Cartesian Tensors

Reference: Jeffreys Cartesian Tensors

1 Coordinates and Vectors

Coordinates x;, i = 1,2, 3
Unit vectors: e, 1 = 1,2, 3

General vector (formal definition to follow) denoted by compo-
nentse.g. u = u,

Summation convention (Einstein) repeated index means summa-
tion:
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UiV = EUiVi Ui = Euii (1)

i=1 i=1
2 Orthogonal Transfor mations of
Coordinates

X = ;X (2)

&; = Transformation Matrix (3
Position vector
= X = X€
=>aJ|X|ej - Xiei
N (4)
Xi(a;i€;) = X
I.e. the transformation of coordinates from the unprimed to the

primed frameimpliesthe reverse transformation from the primed to
the unprimed frame for the unit vectors.
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Kronecker Delta

o; = 1if i =] -

= 0 otherwise

2.1 Orthonormal Condition:

Now impose the condition that the primed referenceis orthonormal
Use the transformation

= A € €
(7)

= 40
= Qi Ay

NB the last operation is an example of the substitution property of
the Kronecker Delta.

Sincee; - €; = 9j;, then the orthonormal condition on &;; is

1jo

aidy = O (8)
In matrix notation:
a'a = | ©)
Also have
iy = aal = g (10)
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2.2 Rever setransfor mations
Xj = X => QX = X = X = Xy

(11)

!

]

I.e. the reverse transformation is simply given by the transpose.
Similarly,

& = a;e (12)
2.3 Interpretation of a;
Since

& = a;e (13)

then the a;; are the components of g wrt the unit vectors in the

unprimed system.
3 Scalars, Vectors & Tensors
3.1 Scalar (f):

f(xi) = f(x) (14)

Exampleof ascalarisf = r2 = x;x. Examplesfrom fluid dynam-
ics are the density and temperature.

3.2Vector (u):
Prototype vector: X

Generdl transformation law:
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3.2.1 Gradient operator
Suppose that f isascalar. Gradient defined by

(grad 1), = (V) = 2 (16)

Need to show thisis avector by its transformation properties.

of _ af 9% (17)
X, 9X;0X
Since,
Xj = QX (18)
then
8Xj 3 _
P Q0 = &
(19)
of _ _ of
and —— = =
dX; axj

|
Hence the gradient operator satisfies our definition of avector.
3.2.2 Scalar Product

U*V = UV, = UVy+ UV, + UgVs (20)
is the scalar product of the vectors u; and v;.

Exercise:

Show that u - visascaar.
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3.3 Tensor

Prototype second rank tensor X; X;

General definition:

T - a.ika.j|Tk| (21)

ij
Exercise:

Show that u;v; isasecond rank tensor if u; and v; are vectors.
Exercise:

Ui = il (22)

Is a second rank tensor. (Introduces the comma notation for partial
derivatives.) In dyadic form thisiswritten asgrad u or Vu.

3.3.1 Divergence
Exercise
Show that the quantity
_ oV,
V-v=dvv = _— (23)
X
isascalar.

4 Products and Contractionsof Tensors

It is easy to form higher order tensors by multiplication of lower
rank tensors, .9.T;; = T;;uy isathird rank tensor if T;; isasecond
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rank tensor and u, is a vector (first rank tensor). It is straightfor-
ward to show that T;;, has the relevant transformation properties.

Similarly, if Tj;, isathird rank tensor, then Tj;; is avector. Again
the relevant trdansformation properties are easy to prove.

5 Differentiation following the motion

Thisinvolvesacommon operator occurring in fluid dynamics. Sup-
pose the coordinates of an element of fluid are given as a function
of time by

X = (1) (24)

The velocities of elements of fluid at all spatial locations within a
given region constitute a vector field, i.e. v; = vi(X;, )

Thederivative of afunction, f(x;, t) along thetrajectoryof aparcel
fluid isgiven by:

df _ of ,af d% _ of  of

at ot Taxat oot Viax (25
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Derivative of velocity

If we follow the trgjectory of an element of fluid, then on a partic-
ular trajectory x; = x;(t) . The acceleration of an element is then

given by:

_ Qv _ oV, avi dx; _ avi Y
f S @ __V'(X(t) R Taxdt ot Viax (20)

Exercise: Show that f; is avector.

