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2 The equation of continuity

2.1 Derivation of the fundamental equation
Define

(1)

Mass within volume  is

(2)

n
v

S
V

 density=

vi velocity components=

V

M  Vd

V
=
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Rate of flow of mass out of  is

Therefore, the mass balance within  is given by:

(3)

Use the divergence theorem:

(4)

V

vini Sd

S


V

d
dt
-----  Vd

V
 vini Sd

S
–=

vini Sd

S
 xi

 vi  Vd

V
=
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and

(5)

to give

(6)

Since the volume  is arbitrary, then

(7)

This is the equation of continuity.

d
dt
-----  Vd

V
 t


Vd

V
=

t


xi
 vi + Vd

V
 0=

V

t


xi
 vi + 0=
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Aside: Differentiation following the motion

Suppose we have a function  which is a function of both

space and time. How does this function vary along the trajectory
of a fluid element described by ? We simply calculate

(8)

f xi t 

xi xi t =

td
d

f xi t  t  
t

f
xi

f dxi
dt
-------+

t
f

vi xi
f

+= =
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Useful result from the equation of continuity

Write the above equation in the form:

(9)

Going back to the equation of continuity, then

(10)

t


vi xi
 

xi

vi+ + 0=

d
dt
------ 

xi

vi–=
xi

vi 1

---

d
dt
------–=
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Putting it another way:

(11)

This tells us that in a diverging velocity field , the

density decreases and in a converging velocity field 

the density increases.

1

---

d
dt
------

xi

vi–=

vi xi 0

vi xi 0
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2.2 Examples of mass flux

Wind from a massive star

Massive stars such as O and B stars produce winds with veloci-

ties of around  and mass fluxes of around

 We can use these facts to estimate the
density in the wind as follows.

(12)

1 000 km s 1–

10 6–  solar masses per yr.

r

Mass flux vini Sd

S
=

4r2 r v r =
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where the integral is over a sphere of radius . We assume that
the flow is steady so that the mass flux integrated over any 2 sur-
faces surrounding the star is the same. Hence,

(13)

We shall show in later lectures that far from the star, the velocity
is constant, i.e. 

(14)

Therefore the density is given by:

(15)

r

M· 4r2 r v r  constant= =

v r  v constant= =

 r  M·

4r2v
-------------------=
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For typical parameters:

(16)

Units

(17)

The density of the wind at 0.1 pc from the star is:

(18)

M· 10 6–  solar masses per yr=

r 0.1 pc 3.09
1510 m= =

v 1 000 km s 1– 106 m s 1–= =

1 solar mass 2
3010  kg= 1 pc 3.09

1610  m=

1year 3.16
710  seconds=

 5.2
22–10  kg m 3–=
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This is not particularly informative by itself. We usually express

the density in terms of particles . Assuming the gas is to-
tally ionised, then

(19)

Now for solar cosmic abundances,

(20)

and 

(21)

where  is an atomic mass unit

(22)

cm 3–

 nHmp nHemHe ......+ +=

nHe 0.085nH=

mHe 4m

m

m 1.66
27–10  kg=
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so that

(23)

Therefore, for the O-star wind:

(24)

 nHm 4 0.085n Hm+ 1.34nHm=

1.34nHm 5.2
22–10  kg m 3–

nH 5.2
22–10

1.34m
-------------------------m 3–=

2.3
510  Hydrogen atoms m 3–=
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Often, instead of the Hydrogen density we use the total number
density of ions plus electrons. In this case we put

(25)

Hence,

(26)

 nm=

 mean molecular weight 0.6156= =

n
5.2

22–10
0.6156m

------------------------- 5.1
510  particles m 3–= =
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3 Conservation of momentum

Consider first the rate of change of
momentum within a volume as a re-
sult of the flux of momentum. Let

, then

(27)

is the rate of change of momentum in
the volume, .

n

vivj

S

V

vi

p– ni

i total momentum=


·

i
d
dt
----- vi Vd

V
=

V
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The flux of momentum out of the surface  is

(28)

3.1 Surface force
There are two complementary ways that we can look at the other
aspects of the conservation of momentum. 

