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Exercises in Astrophysical Gas Dynamics

1. Tensors and non-tensors.

In the following ui and vi are vectors.

Show that:

(a) i. uivi is a scalar

ii. uivj is a second rank tensor.

iii. ∂ui/∂xj is a second rank tensor.

iv. ∂ui/∂xi is a scalar.

(b) i. Show that
∑3

i=1 ui and
∑3

i=1 |ui| are not scalars.

ii. What are the implications of this for the definition of the magnitude of a vector?

2. Irreducible components of a tensor.

A tensor Tij is symmetric if Tij = Tji antisymmetric if Tij = −Tji and traceless if Tii = 0. Show

that an arbitrary second rank tensor may be expressed as a sum of three tensors: a symmetric

traceless tensor, a tensor proportional to the Kronecker delta and an antisymmetric tensor.

These are known as the irreducible components of Tij .

3. Energy, momentum and stress in electrodynamics.

Derive the following identities from Maxwells equations:

∂εEM
∂t

+
∂Si
∂xi

= −je,iEi (1)

∂ΠEM
i

∂t
− ∂Mij

∂xj
= −

(
ρeEi + εijk

je,j
c
Bk

)
(2)

where Ei is the electric field, Bi is the magnetic field, je,i is the electric current and ρe is the

electric charge density and

εEM =
E2 +B2

8π
= Electromagnetic energy density

Si =
c

4π
εijkEjBk = Poynting flux

ΠEM
i =

Si
c2

= Electromagnetic momentum density

Mij =

(
BiBj

4π
− B2

8π
δij

)
+

(
EiEj
4π
− E2

8π
δij

)
= Maxwell stress tensor

4. Conductivity of a plasma.

(a) Using order of magnitude estimates (following the approximate derivation for the Coulomb

mean free path given in lectures) show that the electron-ion collision frequency in a plasma

with ion density ni and temperature T is:

νc ≈ 62niT
−3/2 Hz (3)

The value derived from transport theory is νc ≈ 50niT
−3/2. Note that the order of magni-

tude estimate is close to the correct value and has the correct dependence on density and

temperature.
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(b) Using the exact value for νc show that the conductivity is given by

σ ≈ 6× 106 T 3/2 s−1

(c) Estimate the magnetic diffusion time scale in the environments given in Table 1.

Table 1: Gas and magnetic parameters in different environments

Environment ne(cm−3) T (◦K) B(Gauss) Typical

Scale Size

Solar Corona 104−8 103−6 10−5 − 1 1010 cm

Solar chromosphere 1012 104 103 108 cm

HII region (warm ISM) 102−3 103−4 10−6 101−2 pc

Hot ISM 10−2 106 10−6 103 pc

5. Pressure tensor.

Show that the pressure tensor corresponding to an isotropic distribution is isotropic, i.e.

Pij = Pδij (4)

with P =
4π

3m

∫ ∞
0

p4f(p) dp (5)

6. Pressure of a thermal gas.

The Maxwell-Boltzmann distribution of a thermal gas is given by

fMB(v) = n
( m

2πkT

)3/2
exp−mv

2

2kT
d3v

where m is the mass of each particle, n is the density and T is the temperature. Show that the

pressure is given by

p = nkT

7. Energy density and energy flux in a sound wave.

Show that the energy density εSW = 1
2ρ0 v

′2 + 1
2
c2s
ρ0
ρ′2 and energy flux FSWi = c2s ρ

′ v′i of a sound

wave satisfy the continuity equation

∂εSW

∂t
+
∂FSWi
∂xi

= 0

What does this mean, physically?

8. The velocity of sound in a moving medium.

Consider a gas moving at a constant speed u. Make a transformation to a frame in which the

medium is at rest and express the solution for a plane sound wave in the rest frame in terms of

the wave vector k and rest frame frequency ω. Now make a transformation back to the moving

frame and show from the expression for the phase that the frequency in the moving frame is

given by

ω = cs k + u · k

Show that the speed of sound in the moving medium is given by

vs = cs
k

k
+ u
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9. Doppler Effect.

Consider a source of sound moving at a velocity u with respect to an observer. By transforming

to a medium where the source is at rest (see the above question) show that the frequency received

by the observer is given by:

ω =
ω0

1− u/cs cos θ

where ω0 is the frequency emitted by the source (that is, the frequency in its own rest frame, θ

is the angle between the velocity u and the direction of the wave-vector k.

