
Characterisation of Magnetic Forces

1  Introduction

The momentum equation

(1)

contains pressure gradient terms and gravitational force terms
that we are familiar with together with the divergence of the term

 that we have referred to as “magnetic stresses”. The purpose
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of the following is to come to a better physical understanding of
what this term represents physically and what effect it can have
on magnetised gas.

2  Aside: the forces on a stretched string

Before going further it is helpful to consider the forces acting on
a stretched string. This analogy is useful for one part of the mag-
netic force.

Take the tension in a stretched string to be T. This is the force
exerted over a cross-section of the string by the rest of the string. 
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Take  to be the unit tangent to the string,  to be the arc-length

along the string, the mass per unit length to be  so that the mass
of the element is The force on an element of the string
as shown in the diagram is

(2)

ti s


m s=

Fi T s  T+  ti ti+  T s ti–=

T s ti Tti T s ti T s ti–+ +=

Tti T s ti+=

dT
ds
------ti T s 

dti
ds
------+ s=
Astrophysical Gas Dynamics:  Magnetic Forces 4/59



Now the Frenet-Serret relations for a curve tell us that

(3)

where  is the curvature and  is the unit normal. Hence the

equation of motion of the mass element is

(4)

i.e. there is a force along the string equal to the rate of the change
of the tension with arc-length and there is a force in the direction
of curvature proportional to the curvature times the tension. 
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3  Decomposition of the magnetic forces

We can write

(5)

We now write

 (6)
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where  is a unit vector in the direction of the magnetic field and

is therefore tangent to the magnetic field lines. If  are

the coordinates of a field line with arclength , then 

(7)
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We can therefore write the magnetic force terms as:

(8)

The first and third terms can be combined in the form:

(9)
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where the projection operator

(10)

projects vectors into the space normal to the magnetic field. That
is, suppose we have a vector , then 

is normal to the magnetic field, since,

(11)

The operator  therefore projects the gradient operator  per-

pendicular to the magnetic field, ie. the operator  is the

component of the gradient perpendicular to .
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 The second term in 

(12)

can be written:

(13)
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We use the Frenet-Serret relations for the magnetic field lines in
the form:

(14)

where  is the curvature of the field line and  is the normal

to the field line.

 Hence, we express the divergence of the stress tensor in the
form:
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ie, the sum of a pressure term defined by the gradientof the mag-
netic energy densitybut also perpendicular to the magnetic field
plus a term proportional to the curvature of the magnetic field
lines. 

Curvature force Magnetic pressure

Illustration of components of magnetic force

force
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It is the last term, in particular that distinguishes magnetic forces
from pure hydrostatic forces. Note also that the component of
magnetic force along the field lines is zero:

(16)

i.e. both the pressure force and the curvature force are perpendic-
ular to the magnetic field.

4  The magnetic pinch

The confinement of a plasma by a toroidal magnetic field is an
example of the different forces provided by a magnetic field. We
can also analyse the stability of this configuration using the
physical concepts derived above.

Bi xj

Mij 0=
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B

Confinement of a plasma column by a magnetic field

Hot plasmaa
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4.1  Magnetostatic equilibrium
From the above diagram, once can see that it is feasible that the
“curvature force” associated with the magnetic “tension” can
plausibly confine a hot plasma. To see if this is possible, we an-
alyse the magnetostatic configuration using the momentum
equations:

(17)

We analyse this situation in cylindrical polars, and take
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dv
dt
------ p

1
4
------ B  B+– 0= =

B Br B Bz   0 B 0  = =
Astrophysical Gas Dynamics:  Magnetic Forces 15/59



so that

(19)

and

(20)
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We now take  to be independent of  and

(21)

and the force on the plasma is in the inward radial direction if
 increases outwards.

Radial magnetostatic equilibrium

Because of the limitations we have imposed, we only have to
consider the radial force balance which is expressed by the equa-
tion:
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There is a wide variety of magnetostatic equilibria that we could
envisage. For the sake of simplicity, we consider one in which
the current density in the plasma is uniform. Ampere’s law be-
comes:

(23)

The solution of this is

(24)
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The constant  is put to zero so that the magnetic field is finite
at .

The magnetostatic equilibrium equation becomes an equation
for the pressure:

(25)

Hence
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where  is a constant which is determined by the condition that
the plasma be confined to , i.e.

(27)

Note that, with this solution,
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Magnetic field outside 

The region outside  is envisaged as a vacuum, so that Am-
pere’s law in this region becomes:

(29)
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This constant of integration is determined by continuity at
. Hence,

(30)

We  can also easily derive this form of the solution from the in-
tegral form of Ampere’s law, viz,
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where C encloses the area A. Here we just take C to be a circle
of radius  outside the plasma column, so that the above inte-
gral formulation reads:

(32)

as before.