In a perfect fluid there is a force per unit area perpendicular to
the surface that exerts a force on the gas inside. This is the pes-
sure 

(29)

S

vivjnj Sd

S


p

Force on volume

within S
pni Sd

S
–=
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Therefore the total momentum balance for the volume is:

(30)

The surface integrals

Using the divergence we can write

(31)

The surface integral of the pressure can be written

(32)

d
dt
----- vi Vd

V
 vivjnj S pni Sd

S
–d

S
–=

vivjnj Sd

S
 xj

 vivj  Vd

V
=

pni Sd

S
 pijnj Sd

S
 xj


pij  Vd

V
= =
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Entire momentum equation

Again, we take the time derivative inside and obtain:

(33)

Since the volume is arbitrary, then

(34)

We often write this equation in the form:

(35)

t
 vi 

xj
 vivj 

xj


pij ++ Vd

V
 0=

t
 vi 

xj
 vivj pij+ + 0=

t
 vi 

xj
 vivj +

xi
p

–=
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3.2 2nd way - momentum flux
Across any surface in a gas there is a flux of momentum due to
the random motions of atoms in the gas.

We write the flux per unit area of
momentum due to molecular mo-
tions as 

The flux of momentum out of the
volume due to molecular motions is
then:

(36)

n

vivj

S

V

vi

p– ni

ijnj

ijnj

ijnj Sd

V

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For a perfect fluid, the relation between  and  is

(37)

In viscous fluids (to be treated later) the tensor  is not diago-

nal.

ij p

ij pij=

ij
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Momentum balance

When we adopt this approach, the momentum balance of the vol-
ume of gas is:

(38)

The corresponding partial differential equation is:

(39)

d
dt
----- vi Vd

V
 vivjnj S ijnj Sd

S
–d

S
–=

t
 vi 

xj
 vivj ij+ + Vd

V
 0=

t
 vi 

xj
 vivj ij+ + 0=
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The point to remember from this analysis is that pressure in a flu-
id is the result of a flux of momentum resulting from the micro-
scopic motions of the particles.

Particles of mass  crossing a surface within the fluid with ran-
dom atomic velocity  (relative to the bulk velocity) contribute

an amount  to the flux of momentum. A particle with an

equally opposite velocity contributes exactly the same amount to
the momentum flux. Hence, atomic motions in both directions
across the surface contribute equal amounts to the pressure.

m
ui

muiuj
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3.3 Alternate forms of the momentum equations

Consider, the isotropic case where . Then,

(40)

Expand the terms on the left:

(41)

Using the continuity equation to eliminate the blue terms:

(42)

ij pij=

t
 vi 

xj
 vivj +

xi
p

–=

vi t
 

t

vi vi xj
 vj  vj xj

vi

 
 
 

++ +
xi

p
–=


t

vi vj xj

vi+
xi

p
–=
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In terms of the derivative following the motion:

(43)

3.4 Additional forces
We can in general have additional forces acting on the fluid. In
particular, we can have a gravitational force derived from a grav-
itational potential. This is not a surface force like the pressure
but a body force which is proportional to the volume of the re-
gion. We write:

(44)


dvi
dt
-------

xi
p

–=

Gravitational force per unit mass
xi


–=
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where  is the gravitational potential. Therefore the gravitational
force acting on volume  is

(45)

We add this term to the momentum equations to obtain:

(46)

implying that:

(47)


V

Fi 
xi


Vd

V
–=

t
 vi 

xj
 vivj ij+ + Vd

V
 

xi


Vd

V
–=

t
 vi 

xj
 vivj ij+ + 

xi


–=
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or the alternative form:

(48)

When the momentum flux is diagonal

 (49)

(50)


t

vi vj xj

vi+
xj

ij– 
xi


–=

ij pij=

t
 vi 

xj
 vivj +

xi
p

– 
xi


–=


t

vi vj xj

vi+
xi

p
– 

xi


–=
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3.5 Hydrostatic application of the momentum equations

X-ray emitting atmosphere in an elliptical galaxy

Elliptical galaxies have extended hot atmospheres extending for
 from the centre of the galaxy.

Our first approach to understanding the distribution of gas in
such an atmosphere is to consider an hydrostatic model.