10. Pressure fluctuations in a sound wave.

(a) Show that the magnitude of the time-averaged energy flux in a plane sound wave is given

by

〈FE〉 =
c0〈p′2〉
ρ0

where 〈p′2〉 is the time-averaged square of the pressure fluctuations, c0 is the sound speed

and ρ0 is the density.

(b) Calculate the root-mean-square pressure fluctuations (< p′2 >1/2 /p0) of a sound wave

1 metre in air from an isotropic source of sound radiating an average power of 10 W. Make

reasonable assumptions for whatever parameters you need.

11. The Jeans mass at recombination.

The Universe expanded from almost infinite density and temperature to the average sparse

structure we see today. Various epochs are often described in terms of their redshift, z. The

density of the Universe in atoms per cubic centimetre is given by:

n ≈ 10−5ΩBh
2(1 + z)3 cm−3

In this equation, ΩB is the baryon density parameter, and h is the Hubble constant in units of

100 km s−1 Mpc−1. The Universe started to recombine from its previously totally ionised state

when z ≈ 1300 and the temperature dropped to approximately 3, 500 K . Present constraints on

the density parameter are ΩBh
2 ≈ 0.01.

(a) Show that the density of the Universe at recombination is given by:

ρrec ≈ 4.3× 10−22 gm cm−3

(b) Determine the Jeans mass in the recombination era. (This mass is often associated with

globular clusters, the oldest known stellar concentrations in the Universe.)

12. Timescale for gravitational collapse.

(a) Using the theoretical treatment of the Jeans mass, identify a timescale for the growth of

gravitationally unstable perturbations. This Jeans timescale is important; it tells us how

quickly a perturbation is likely to grow to interesting densities.

(b) Evaluate the Jeans timescale for (i) typical ISM densities and temperatures (ii) recombina-

tion densities and temperatures. Express the answers in years.
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13. 1-D flow.

Show that the mass flux density in 1-D flow is given by:

j = ρ v =

(
p

p0

) 1
γ

{
2γ

γ − 1
p0 ρ0

[
1−

(
p

p0

) γ−1
γ

]}1/2

14. De Laval nozzle.

Determine the value of p/p0 at the minimum area of a de Laval nozzle as a function of the

polytropic index, γ. Calculate p/p0 for γ = 7/5 and 5/3.

15. Topology of isothermal wind solution.

Determine the topology of the critical point for an isothermal wind.

16. Numerical solution for isothermal wind.

Write a computer program to exhibit the topology of curves in the V − r plane for an isothermal

wind. You should compute the curves which pass through the critical point as well as several

typical curves which do not pass through the critical point, including some which correspond to

a breeze solution. The main result of your program should be plots of the density, velocity and

Mach number.

Use any computer language you like, but preferably C, Fortran or Python.

17. Non-linear Development of a Sound Wave.

Consider a simple wave in which the initial (t = 0) velocity corresponds to that of a linear sound

wave, that is

v = v0 cos k x

where k is the wave number. In this case, however, we allow v0 to be arbitrary, that is the

restriction v0/c0 << 1 is unnecessary.

Show that the non-linear evolution of the simple wave is given by

x = t

[
c0 +

γ + 1

2
v

]
+

1

k
cos−1

(
v

v0

)
where the meanings of the symbols is as in lectures. Show that a series of shocks will form from

this simple wave after a time

tshock =
1

π(γ + 1)

λ

v0

where λ is the wavelength of the sound wave.

What does this result say about the validity of the linear sound wave approximation for long

times?

18. Thermodynamic relation for weak shocks.

Show, for a polytropic equation of state, that

∂2τ

∂P 2
=
γ + 1

γ2
τ P−2

where τ = 1/ρ is the specific volume.

19. Pre- and post-shock Mach numbers.

Using the relationships for a polytropic gas, show that the pre- and post-shock Mach numbers

(in the frame of a normal shock) satisfy M1 > 1 and M2 < 1.
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20. Rankine-Hugoniot relations.

Starting from the Rankine-Hugoniot relations derived in lectures, verify the following relations

for a normal shock in a polytropic gas:

ρ2
ρ1

=
v1
v2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

p2
p1

=
2γM2

1

γ + 1
− γ − 1

γ + 1

T2
T1

=
[2γM2

1 − (γ − 1)][(γ − 1)M2
1 + 2]

(γ + 1)2M2
1

M2
2 =

2 + (γ − 1)M2
1

2 γM2
1 − (γ − 1)

where M1 = v1/cs,1 is the Mach number of the pre-shock gas in the frame of the shock.

