
Magnetohydrodynamic Waves

1  Perturbation of the MHD equations

1.1  General considerations
In any theory, the properties of waves are initially determined,
through the use of first order perturbations to the equations of the
theory. In MHD we perturb the equations of motion that we have
determined from the continuum approach.
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1.2  Perturbations of the MHD equations of motion
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In the following we neglect gravity and take for the first order
perturbations to a gas initially at rest:
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The expression for the perturbation in the pressure results from
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where , (zero point value ) is the adiabatic speed of sound.

The perturbations we are considering are adiabatic.

We neglect quadratic terms in the subscript 1 variables. The per-
turbation equations are:
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Since the coefficients in this equation are all constant, we can
use Fourier analysis to determine the behaviour of the solutions.
Therefore we put all quantities proportional to 

(5)

remembering that

(6)
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The perturbation equations become:

(7)
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On dividing these equations through by -i and expanding out the
vector products, we obtain

(8)

Note that the last equation derived from  is redundant
since it also follows from taking the scalar product of the third
set with . Therefore, the above set of equations constitute 7 ho-
mogeneous equations in 7 unknowns.
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Since , then one immediate consequence of these

equations is that the component of the perturbed magnetic field
in the direction of propagation is zero, that is, the magnetic field
is transverse to the direction of propagation.

We define

(9)
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so that n is a unit vector in the direction of the wave vector. On
dividing through by k,

(10)
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The aim of the following is to find the values of  which are

consistent with the above equations. The condition for there to
be a solution is that the determinant of the system be zero. How-
ever, rather than charge in and calculate the determinant we shall
do things slightly differently.

We take scalar products of the vector equations with 3 independ-
ent vectors, n,  and . This is the most elegant

way to write out fully the homogeneous equations and this also

vw
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gives us some insight into the properties of the different wave
modes. The result is the following set of 6 equations (6 because
one of the variables is eliminated by virtue of ):B1 n 0=
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(11)
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Note that we have used  and that the last two terms

cancel in the third equation. These equations can be cast in the
following matrix form:

B1 n 0=
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The condition for a nontrivial solution is that the determinant, 
of the  matrix be zero. The seventh equatio, of course, re-
sulting from the divergence free condition on the magnetic field,
is trivial. The determinant splits into three subdeterminants, 

(13)

where

(14)


7 7

 2 4 1=

2 0vw
2

B0 n 2

4
----------------------–=

4 0
2v– w

2 vw
2

B0
2

4
---------- c0

2–– 0c0
2

B0 n 2

4
----------------------–=
Astrophysical Gas Dynamics:  Magnetohydrodynamic Waves 15/29



This is a convenient point to introduce the Alfven wave speed,
, defined by:

(15)
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Alfven waves

With this defintion, the equation  has the solution

(17)

The waves satisfying this solution are known as Alfven waves.

Magnetoacoustic waves

Consider now the second determinant:
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The solution of this quadratic equation in  is

(19)

The upper branch corresponds to fast magnetoacoustic waves;
the lower branch represents slow magnetoacoustic waves. Some-
times, especially in the older textbooks, one also sees these
waves referred to as magnetosonic waves.

2  Characteristics of Alfven waves

2.1  Components
Consider the matrix equation for the wave modes:
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Alfven waves correspond to 

(21)

but with

(22)

i.e. Both the velocity and magnetic field in Alfven waves are
transverse both to the direction of propagation and the magnetic
field. They are also non-compressive ( ).
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2.2  Phase & group velocity

Since 

(23)
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where

(24)

then the phase velocity is proportional to the projection of the
wave direction onto the magnetic field.

The group velocity of Alfven waves is given by:
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and the group velocity of a wave packet is along the magnetic
field.
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3  Characteristics of magnetoacoustic waves

3.1  General points
Consider again our wave equation for the wave
modes:
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The components corresponding to Alfven waves are zero, i.e.,

(27)

so that the velocity and magnetic field lie in the plane perpendic-
ular to , i.e. in the plane of the wave vector  and the
magnetic field . In general, the components , 

and  are nonzero. However,   so that the only

component of the magnetic field is in the direction of the unper-
turbed magnetic field.

Note also that magnetoacoustic waves are compressive. In gen-
eral .
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3.2  Special cases
The equation for the wave speed is:

(28)

Pure hydrodynamics: Zero magnetic field

When there is no magnetic field, ( ), then the solutions

collapse to

(29)
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Propagation along the field

When , then

(30)

for the fast and slow modes. Which mode is fast or slow depends
upon the relative magnitudes of the Alfven speed and the sound
speed. 
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Propagation perpendicular to the field

When , then

(31)

for the fast and slow modes respectively.
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