The radial profile of the toroidal field therefore looks like the fol-
lowing diagram:
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4.2  Stability of the magnetic pinch
The magnetic pinch is subject to two well-known instabilities –
the “sausage” or “pinch” instability and the “firehose” instabili-
ty. With our knowledge of the nature of magnetic forces, we can
analyse these instabilities as follows.

B

r

B r B
1
r
---
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The “sausage” instability (pinch instability)

Consider an equilibrium plasma column which is perturbed by
being “squeezed” as indicated. Since the field lines follow the
motion they are squeezed as well. Hence the curvature force in-

creases by virtue of the increased value of  and because of the
B2

4
------
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higher curvature of the field lines. The pinching effect of the
field is greater so that the toroidal magnetic field pinches the
plasma even further. The end result is a sequence of blobs.

The “firehose” instability

Pressure force

Pressure force
High 

B2

8
------
Astrophysical Gas Dynamics:  Magnetic Forces 26/59



Now consider a toroidally confined plasma column which is per-
turbed in an oscillatory fashion. Again because the field lines
follow the motion of the plasma, the resulting perturbation to the
field is as shown. The bunching up of field lines causing a mag-
netic pressure gradient as shown and the direction of this is to en-
hance the perturbation. The perturbation therefore grows in the
manner of a hose with water flowing through it – hence the name
firehose instability.
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5  Sunspots

Sunspots are a classic example of the simple application of mag-
netostatics and provide us with an example of the importance of
magnetic pressure. They are regions of the solar photosphere
which are much cooler than average. (  as op-

B

Sunspot region

High magnetic field

Low magnetic
field

x

z

Chromosphere

Corona

Tsunspot 3800 K
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posed to  for the rest of the sun’s photosphere.) Con-
sider a model of a sunspot as indicated above. Equilibrium in the
horizontal (x) direction implies for 

(33)
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Therefore if we envisage the sunspot as having a high magnetic
field inside and comparatively negligible field outside, then 

(35)

Since, in our model, we assume that the magnetic field is inde-
pendent of height, then
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Now consider the vertical equilibrium. This is expressed by the
equation:

(37)

where  is the local acceleration due to gravity. Since 

below the photosphere boundary and there is no dependence of
 on height (why?), then 

(38)

0
z

p
– gz x

 BxBz
4

------------ 
 

z
 Bz

2

4
------
 
 
 

z
 B2

8
------ 
 –+ + +=

gz Bx Bz«

Bz

z
p gz=
Astrophysical Gas Dynamics:  Magnetic Forces 31/59



in both sunspot and the surrounding photosphere. Since we have
shown that the pressure gradient is the same in both, then the
density must be the same in both regions. Hence the equation for
horizontal equilibrium becomes

(39)
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Typical parameters

(40)

This is typical of the magnetic field that is observed from Zee-
man measurements of the sun’s photosphere.

n 1017  cm 3–
Tphotosphere 5780  K

Tsunspot 3800

B 830 Gauss
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6  The  parameter

Magnetic forces are important when the magnetic field is
“large”. What does large mean? We parameterize the relative
importance of magnetic and thermal forces via the  parameter,
defined by:

(41)

Thus “low ” means a stong magnetic field. 
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7  Evolution of the Magnetic Field

7.1  Development of evolution equation
So far we have only considered the effect of the magnetic field
on the fluid. We also need to know how the magnetic field
evolves with time as a result of the motion of the fluid. In prin-
ciple this is given by Maxwell’s equations. However, there are
some simplifications in the MHD approximation which have
some interesting consequences.

Let us first examine the consequences of the high conductivity
of magnetised gases, without assuming that the conductivity is
infinite. We still assume an Ohm’s type law for the conduction
current:

(42)Ji
 Ei=
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where  is the conductivity and the prime refers to the rest frame
of the gas. Remembering the behaviour of electric fields under a
Galilean transformation, we have

(43)

where  is the velocity of the gas in the lab frame. Hence,
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We now use the following two of Maxwell’s equations, neglect-
ing the displacement current in the first,

(45)

Using the expression for the current to solve for the magnetic
field, gives
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We also neglect the displacement current so that we can substi-

tute  for the current to obtain

(47)

and we substitute this into Faraday’s law to obtain
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Solving for ,

(49)

We denote the electrical resistivity by
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The “curl curl” term on the right can be simplified as follows:

(51)

that is,

(52)
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Hence for ,

(53)

7.2  Diffusion time scale

Obviously, if , then we have a diffusion equation for ,
viz,

(54)
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The diffusion time scale, , associated with this is determined

by order of magnitude estimate of each side of this equation. Let
the length scale of the magnetic field be , then

(55)

Normally, for astrophysical plasmas, the length scale is so long
and the conductivity is so high that this time scale is very long.
For many phenomena we are interested in, the timescales are
much less than the characteristic time, . (Estimates of times in

various regions are given in the exercises.)
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8  Alfven’s flux-freezing theorem

