
∂v′i
∂t

= −c20v′i
∂ρ′

∂xi

Thus

∂εSW

∂t
= −c20v′i

∂ρ′

∂xi
− c20ρ′

∂v′i
∂xi

= −c20
∂(ρ′v′i)

∂xi

Since FSW
i = c20ρ

′v′i, then
∂εSW

∂t
+
∂FSW

i

∂xi
= 0

4. Velocity of sound in a moving medium. Consider a plane wave in a reference frame (denoted by

a prime) in which the gas is at rest. The variation of density in the wave is given by:

ρ′ = A exp i
[
kix
′
i − ωt

]
The transformation to the moving medium is given by:

xi = x′i + ui t

The equation for the density then transforms to:

ρ′ = A exp i
[
kixi − (ω′ + kiui)t

]
implying that

ki = k′i ω = ω′ + kiui = cs k + kiui

since ω′ = csk in the stationary medium.

There are 2 ways to work out the velocity of this wave:
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(a) A surface of constant phase is given by

kixi − (csk + kiui)t = φ0

This can be put in the form
ki
k
xi = (cs +

ki
k
ui)t+

φ0
k

Let ni = ki/k be the normal to the wave, then this equation implies that

nixi = vwt+ constant

where

vw = cs + uini = Sound speed + Component of u in direction of wave

(b) The group velocity of waves given by this dispersion relation is:

ci =
∂ω

∂ki
= cs

ki
k

+ ui

so that the wave speed in the direction of the wave is

ciki = cs + uiki

5. Doppler Effect. Consider the frequency of a wave in a reference frame in which the source is at

rest. The medium is moving with velocity −ui in this frame. Thus, from the previous question,

the relationship between the rest frequency (ω0) and the frequency in the medium in which the

source is moving (ω) is given by:

ω0 = ω − kiui
= ω

(
1− u

c
cos θ

)
since in the stationary medium k = ω/c. This equation then implies that

ω =
ω0

1− u
c cos θ

6. Pressure fluctuations in a sound wave. The mean energy flux of a sound wave is:

〈FE,i〉 = p′v′i

For a plane wave:

p′ = c20 A cos(kjxj − ωt)

v′i =
c0
ρ0
ni A cos(kjxj − ωt)

where c0 is the sound speed in the undisturbed medium, A is the amplitude of the density wave

and ni is the unit vector in the direction of propagation. Hence, the rms energy flux is given by

< p′v′i > =
c30
ρ0
A2 ni < cos2(kjxj − ωt) >

=
c30
ρ0

A2

2
ni

⇒ 〈FE〉 =
c30A

2

2ρ0
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We can relate this to the mean square pressure fluctuation by:

〈p′2〉 = c40A
2〈cos2(kjxj − ωt)〉

=
c40A

2

2

Hence

〈p′2〉
FE

= ρ0c0

⇒ 〈p′2〉 = ρ0c0〈FE〉

The background pressure can be expressed as p0 = ρ0c
2
0/γ. Hence

〈p′2〉1/2

p0
= γ

(
FE

ρ0c30

)1/2

Parameters for this problem are density of air, ρ0 ≈ 1.225 Kg m−3, c0 ≈ 330m s−1, γ = 1.4 and

< F >= 10W/(4π × 1 m2). This gives,

< p′2 >1/2

p0
≈ 1.8× 10−4

7. Jeans mass at recombination.

At recombination, the Universe consists mainly of H and He, with the abundance by mass of

He, Y ≈ 0.2534. The atomic masses of H and He are 1.0079 and 4.0026 respectively. Hence the

ratio of the densities is given by

ρHe

ρH
=
nHe × 4.0026

nH × 1.0079
= 3.97× nHe

nH
= 0.2534

Hence
nHe

nH
= 0.0638

The density of the Universe in terms of the number density of atoms (na), can be found from

ρ

na
=

nHmH(1 + Y )

nH(1 + nHe/nH)
= 1.19mH

Therefore,

ρ ≈ 1.19× 1.0079m× na ≈ 4.3× 10−22 gm cm−3

for the given parameters.

Let us define the Jeans mass as the mass within a sphere of diameter the Jeans length λJ where

λJ = 2π

√
c2s

4πGρ0
= 2π

√
γnakT

4πGρ20
= 2π

√
γkT

4πGρ0 × 1.19mH
= 2.10× 1020 cm

Therefore the Jeans mass is

MJ =
π

6
× λ3J × 4.3× 10−22 gm = 2.1× 1059 gm = 1.0× 106M�
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8. Timescale for gravitational collapse.

(a) When k < kJ , the growth rate according to the Jeans theory is given by:

ω2
g = c2s(k

2
J − k2)

and the maximum growth rate ωg = cskJ with associated growth timescale

τg =
1

cskJ
=

1√
4πGρ0

(b)

(i) For typical ISM densities, n ∼ 104 cm−3 and µ ∼ 1, the collapse timescale is of order

2.7× 105 yrs. (ii) With ρ0 = 4.3× 10−22 gm cm−3 from the previous question, this gives

τg = 5.3× 1013 s = 1.7× 106yr