In this case  and the momentum equations reduce to

(51)

10 100 kpc–

vi 0=

1

---

xi
p

xi


–=
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Let us restrict ourselves to the case of spherical symmetry:

(52)

(53)

This can be used to estimate the mass of the galaxy. Put

(54)

1

---

r
p

r


–
GM r 

r2
-----------------–= =

G Newtons constant of gravitation=

6.67
11–10 SI units=

M r  Mass within r=

p nkT
kT
m
----------= =
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then

(55)

Rearrangement of terms gives:

(56)

1

---

d
dr
-----

kT
m
----------

GM r 
r2

-----------------–=

1

---

kT
m
--------

d
dr
------

k
m
--------

dT
dr
------+

GM r 
r2

-----------------–=

M r  r2

G
-----

kT
m
--------

1

---

d
dr
------

1
T
---

dT
dr
------+–=
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Usually, at large radii, the temperature of the atmosphere is iso-
thermal and the density of the X-ray emitting gas may be approx-
imated by a power-law:

(57)

Therefore,

(58)

T constant  r –  0.7
r

---

d
dr
------ –=

M r  r2

G
-----

kT
mp
-----------

1

---

d
dr
------

1
T
---

dT
dr
------+–

kT
mpG
---------------r= =

3.1
1110  T

107
--------- 
  r

10 kpc
---------------- 
   solar masses=
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The amount of matter implied by such observations is larger than
can be accounted for by the stellar light from elliptical galaxies
and implies that elliptical galaxies, like spiral galaxies, have
large amounts of dark matter.

4 Entropy

In any dynamical system, the conservation of mass, momentum
and energy are the fundamental principles to consider.

However, before proceeding with the conservation of energy it
is necessary to make an excursion into the domain of entropy.
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4.1 Entropy of a fluid
Consider an element of fluid with:

(59)

 Internal energy density (per unit volume)=

p pressure=

 density=

s entropy per unit mass=

m mass of the element=
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(60)

The relationship between internal energy , pressure, volume
 and entropy  of a gas is

(61)

V
m

s

Volume
m


-------=

Entropy sm=

Internal energy
m


----------=

U 
V  S 

kTdS dU pdV+=
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For the infinitesimal volume, above

(62)

The mass  is constant, therefore

(63)

kTd sm  d
m


---------- 
  pd

m


------- 
 +=

m

kTds d


--- 
  pd

1

--- 
 +=
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Other ways of expressing the entropy relation

Expanding the differentials:

(64)

Specific enthalpy

(65)

kTds
1

---d=

 p+

2
------------ 
  d–

kTds d  p+


------------ 
  d–=

h
 p+


------------ Enthalpy per unit mass

Specific enthalpy

= =

=
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Expression using the enthalpy

(66)

To be symmetric with the previous expression

(67)

kTds
1

---d=

 p+

2
------------ 
  d–

1

---d  p+   p+

2
------------ 
  d–

dp


------–=

dh
dp


------–=

kTds dh dp–=
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Relation between thermodynamic variables throughout the
fluid

These relationships have been derived for a given fluid element.
However, the equation of state of a gas can be expressed in the
form

(68)

so that any relationship derived between the thermodynamic var-
iables is valid everywhere. Therefore the differential expressions

(69)

p p  s =

kTds d  p+


------------ 
  d– d hd–= =

kTds dh dp–=
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are valid relationships between the differentials of 
throughout the fluid. 

In particular when considering the energy equation, we look at
the changes in these quantities resulting from temporal or spatial
changes. We often use the first form for temporal or spatial
changes and the second form for spatial changes.

Thus consider the change in thermodynamic variables due to
temporal changes alone:

The first differential form tells us that:

(70)

s   p  

kT
t

s
t

  p+ 


----------------
t


–

t


h
t


–= =
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and for spatial changes

(71)

For spatial changes we often use:

(72)

Derivation along a fluid trajectory

Another use for the entropy equation is to consider the variation
of the entropy along the trajectory of a fluid element. Take

(73)

kT
xi

s
xi

  p+ 


----------------
xi


–=

kT
xi

s 
xi

h
xi

p
–=

kTds d  p+


------------ 
  d–=
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then

(74)

4.2 Adiabatic gas
If the gas is adiabatic, then the change of entropy along the tra-
jectory of an element of fluid is zero, i.e.