21. Strong shocks.

Derive the following relations for a strong shock (defined by p2 >> p1 or equivalently M1 >> 1):

τ2
τ1

=
ρ1
ρ2

=
γ − 1

γ + 1

p2 =
2

γ + 1
ρ1 v

2
1

v1 =

[
1

2
(γ + 1)p2τ1

]1/2
v2 =

[
1

2

(γ − 1)2p2τ1
γ + 1

]1/2
k T2
µm

= 2
(γ − 1)

(γ + 1)2
v21

22. Temperatures in strong shocks. Calculate the temperatures resulting from strong 200 km s−1

and 400 km s−1 shocks. (In astrophysics, the speed of a shock refers to the velocity of the shock

with respect to the gas in front of it, that is, v1. The flux of radiation resulting from a shock

with a speed greater than ∼ 200 km s−1 is capable of ionising the surrounding plasma because

of the high temperature. Such shocks have been invoked to explain the excitation of emission

line regions in some active galaxies.)

23. Critical velocity.

The critical velocity c∗ , in one-dimensional flow, is defined as the velocity at which the Mach

number is unity. Using the Bernoulli equation, show that:

1

2
V 2 +

c2s
γ − 1

=
γ + 1

2(γ − 1)
c2∗

Now, using the fact that the energy flux is conserved, show that for a normal shock

v1 v2 = c2∗

24. Strong shock in a stationary medium.

All of the equations derived in lectures and in the above exercises have referred to quantities in
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the frame of the shock. However, in many cases this is not the natural frame. Consider a strong

shock moving into a stationary medium. Show that the the velocity of the fluid after the shock

(that is, the velocity to which the shock accelerates the previously stationary pre-shock gas) is

vpost−shock =

(
2 p2/ρ1
γ + 1

)1/2

that the velocity of the shock with respect to the medium in front of the shock is

vshock =

(
γ + 1

2

p2
ρ1

)1/2

and that consequently,

vpost−shock =
2

γ + 1
vshock =

25. Shock tube.

Two gases, with the same polytropic index, γ, different densities, ρ1 and ρ2 (in general) and

different pressures p1 and p2 with p1 > p2 are brought into contact at x = 0, t = 0. The pressure

profile develops as shown in figure 1. (The higher pressured fluid is taken to be the one on the

left.) A shock wave propagates to the right into the low pressure gas and a rarefaction wave

propagates to the left into the high pressure gas. The two gases remain separated by a contact

discontinuity at the same pressure. Using the following steps, develop a method for solving for

the flow in each region.

(a) Show that a similarity solution in the variable ξ = x/t exists for the rarefaction region, 3,

with the following properties:

• The velocity v is given by:

v =
2

γ + 1
(cs,1 + ξ)

• The sound speed

cs =
2

γ + 1
cs,1 −

γ − 1

γ + 1
ξ

where the subscript 1 refers to conditions in region 1.

(b) Contact discontinuity pressure in shock tube.

Show that the pressure P5 = P4 of the gas on either side of the contact discontinuity is

given by the solution of:[
1−

(
p5
p1

)(γ−1)/2γ
]

=
γ − 1

(2γ)1/2

(
c2
c1

)
p5/p2 − 1

[(γ − 1) + (γ + 1)p5/p2]
1/2

(c) Denote the values of ξ between regions i and j by ξij. Show that

ξ13 = −cs,1

ξ34 =
cs,1
γ − 1

[
2− (γ + 1)

(
P5

p1

)(γ−1)/2γ
]

ξ45 =
2cs,1
γ − 1

[
1−

(
P5

p1

)(γ−1)/2γ
]

ξ52 =
cs,2

(2γ)1/2

[
(γ − 1) + (γ + 1)

P5

p2

]1/2
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Fig. 1.— The pressure, density, sound speed and velocity in a shock tube.

26. Limiting case for large pressure ratio.

Referring to the preceding question show when p1/p2 � 1 and ρ1 � ρ2, that P5 ≈ p1 and that

the velocity of gas on either side of the contact discontinuity is given by

v4 = v5 ≈
(

2

γ + 1

)1/2 (p1
ρ2

)1/2

27. Bernoulli’s equation.

(i) Derive the following equation from the momentum equations:

∂

∂t

(
v2

2

)
+ vj

∂

∂xj

(
v2

2

)
= kTvi

∂s

∂xi
− vi

∂h

∂xi
− vi

∂φ

∂xi

(ii) When the flow is time-independent and adiabatic show that:

d

dt

(
1

2
v2 + h+ φ

)
= 0
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along a streamline and that consequently

1

2
v2 + h+ φ = A streamline constant.

