
 

Cartesian Tensors                                         © Geoffrey V. Bicknell

 

Cartesian Tensors

 

Reference: Jeffreys 

 

Cartesian Tensors

 

1 Coordinates and Vectors

 

Coordinates 

Unit vectors: 

General vector (formal definition to follow) denoted by compo-
nents e.g. 

Summation convention (Einstein) repeated index means summa-
tion:

x x1=

y x2=

z x3=

e1

e2

e3

xi i, 1 2 3, ,=

ei i, 1 2 3, ,=

u ui=
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(1)

 

2 Orthogonal Transformations of 
Coordinates

 

(2)

(3)

 

Position vector

 

(4)

 

i.e. the transformation of coordinates from the unprimed to the
primed frame implies the reverse transformation from the primed to
the unprimed frame for the unit vectors.

uivi uivi

i 1=

3

∑= uii uii

i 1=

3

∑=

x1
′

x1

x2

x3

x2
′

x3
′

xi
′ aijx j=

aij Transformation Matrix=

r xiei x j
′ e j

′= =

a jixie j
′⇒ xiei=

xi a jie j
′( ) xiei=

ei⇒ a jie j
′=
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Kronecker Delta

 

(5)

 

2.1 Orthonormal Condition:

 

Now impose the condition that the primed reference is orthonormal

 

(6)

 

Use the transformation

 

(7)

 

NB the last operation is an example of the substitution property of
the Kronecker Delta.

Since , then the orthonormal condition on  is

 

(8)

In matrix notation:

(9)

Also have

(10)

δij 1  if   i j= =

0  otherwise=

ei e j⋅ δij=    and   ei
′ e j

′⋅ δij=

ei e j⋅ akiek
′ aljel

′⋅=

akialjek
′ el

′⋅=

akialjδkl=

akiakj=

ei e j⋅ δij= aij

akiakj δij=

aT a I=

aika jk aaT δij= =
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2.2 Reverse transformations

(11)

i.e. the reverse transformation is simply given by the transpose.

Similarly,

(12)

2.3 Interpretation of 

Since

(13)

then the  are the components of  wrt the unit vectors in the
unprimed system.

3 Scalars, Vectors & Tensors

3.1 Scalar (f):

(14)

Example of a scalar is . Examples from fluid dynam-
ics are the density and temperature.

3.2 Vector (u):

Prototype vector: 

General transformation law:

xi
′ aijx j= aikxi

′⇒ aikaijx j δkjx j xk= = =

xk∴ aikxi
′= xi⇒ a jix j

′=

ei
′ aije j=

aij

ei
′ aije j=

aij ei
′

f x ′i( ) f xi( )=

f r2 xixi= =

xi
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(15)

3.2.1 Gradient operator 

Suppose that  is a scalar. Gradient defined by

(16)

Need to show this is a vector by its transformation properties. 

(17)

Since,

(18)

then

(19)

Hence the gradient operator satisfies our definition of a vector.

3.2.2 Scalar Product

(20)

is the scalar product of the vectors  and .

Exercise: 

Show that  is a scalar.

xi
′ aijx j= ui

′⇒ aiju j=

f

grad f( )i ∇f( )i xi∂
∂ f= =

xi
′∂

∂ f
x j∂

∂ f
xi
′∂

∂x j=

x j akjxk
′=

xi
′∂

∂x j akjδki aij= =

and   
xi
′∂

∂ f
aij x j∂

∂ f
=

u v⋅⋅⋅⋅ uivi u1v1 u2v2 u3v3+ += =

ui vi

u v⋅⋅⋅⋅
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3.3 Tensor

Prototype second rank tensor 

General definition:

(21)

Exercise:

Show that  is a second rank tensor if  and  are vectors.

Exercise:

(22)

is a second rank tensor. (Introduces the comma notation for partial
derivatives.) In dyadic form this is written as  or .

3.3.1 Divergence

Exercise:

Show that the quantity

(23)

is a scalar.

4 Products and Contractions of Tensors

It is easy to form higher order tensors by multiplication of lower
rank tensors, e.g.  is a third rank tensor if  is a second

xix j

T ij
′ aika jlT kl=

uiv j ui v j

ui j, x j∂

∂ui=

grad u ∇u

∇ v⋅ div v
xi∂

∂vi= =

T ijk T ijuk= T ij



Cartesian Tensors 7/13

rank tensor and  is a vector (first rank tensor). It is straightfor-

ward to show that has the relevant transformation properties. 

Similarly, if  is a third rank tensor, then  is a vector. Again
the relevant tr4ansformation properties are easy to prove.

5 Differentiation following the motion

This involves a common operator occurring in fluid dynamics. Sup-
pose the coordinates of an element of fluid are given as a function
of time by

(24)

The velocities of elements of fluid at all spatial locations within a
given region constitute a vector field, i.e. 

The derivative of a function,  along the trajectoryof a parcel
fluid is given by:

(25)

uk

T ijk

T ijk T ijj

xi xi t( )=

vi

vi vi x j t,( )=

f xi t,( )

df
dt
-----

t∂
∂ f

xi∂
∂ f dxi

dt
-------+

t∂
∂ f

vi xi∂
∂ f

+= =
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Derivative of velocity

If we follow the trajectory of an element of fluid, then on a partic-
ular trajectory . The acceleration of an element is then
given by:

(26)

Exercise: Show that  is a vector.