(75)

and 

(76)

kT
ds
dt
-----

d
dt
-----

 p+


------------ 
  d

dt
------–

d
dt
----- h

d
dt
------–= =

ds
dt
----- 0=

d
dt
----- h

d
dt
------– 0=
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This is often re-expressed in a different form using:

(77)

to give

(78)

This equation describes the change in internal energy of the fluid
resulting from expansion or compression.

1

---

d
dt
------

xi

vi–=

d
dt
-----  p+ –

xi

vi=
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4.3 Equation of state
The above equations can be used to derive the equation of state
for a gas, given relationships between  and . One important
case is the -law equation of state where the pressure and inter-
nal energy density are related by:

(79)

where

(80)

 p


p  1– =  1
 1–
-----------p=


cp
cv
----- Constant ratio of specific heats= =
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We use this in conjunction with the perfect gas law

(81)

Substitute this into:

(82)

p nkT
kT
m
----------= =

kT mp=

kT
ds
dt
-----

d
dt
-----

 p+


------------ 
  d

dt
------–=

mp
ds
dt
----- 1

 1–
-----------

dp
dt
------


 1–
-----------

p

---

d
dt
------–=
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Multiply by :

(83)

 1–
p

-----------

1
p
---

dp
dt
------ 1


---

d
dt
------– m  1– ds

dt
-----=
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so that

(84)

We write

(85)

d
dt
----- pln   d

dt
----- ln– m  1– ds

dt
-----=

d
dt
-----

p


----- 
 ln m  1– ds

dt
-----=

p


----- 
 ln m  1–  s s0– =

p


----- m  1–  s s0–  exp=
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The equation of state is therefore written:

(86)

Adiabatic flow:

In adiabatic flow

(87)

and  is a streamline constant, but may differ from stream-
line to streamline.

K s  m  1–  s s0–  exp Pseudo-entropy= =

p K s =

ds
dt
----- 0= s constant along a streamline=

K s 
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Special cases

(88)

Monatomic gas (e.g. completely ionised gas)  5
3
---=

Diatomic gas  7
5
--- 1.4= =
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4.4 Radiating gas
In astrophysics we often have to take account of the  fact that the
gas radiates energy at a sufficient rate, that we have to take into
account the effect on the internal energy. Let the energy radiated
per unit volume per unit time per steradian be  then the internal
energy equation 

(89)

becomes

(90)

j

kT
ds
dt
-----

d
dt
-----

 p+


------------ 
  d

dt
------–

d
dt
----- h

d
dt
------–= =

d
dt
-----

 p+


------------ 
  d

dt
------– 4j–=
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The quantity  represents the total emissivity in units of energy
per unit time per unit volume per steradian. The factor of  re-
sults from integrarting over  steradians.

Thermal gas

When we are dealing with a thermal gas, that is one in which the
ions and electrons are more or less in thermal equilibrium, then
the total emissivity may be expressed in the form:

(91)

j
4

4

4j nenp T =
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where

(92)

This has been the time-honoured way of expressing thermal
cooling. A more modern approach is to write

(93)

where  is the total number density.

The cooling function is calculated using complex atomic physics
calculations. Ralph Sutherland has published cooling functions
for different plasma conditions.

ne electron density=

np proton density=

 T  cooling function=

4j n2 T =

n
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5 The energy equations

5.1 Conservation of energy in classical mechanics
It’s a good idea to look at how we derive the expression for en-
ergy in classical mechanics. Suppose we have a particle moving
in a time invariant potential field, , with its equation of motion:

(94)

Take the scalar product of this equation with . 

(95)



m
dvi
dt
------- m

xi


–=

vi

mvi

dvi
dt
------- mvi xi


–=
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Now

(96)

Also, the differentiation following the particle motion of 

(97)

since . Hence

(98)

vi

dvi
dt
-------

1
2
---

d
dt
----- vivi  d

dt
-----

1
2
---v2
 
 = =



d
dt
------

t


vi xi


+ vi xi


= =

t


0=

d
dt
-----

1
2
---mv2 m+ 
  0=
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As a consequence, the total energy,

(99)

is a constant of the motion, i.e. it is conserved.