When the conductivity is infinite, the equation for the evolution
of the magnetic field becomes:

(56)

The implications of this are extremely interesting: The flux
through a comoving loop is conserved, as we now show.
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Bvdt
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n1
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Conservation of magnetic flux through a comvoving surface
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In the above diagram, the surface  evolves to the surface  in

the element of time  due to the motion of the fluid. The mag-
netic field is transported by the fluid according to the transport
equation above. In the figure the magnetic field is shown at the
time . The flux through the moving surface is given by

S1 S2

dt

t dt+

 t  B r t  n Ad
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=

 t dt+  B r t dt+  n Ad

S2

=
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The directed area formed by the sides of the tube generated by
the motion of the fluid is .The flux through the

sides of the volume generated by the moving surface is given to
first order in  by

(57)

n3dA dl vdt=

dt
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S3

 d– t B t  v  dl

S3
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l

Now, since , the total flux through the correctly ori-
ented surfaces ,  and  at a fixed time, is zero, since these

surfaces enclose a fixed volume. Hence,

(58)

The integral through  can be expanded to first order in  to
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and, using Green’s theorem

so that we end up with

However, the integral over  is zero because of the induction

equation, so that 

i.e. 

B t  v  dl

S3

 B v  n Ad

S1

=

 t dt+   t – dt
t

B
B v + n Ad

S1

– 0=

S1

 t dt+   t – 0=
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where the time derivative refers to the time derivative following
the motion of the loop. This elegant result is known as Alfven’s
flux-freezing theorem.

8.1 Motion of the field lines
There is another way to characterize the motion of the field lines
when diffusion is negligible. We expand

(61)

d
dt
------- 0=

t

Bi ijk xj
 klmBlvm + 0=
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to

(62)

Using

(63)

t

Bi iljm imjl– 
xj


Blvm + 0=

t

Bi
xj


Bivj 
xj


Bjvi –+ 0 p=

t

Bi vj xj

Bi Bi xj

vj vi xj

Bj– Bj xj

vi–+ + 0=

xj

Bj 0= and
xj

vj 1

---

d
dt
------–=
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gives

(64)

To consider the implications of this equation, we need to make a
slight diversion into the theory of two-dimensional congruences
of curves. 

dBi
dt

--------
Bi

-----

d
dt
------– Bj xj

vi=

d
dt
-----

Bi

----- 
 

Bj

----- 
 

xj

vi=
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t

u

xi xi t u =Uiu

t constant=

Streamline

Streamline

C

Ui tangent=
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We consider streamlines, originating from a curve, , so that the
congruence of streamlines defines a two dimensional space,

(65)

with the velocity along each streamline being defined by

(66)

We define the separation vector

(67)

which is a tangent vector to the curves formed by .

C

xi xi t u =

vi t


xi t u =

Ui u


xi t u =

t constant=
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Sometimes it is intuitively easier to think in terms of the infini-
tesimal separation between two neighbouring streamlines. This
is  and motivates the use of the term separation vector for

.

Now consider the rate of change of the separation vector with re-
spect to time, as we move along a trajectory. This is

(68)

Uiu

Ui

t

Ui
t


u


xi t u 
u


t


xi t u 
u

vi

t
= = =
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Now the rate at which the components of the velocity, , change

at a fixed time, is given by their spatial derivatives, i.e.

(69)

Hence,

(70)

vi

u

vi
xj

vi
u


xj t u 
xj

vi Uj= =

t

Ui
xj

vi Uj=
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The operator  at fixed  represents differentiation following

the motion, so that we have

(71)

In terms of the infinitesimal separation vector 

(72)

since  is constant between neighbouring streamlines.

These equations show us that the way in which points on neigh-
bouring streamlines separate is determined by the gradient of the
velocity.

t


u

dUi
dt

--------- vi j Uj=

xi Uiu=

t
 xi vi j xj=

u
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Note that the separation vector satisfies the same equation as the
magnetic field divided by the density and this leads to the fol-

lowing interpretation. Consider the vector . This satisfies

the equation,

(73)

Ui

Bi

-----–

d
dt
----- Ui

Bi

-----– 

  vi j Uj

Bj

-----– 

 =
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If we now take our initial curve  such that it is tangent to a mag-
netic field line and choose the parametrization of that curve so

that , then from the above equation we can see that

tu xi xi t u =Uiu

C

B 0 

B t 

Streamline

Streamline

C

Ui

Bi

-----=
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 always. Therefore the line  formed by

the evolution of fluid elements along the magnetic field will re-
main parallel to . In other words, the magnetic field remains
parallel to the curve defined by the new positions of the fluid el-
ements. Thus, the magnetic field is carried along by the fluid.

Ui

Bi

-----– 0= t constant=

B
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