6 The permutation tensor 

(27)

e.g.

(28)

Is  a tensor?

In order to show this we have to demonstrate that , when defined
the same way in each coordinate system has the correct transforma-
tion properties.

xi xi t( )=

f i td

dvi

td
d

vi x j t( ) t,( )
t∂

∂vi

x j∂

∂vi

td

dx j+
t∂

∂vi v j x j∂

∂vi+= = = =

f i

εijk

εijk 0   if any of i j k  are equal, ,=

1    if i j k  unequal and in cyclic order, ,=

1  if i j k  unequal and not in cyclic order, ,–=

ε112 0= ε123 1= ε321 1–=

εijk

εijk
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Define

(29)

In view of the interpretation of the , the rows of this determinant
represent the components of the primed unit vectors in the
unprimed system. Hence:

(30)

This is zero if any 2 of  are equal, is +1 for a cyclic permuta-
tion of unequal indices and -1 for a non-cyclic permutation of une-
qual indices. This is just the definition of . Thus  transforms
as a tensor.

6.1 Uses of the permutation tensor

6.1.1 Cross product

Define

(31)

then

εijk
′ εlmnaila jmakn=

ε123ai1a j2ak3 ε312ai3a j1ak2 ε231ai2a j1ak2+ +=

ε213ai2a j1ak3 ε321ai3a j2ak1 ε132ai1a j3ak2+ + +

ai1 a j2ak3 a j3ak2–( ) ai2 a j1ak3 a j3ak2–( )–=

            ai3 a j1ak2 a j2ak1–( )+

ai1 ai2 ai3

a j1 a j2 a j3

ak1 ak2 ak3

=

aij

εijk
′ ei

′ e j
′ ek

′×⋅=

i j k, ,

εijk
′ εijk

ci εijka jbk=
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(32)

These are the components of .

6.1.2 Triple Product

In dyadic notation the triple product of three vectors is:

(33)

In tensor notation this is

(34)

6.1.3 Curl

(35)

e.g.

(36)

etc.

6.1.4 The tensor 

Define

(37)

Properties:
• If  or  then .

c1 ε123a2b3 ε132a3b2+ a2b3 a3b2–= =

c2 ε231a3b1 ε213a1b3+ a3b1 a1b3–= =

c3 ε312a1b2 ε321a2b1+ a1b2 a2b1–= =

c a b××××=

t u v w××××⋅⋅⋅⋅=

t uiεijkv jwk εijkuiv jwk= =

curl u( )i εijk x j∂

∂uk=

curl u( )1 ε123 x2∂

∂u3 ε132 x3∂

∂u2+
x2∂

∂u3

x3∂

∂u2–= =

εiksεmps

T ikmp εiksεmps=

i k= m p= T ikmp 0=
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• If  we only get a contribution from the terms  and 
. Consequently . Thus  and 

 and the product .

• If , similar argument tells us that we must have  and 
. Hence, , .

So,

(38)

These are the components of the tensor .

(39)

6.1.5 Application of 

(40)

7 The Laplacean

(41)

i m= s i≠
k i s,≠ k p= εiks 1±=

εmps εiks 1±= = εiksεiks 1±( )2 1= =

i p= s i≠
k m= i≠ εiks 1±= εmps 1+−= εiksεmps⇒ 1–=

i m k, p= = 1  unless  i⇒ k= 0⇒

i p k, m= = 1  unless  i–⇒ k= 0⇒

δimδkp δipδkm–

εiksεmps∴ δimδkp δipδkm–=

εiksεmps

curl u v×( )( )i εijk x j∂
∂ εklmulvm( ) εijkεklm x j∂

∂
ulvm( )= =

δilδ jm δimδ jl–( )
x j∂

∂ul vm ul x j∂

∂vm+
 
 
 

=

xm∂

∂ui vm vi x j∂

∂u j– ui xm∂

∂vm u j x j∂

∂vi–+=

v j x j∂

∂ui u j x j∂

∂vi– ui x j∂

∂v j vi x j∂

∂u j–+=

v ∇u u ∇v u∇ v v∇ u⋅–⋅+⋅–⋅( )i=

∇2φ
x1

2

2

∂
∂ φ

x2
2

2

∂
∂ φ

x3
2

2

∂
∂ φ+ + ∂2φ

∂xi∂xi
---------------= =
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8 Tensor Integrals

8.1 Green’s Theorem

In dyadic form:

(42)

In tensor form:

(43)

Extend this to tensors:

(44)

ni

V

S

∇ u⋅( ) Vd

V
∫ u n⋅⋅⋅⋅( ) Sd

S
∫=

xi∂

∂ui Vd

V
∫ uini Sd

S
∫ Flux of u through S= =

x j∂

∂T ij Vd

V
∫ T ijn j Sd

S
∫ Flux of  T ij through S= =
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8.2 Stoke’s Theorem

In dyadic form:

(45)

In tensor form:

(46)

C

S

ti

n

curl u( ) n⋅ Sd

S
∫ u t⋅ sd

C
∫=

εijk x j∂

∂ukni Sd

S
∫ uiti sd

C
∫=