The last equation is Bernoulli’s equation.

28. Stagnation pressure of a cloud shock. The idea of this exercise is to calculate the pressure on

a cloud, which is moving supersonically with velocity v1 through a medium of density ρ1. The

stagnation pressure is important since it is this pressure which drives a shock into the cloud,

potentially making it visible in optical line emission.

Cloud

Bow shock

v1

Dividing streamline

Stagnation point

Region 1

Region 2

Fig. 2.— Cloud moving supersonically through a medium with velocity v1, viewed in a frame in which

the cloud is at rest.

(i) Referring to Figure 2, let the region to the right of the bow-shock be denoted by 1 and the

region immediately following the bow shock on the dividing streamline be denoted with a 2. Let

M2 be the Mach number on the dividing streamline in region 2. Show that the specific enthalpy

at the stagnation point is given by

hs = h2

[
1 +

γ − 1

2
M2

2

]
(ii) Suppose that v1 is highly supersonic with respect to the surrounding gas. Show that

hs
h2

=
(γ + 1)2

4γ

(iii) Show that the stagnation pressure is given by

ps =
2

γ + 1
ρ1v

2
1

[
(γ + 1)2

4γ

]γ/(γ−1)
(iv) For γ = 5/3, show that

ps ≈ 0.88ρ1v
2
1
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29. Numerical solution for shock tube.

Numerically evaluate the above rarefaction-shock solution for the cases when

p1
p2

= 10;
ρ1
ρ2

= 10

p1
p2

= 10;
ρ1
ρ2

= 0.1

Present your results as plots of the variables, pressure, density, sound speed and velocity, all

normalised to the corresponding values in region 1 plotted against ξ/cs,1.

Solutions of the 1D Euler equations such as these are used as analytical tests of numerical codes.

30. Blast wave in power-law medium.

Show that a suitable similarity variable for a point explosion of energy E0 in a medium in which

the density ρ0 = Arα is:

ξ = β

[
E0

A

]− 1
5+α

r t−
2

5+α

where β is dimensionless.

31. Similarity equations for blast wave.

Using the similarity variable,

ξ = C r tλ,

where λ = −2/(5 + α) and the substitutions

ρ = ArαG(ξ)

V = −λ r
t
U(ξ)

c2s = λ2
r2

t2
Z(ξ)

show that the equations for spherically symmetric gas dynamics become

dU

d lnξ
− (1− U)

d lnG

d ln ξ
= −(α+ 3)V

(1− U)
dU

d ln ξ
− Z (α+

d lnG

d ln ξ
) =

U (1 + λU)

λ

d lnZ

d ln ξ
− (γ − 1)

d lnG

d ln ξ
=

2 + λU [2− α(γ − 1)]

λ(1− U)

32. Boundary conditions for similarity solution.

Show that the junction conditions at the blast wave lead to the following boundary conditions

on G(ξ), U(ξ) and Z(ξ):

G(1) =
γ + 1

γ − 1

U(1) =
2

γ + 1

Z(1) =
2γ(γ − 1)

(γ + 1)2
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33. Conservation of energy in blast wave.

(a) Show that the energy within a surface ξ = constant is given by:

E(ξ) = 4π λ2 β−(α+5)E0

∫ ξ

0
ξ′
α+4

[
1

2
U2(ξ′) +

Z(ξ′)

γ(γ − 1)

]
G(ξ′) dξ′

and is therefore independent of time.

(b) Show that the parameter β is determined by

βα+5 = 4π λ2
∫ 1

0
ξα+4

[
1

2
U2(ξ) +

Z(ξ)

γ(γ − 1)

]
G(ξ) dξ

(c) Show that the conservation of energy implies that

Z(ξ) =
γ (γ − 1)

2

U2(ξ) (1− U(ξ))

γU(ξ)− 1

Note that this equation is independent of α.