5.2 Conservation of energy in gas dynamics
The consideration  of energy in gas dynamics follows a similar
line – We start by taking the scalar product of the momentum
equations with the velocity. The end result is not as simple but
has some interesting and useful consequences.

E
1
2
---mv2 m+=
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We start with the momentum equations in the form

(100)

and take the scalar product with the velocity:

(101)


t

vi vj xj

vi+
xi

p
– 

xi


–=

vi t

vi vjvi xj

vi+ vi xi
p

– vi xi


–=
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Now use:

(102)

then:

(103)

vi t

vi
t
 1

2
---vivi 
 

t
 1

2
---v2
 
 = =

vi xj

vi
xj
 1

2
---vivi 
 

xj
 1

2
---v2
 
 = =


t
 1

2
---v2
 
  vj xj

 1
2
---v2
 
 + vi xi

p
– vi xi


–=
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We can now take the density and momentum inside the deriva-
tives on the left hand side, using the continuity equation:

(104)

Bring in entropy equations

We introduce the entropy equations in order to eliminate the
term . The first one to use is:

(105)

t
 1

2
---v2
 
 

xj
 1

2
---v2vj 
 + vi xi

p
– vi xi


–=

vi p xi

kT
xi

s 
xi

h
xi

p
–=

vi xi
p

– kTvi xi
s vi xi

h
–=
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We then manipulate the enthalpy term as follows:

(106)

And now use the other form of the entropy equation

(107)

vi xi
h

xi
 hvi  h

xi
 vi –=

xi
 hvi  h

t


+=

kT
t

s
t


h

t


–=

h
t


t

 kT
t

s
–=
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Putting all of these equations together with appropriate signs:

(108)

v– i xi
p kTvi xi

s vi xi
h

–=

vi xi
h

–
xi
 hvi – h

t


–=

h
t


–

t


– kT
t

s
+=
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Add all of these up:

(109)

Substitute in the intermediate form of the energy equation:

(110)

vi xi
p

– kT
t

s
vi xi
s

+
t


–

xi
 hvi –=

kT
ds
dt
-----

t


–
xi
 hvi –=

t
 1

2
---v2
 
 

xj
 1

2
---v2vj 
 + vi xi

p
– vi xi


–=
Fundamental equations 58/78



gives:

(111)
t
 1

2
---v2 +

xj
 1

2
---v2vj hvj++

vi xi


– kT
ds
dt
-----+=
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Gravitational potential term

Tha last term to deal with is :

(112)

vi  xi–

vi xi


–
xi
 vi – 

xi
 vi +=

xi
 vi  

t


––=

xi
 vi –

t
  –=
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Final form of energy equation

Substitute the last expression into

(113)

(114)

t
 1

2
---v2 +

xj
 1

2
---v2vj hvj++

vi xi


– kT
ds
dt
-----+=

t
 1

2
---v2  + +

xj
 1

2
---v2vj hvj vj+ ++

kT
ds
dt
-----=
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and since  is a dummy repeated subscript, we can write

(115)

When the flow is adiabatic then  and

(116)

j

t
 1

2
---v2  + +

xi
 1

2
---v2 h + + 
  vi+

kT
ds
dt
-----=

kT
ds
dt
----- 0=

t
 1

2
---v2  + +

xi
 1

2
---v2 h + + 
  vi+ 0=
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When there is radiation

(117)

and 

(118)

kT
ds
dt
----- 4j–=

t
 1

2
---v2  + +

xi
 1

2
---v2 h + + 
  vi+ 4j–=
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Terms in the total energy

(119)

Note analogy with  for a single particle. 

1
2
---v2 Kinetic energy density=

 Internal energy density=

 Gravitational energy density=

1
2
---v2  + + Etot Total energy density =

E
1
2
---mv2 m+=
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The energy flux

(120)

An interesting point is that the flux associated with the internal
energy is not  as one might expect but the enthalpy flux

.