6 The permutation tensor ¢,

ek = 0 ifanyof i, j, k areequal
= 1 ifi, j, k unequal andin cyclic order (27)
= -1 if i, j, k unequa and not in cyclic order
e.g.
€112 = 0 g3 = 1 egp1 = —1 (28)

In order to show thiswe have to demonstratethat ¢;;,, when defined

the same way in each coordinate system has the correct transforma-
tion properties.
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Ei’jk = € mn| &jmAkn

= €923818j83 T €3158i3818o + £31818;
t €513Q58j133 T €318i38281 T €13,87183;
= 341(8283 — aj38x2) — A2(8)1843 — 8j382)

29
+33(3;8 — 2j28) (29)

a1 djp a3
~ | Qj1 Qj2 93

A1 Ao 3

Inview of the interpretation of the &;, the rows of this determinant

represent the components of the primed unit vectors in the
unprimed system. Hence:
8i/jk = ei, : e; X el,( (30)

Thisiszeroif any 2 of |, j, k are equdl, is +1 for a cyclic permuta-
tion of unequal indices and -1 for a non-cyclic permutation of une-

qual indices. Thisisjust the definition of ¢;;, . Thus g;;, transforms
as a tensor.

6.1 Uses of the permutation tensor

6.1.1 Cross product
Define
Ci = &by (31)

then
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C1 = €1p38,D5 + €135830, = ab3—agh,

Cy = €318307 + €5138,05 = a3by —a,bg

C3 = €310810;5 + €58,0; = @b, —ayb,
These are the components of ¢ = ax b.

6.1.2 Triple Product

In dyadic notation the triple product of three vectorsis:

t=u-vxw

In tensor notation thisis

U= UV Wi = &5l VW
6.1.3 Curl
(curl u), = Sijk%
0X;
e.g.
U du,  duy AU,

curl U); = €0——+¢ = —
( )1 12839%,  1axg 0%y 9Xg

etc.

6.1.4 Thetensor ¢, ¢

mps
Define

Tikmp = 8iksgmps

Properties.

«Ifi =korm= pthenT,-0-
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e If I = mweonly get acontribution from theterms s= i and
k=i,s.Consequently k = p. Thuseg; = +1 and

Smps = SikS = +]1 and theprOdUCt siksgiks = (il 2 = 1.

o Ifi = p, sSimilar argument tells us that we must have s=i and
k=m=i.Hence g5 = =1, &pps= FL1=>€jsEmps = -1 .
0,

Il =mk= 1 unless i =k=0
e T (38)
i=p,k=m=-1 unless i =k=0

These are the components of the tensor 8,0y, — 9;,dkm-
.'Siksgmps = E)imékp_aipékm (39)
6.1.5 Application of &, s
_ d _
(curl (uxv)), = 'Jka (EymUVin) = Ijkgklm (u Vi)
X] X]
aVv
= (6;10j,—9 ]|)( -~V +U|a—xr:)
u, o, P (40)
= —V.—+uUu .
Xy T X Xy, TaX
ou,  av, v,  du
=V — U, +u._J_V._J
lox;  lax;  ax; o
= (v-Vu—-u-Vv+uV: -v-vV-u)
7/ The Laplacean
2
qu)_aq) aq) aq) 0% (41)

Ix2 IxZ 9Ix& A% X,
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8 Tensor Integrals

8.1 Green’s Theorem

In dyadic form:
[(V-u)dv :f(u-n)dS (42)
S
In tensor form:
U
fa_xldv = f u;n,dS = Flux of u through S (43)
i
S

Extend this to tensors:

T
fa—X;JdV =fTijnde = Flux of Tj; through S (44)
S
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8.2 Stoke' s Theorem

In dyadic form:
f(curl u) - ndS :fu-tds (45)
S C
In tensor form:
au,
f Eijicg MidS = f u;t;ds (46)
S ’ C
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