34. Supernova in red giant wind.

(a) A star produces a stellar wind with a mass-loss rate Ṁ and a terminal velocity v∞. Show

that, far from the star, that is, well outside the sonic radius,

ρ =
Ṁ

4π v∞ r2

(b) The precursor to a supernova is often a red-giant. Such stars generally possess a stellar

wind with a terminal velocity v∞ ≈ 10 km s−1 and a mass-loss rate Ṁ ∼ 10−6 M� y−1.

After the star explodes as a supernova, show that the location of the blast wave, which

propagates into the preexisting red-giant wind, is given by:

rBW = β−1
[

4πv∞E0

Ṁ

]1/3
t2/3

= 4.1 pc β−1
( v∞

10 km s−1

)1/3 ( E0

1051 ergs

)1/3
(

Ṁ

10−6M� y−1

)−1/3 (
t

100 yr

)2/3

and that the velocity of the blast wave is:

vBW =
2

3
β−1

[
4πv∞E0

Ṁ

]1/3
t−1/3

= 2.7× 104 km s−1 β−1
( v∞

10 km s−1

)1/3 ( E0

1051 ergs

)1/3
(

Ṁ

10−6M� y−1

)−1/3 (
t

100 yr

)−1/3
(Given that β ∼ 1 this gives a good estimate of the blast wave velocity in such an environ-

ment. Note also that the blast wave decelerates less rapidly in a preexisting stellar wind

than it would in a homogeneous medium.)
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35. Inner radius in stellar wind bubble.

Show that the ratio of the radius of the stellar wind shock to the radius of the bubble in a

mass-loss bubble in which the shocked ISM forms a radiative shell is given by:

R1

Rs
=

(
33

20

)1/2

v−1/2w

[
53

7 · 22π

Lw
ρa

]1/10
t−1/5

= 0.20

(
Ṁw

10−6M� y−1

)0.1 ( vw
103 km s−1

)−0.3 ( na
106 m−3

)−0.1
t−0.26

where the symbols have the usual meanings. This justifies the assumption, R3
1 << R3

s used to

derive the bubble equations.

36. Interacting winds in planetary nebulae.

The “interacting wind” model of planetary nebulae is based on the idea that the white dwarf

phase of stellar evolution is preceded by a red giant phase. A fast wind from the hot white dwarf

overtakes the more slowly moving red giant wind and the region of interaction forms a shell of

material which is driven outwards by the fast wind and photoionised by the white dwarf. The

emission from this shell produces the observed planetary nebula. (See Kwok, ApJ, 258, 280).

Typical parameters for this situation are:

• Mass-loss rate in red giant phase: ṀRG ∼ 10−5M� y−1

• Velocity of red giant wind: vRG ≈ 5− 20 km s−1.

• Mass-loss rate in white dwarf phase: ṀWD ∼ 10−6 M� y−1.

• Velocity of fast wind: vWD ≈ 2000 km s−1.

(a) Assume that the fast wind switches on instantaneously at the end of the red giant phase at

t = 0. Show that the mass of swept up material is given by:

dMs

dt
= A (vs − vRG)

where vs = dRs/dt is the velocity of the shell and

A =
ṀRG

vRG
= 6.3× 1013 kg m−1

(
ṀRG

10−5M� y−1

) ( vRG
10 km s−1

)−1
In the case where the velocity of expansion of the shell is much greater than the red giant

wind velocity, show that the mass of the shell of swept-up red giant material is given by

Ms = ARs

(b) Assuming that the evolution of the interior of the mass-loss bubble is adiabatic, show that

the radius of the swept up shell and the pressure are given by

Rs(t) =

(
2Lw
3A

)1/3

t

P (t) =
A

4π
t−2

where Lw is the mechanical luminosity of the fast wind.
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Outgoing shock driven
by expanding bubble

Jet

Jet shocks

Shocked jet 
plasma moving
at low velocity

Hot shocked 
interstellar
medium

S0

S1

R

Contact
discontinuity

Vsh

Interstellar medium
Density = ρ0

Bubble of shocked jet plasma

Fig. 3.— Schematic of a jet-inflated bubble.

(c) Estimate the radius and mass of the planetary nebula shell for typical parameters. (The

lifetime of the planetary nebula phase is generally taken to be a few thousand years.)