Energy flux = FEi
1
2
---v2 h + + 
  vi=

1
2
---v2vi Flux of kinetic energy=

hvi Enthalpy flux=

vi Flux of gravitational potential energy=

vi

hvi  p+ vi=
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5.3 Integral form of the energy equation

We can integrate the energy equa-
tion over volume giving:

and then using the divergence theo-
rem

(121)

n

FE i

S

V

Etot t

Etot

xi

FE i+ Vd

V
 0=

t


Etot dV FE i ni Sd+ 4j Vd–=
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This says that the total energy within a volume changes as a re-
sult of the energy flux out of that volume and the radiative losses
from the volume.

5.4 Examples of energy flux

Wind from O star

Suppose that the wind is spherically symmetric:

(122)FE
1
2
---v2 

 1–
-----------

p

---+ 

  vini Sd

sphere
=
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Since all variables are constant over the surface of the sphere,
then

(123)

We neglect the enthalpy term in comparison to  so that

(124)

Why do we neglect the enthalpy term?

FE
1
2
---v2 

 1–
-----------

p

---+ 

  vini Sd

sphere
=

M·
1
2
---v2 

 1–
-----------

p

---+ 

 =

v2 2

FE
1
2
---M· v2 1

2
--- 10 6– solar masses / yr 103km s 1– 2=

3.2
2810  W=
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Consider

(125)

(126)

In the asymptotic zone the Mach number is high, so that 

(127)

We shall justify these statements later.

1
2
---v2 

 1–
-----------

p

---+

1
2
---v2 1

2
 1–
-----------

p

v2
---------+

1
2
---v2 1

2
 1–
-----------

cs
2

v2
-----+= =

1
2
---v2 1

2
 1–
-----------

1

M2
--------+=

where       cs sound speed= M Mach number=

2
 1–
-----------

1

M2
-------- 1«
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Velocity of a jet

20 cm image of the radio gal-
axy, IC4296. 

This image shows the jets
(unresolved close to the core)
and the lobes of the radio
source.
Fundamental equations 70/78



Images of the jets in the radio galaxy IC4296 close to the core.
The resolutions are 1" and 3.2" on the left and right respectively. 
Fundamental equations 71/78



In this case we shall reverse the process to estimate the jet veloc-
ity. For a radio jet such as we observe in IC4296, once the jet has
widened appreciably, then the Mach number is quite low proba-
bly of order unity. Hence the energy flux is dominated by the en-
thalpy flux.

This is the case when

(128)

(129)

2
 1–
-----------

1

M2
-------- 1 M2 2

 1–
----------- 6 for  4

3
---= =

r
z

FE


 1–
-----------pvz Sd

jet


4pvzRjet
2=
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Contour image of
the inner 150" of
IC4296. The diame-
ters of jets can be
worked out from im-
ages such as this.
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Using the radio data we can estimate the following parameters at
a distance  from the core:

(130)

We also know from an analysis from the radio emission from the
lobes of this radio galaxy that

(131)

100

Diameter 15 2.57 kpc= =

Minimum pressure 5
13–10  N m 2–=

FE 1036 W
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Since,

(132)

This is actually an upper estimate of the velocity since we are us-
ing a minimum estimate of the pressure. However, it is unlikely
that the pressure is too far from the minimum value, so that this
is a reasonable estimate of the velocity in the western jet of
IC4296 at this distance.

vz

FE

4pr2
---------------

1036 W

4 5
13–10 2.57

2
---------- kpc 
  2


---------------------------------------------------------------------= =

2.5
710  m s 1–= 25 000 km s 1– 0.08c=
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6 Summary of gas dynamics equations

6.1 Mass

(133)

6.2 Momentum

(134)

t


xi
 vi + 0=

t
 vi 

xj
 vivj +

xi
p

– 
xi


–=


t

vi vj xj

vi+
xi

p
– 

xi


–=
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6.3 Internal energy

(135)

6.4 Total energy

(136)

6.5 Thermal cooling

(137)

d
dt
-----  p+ –

xi

vi 4j–=

t
 1

2
---v2  + +

xi
 1

2
---v2 h + + 
  vi+ 4j–=

4j n2 T  =
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6.6 Equation of state

(138)p  1–  K s = =
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