37. Jet-driven bubble.

Background to this question: ( See figure 3.) In the section of this course dealing with wind-

driven bubbles, we considered the case where the ambient medium is so radiative that it formed

a thin shell around the expanding bubble. The opposite limit occurs when the background

medium is so hot and/or tenuous that the gas outside the bubble can be considered to be

adiabatic. This is often the case for a jet-driven bubble expanding into the hot interstellar

medium of the (elliptical) host galaxy. We assume that shock waves in the jet convert all of the

jet’s directed kinetic energy into internal energy of the relativistic plasma and that the pressure

of this plasma drives the expansion of the bubble into the ambient interstellar medium. The

expansion of the bubble is initially supersonic and, as a consequence, the bubble is preceded by

a shock wave which produces a “sandwich” of hot, shocked interstellar medium in between the

bubble and the external interstellar medium.

The following components of this question are designed to guide you to relationships describing

the radius and pressure inside the bubble as a function of time.

(a) Assume that the bubble is approximately spherical, with radius R and consider control sur-

faces S0 and S1 as shown in the above figure. Further assume that the bubble is expanding

with a velocity Ui with |Ui| = dR/dt.

Show that the total energy content, Etot of the bubble is given by:

∂Etot

∂t
+

∫
S1

pUini dS = FE
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where the energy flux of the jet is given in terms of its density, ρjet, velocity, vjet and specific

enthalpy, hjet, by:

FE =

∫
S0

ρjet

(
1

2
v2jet + hjet

)
vjet dS

where it is assumed that, on S0, the jet has slowed enough that its velocity can be considered

as non-relativistic.

(b) Assuming that the energy density of the material in the bubble is dominated by internal

energy of relativistic particles show that the pressure, p, and radius are related by:

R3dp

dt
+ 4pR2dR

dt
=
FE

4π

(c) Assume that the external interstellar medium is a non-relativistic, monatomic gas with

density ρ0. Further assume that the shocked external medium expands at the same velocity

as the bubble. Hence, show that the velocity, vsh, of the strong shock external to the

expanding bubble is given by:

vext ≈
4

3

dR

dt

Show also that the pressure of the shocked interstellar medium is given by:

psh ≈
4

3
ρ0

(
dR

dt

)2

(d) Assume that the shocked external medium and the bubble are in pressure equilibrium,

i.e. the surface of the bubble is a contact discontinuity. Hence show that the equations

describing the evolution of the bubble are

R3dp

dt
+ 4pR2dR

dt
=

FE

4π

p =
4

3
ρ0

(
dR

dt

)2

Show that a solution of these equations is:

R(t) = At3/5

p(t) = Bt−4/5

where

A =

[
53

3× 27π

FE
ρ0

]1/5
B =

12

25
ρ0A

2

(e) The jet in the radio galaxy M87 is inflating a bubble in the interstellar medium. Assume

that the bubble is approximately spherical and the energy flux through the jet is 1037 W

and that the number density of the interstellar medium is 104 m−3. Determine the radius

of the bubble, in kiloparsecs after a time of 106 yrs.

38. Magnetic field of a neutron star.
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(a) A star with an initial radius R∗ and surface magnetic field B∗ collapses to a neutron star

with a radius RNS. Show that the magnetic field on the surface of the neutron star is given

by

BNS ≈ B∗
(
R∗
RNS

)2

(6)

(b) Estimate the magnetic field of a neutron star which collapses from a star ten times the

size of the sun with a magnetic field B ∼ 1 G to a radius of 10 km. The solar radius is

R· = 6.96× 1010 cm.

39. Magnetic field in a jet.

A jet is travelling in the z-direction; the plasma in the jet has speed V (z) and radius R(z).

Assume that the jet plasma expands homologously, that is, the relative expansion of each element

is independent of radial coordinate.

(a) By considering the equation for relative motion of streamlines, and assuming that the jet

flow is steady, show that the relative distance between two fluid elements in the direction

is given approximately by

δz ∝ V (z) (7)

.

(b) By considering the magnetic flux through surface elements perpendicular to each of the

coordinate directions, show that the magnetic field components behave in the following

way:

Bz ∝
1

R(z)2
(8)

(Br, Bφ) ∝ 1

V (z)R(z)
(9)

40. Poynting Flux.

Show that in a highly conducting gas the Poynting flux is given by:

S =
B2

4π

[
V − (V · B̂)B̂)

]
(10)

that is, B2/4π times the component of velocity perpendicular to the magnetic field.

41. Mass, momentum and energy flux.

A completely ionised jet with a Mach number of 2 (relative to its internal sound speed) has a

velocity of 20, 000 km s−1 and an internal gas pressure of 10−11 dynes cm−2. The magnetic field

is perpendicular to the jet and is in equipartition with the gas pressure. The jet pressure is

dominated by thermal particles so that the ratio of specific heats is 5/3. The diameter of the jet

is 20 pc.

Determine (a) the jet temperature in ◦K, (b) the number density in cm−3, (c) the mass flux in

solar masses per year, (d) the momentum flux (in dynes) and (e) the energy flux (in ergs s−1).

42. Equation of state for relativistic gas

For a relativistic gas, let p be the pressure, n the baryon density, σ the entropy per baryon.

Show that

p = K(σ)n4/3
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43. Energy flux and mass flux in relativistic jets and winds

(a) For a relativistic gas, show that the equations for the conservation of mass and energy can

be written:

d

dt

∫
V
ρlab c

2 dV +

∫
S

Γρc2vini dS = 0

d

dt

∫
V

[
Γ2(ρc2 + ε+ p)− p

]
dV +

∫
S

Γ2
[
ρc2 + (ε+ p)

]
vini dS = 0

where ρ is the rest-mass density and S is the surface bounding the volume V .

(b) Now consider the case where an almost stationary region (V ) is being fed by relativistic

gas. Examples include the lobe of a radio galaxy, or the region of a bubble fed by a

shocked relativistic wind. We can approximate the dynamical variables in region V by the

non-relativistic limit, but the integrals over S may involve relativistic velocities.

Show, that in the slowly moving region, V :

Γ2(ρc2 + ε+ p)− p .
= ρlab c

2 +
1

2
ρlabv

2 + ε

Hence show, using these approximations, that the evolution of kinetic plus internal energy

in V , may be approximated by:

d

dt

∫
V

[
1

2
ρlabv

2 + ε

]
dV +

∫
S

[
Γ2(ε+ p) + Γ(Γ− 1)ρc2

]
vini dS = 0

The second term identifies the appropriate energy flux in these circumstances.

(c) Show that in the non-relativistic limit, the above energy flux becomes:

FE =

∫
S

[
1

2
ρv2 + (ε+ p)

]
vini dS

(d) Consider a relativistic flow in which the flow variables may be taken to constant over the

cross-section of the flow, which has area A (e.g., a relativistic jet or a relativistic wind).

Show that the energy flux may be approximately written as

FE = Γ2(ε+ p)cβA+ (Γ− 1)Ṁc2

where A is the cross-sectional area of the flow and Ṁ is the mass flux.

44. Analysis of Cygnus A

The idea of this question is to estimate the contributions to the jet energy flux in the FR2

radiogalaxy Cygnus A.

Given the image on p.2 of the chapter on Relativistic Applications, and:

• The pressure of component J6 is approximately 10−7 N m−2 (estimated from radio obser-

vations)

• The redshift to Cygnus A is z = 0.056075

• The Hubble constant is 70 km s−1 Mpc−1

• The Lorentz factor of the jet is approximately what we derived in lectures for the large

scale jet, namely Γ = 2.2
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• The accretion rate onto the black hole in Cygnus A is estimated at (1.5− 6)× 10−2M� y−1

(Tadhunter et al. 2003, MNRAS, 342, 861). Hence assume a fiducial Ṁ in the jet of

10−2M� y−1.

Estimate the contributions to the energy flux (kinetic power) of the jet.

45. Jet knots

Fig. 4.— Schematic indication of a shock in a relativistic jet.

Figure 4 represents a shock propagating in a relativistic jet. One idea for the production of

such shocks is that they are the result of faster moving gas catching up with slower moving

gas. When astronomers measure the velocities of knots in jets, they are actually measuring the

pattern speed of a relativistic shock, which is in general different from the velocity of the jet.

There are arguments based on the radiation from such shocks to indicate that they may be weak.

The idea of this exercise is to see what the difference between the observed and measured

velocities can be.

(i) Assume that the shock is weak, and that the jet is described by an ultra-relativistic equation

of state, show that the jet velocity (βjet) and Lorentz factor (Γjet) are related to the observed

shock speed (βsh), and Lorentz factor (Γsh) by the following equations:

βjet =
βsh + 1/

√
3

1 + βsh/
√

3

and Γjet =

√
3

2

(
1 +

βsh√
3

)
Γsh

(ii) Determine βjet and Γjet for an observed shock velocity of 0.5 c.

(iii) Show that, for shock velocities approaching the speed of light,

Γjet ≈ 1.93 Γsh


