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Abstract: We use standard general relativity to illustrate and clarify several common misconceptions about
the expansion of the universe. To show the abundance of these misconceptions we cite numerous misleading,
or easily misinterpreted, statements in the literature. In the context of the new standard �CDM cosmology
we point out confusions regarding the particle horizon, the event horizon, the ‘observable universe’ and the
Hubble sphere (distance at which recession velocity = c). We show that we can observe galaxies that have,
and always have had, recession velocities greater than the speed of light. We explain why this does not violate
special relativity and we link these concepts to observational tests. Attempts to restrict recession velocities to
less than the speed of light require a special relativistic interpretation of cosmological redshifts. We analyze
apparent magnitudes of supernovae and observationally rule out the special relativistic Doppler interpretation
of cosmological redshifts at a confidence level of 23σ.
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1 Introduction

The general relativistic (GR) interpretation of the redshifts
of distant galaxies, as the expansion of the universe, is
widely accepted. However this interpretation leads to sev-
eral concepts that are widely misunderstood. Since the
expansion of the universe is the basis of the Big Bang
model, these misunderstandings are fundamental. Popu-
lar science books written by astrophysicists, astrophysics
textbooks and to some extent professional astronomical
literature addressing the expansion of the universe, contain
misleading, or easily misinterpreted, statements concern-
ing recession velocities, horizons and the ‘observable
universe’.

Probably the most common misconceptions surround
the expansion of the universe at distances beyond which
Hubble’s law (vrec = HD: recession velocity = Hubble’s
constant × distance) predicts recession velocities faster
than the speed of light (Appendix B: 1–8), despite
efforts to clarify the issue (Murdoch 1977; Harrison
1981; Silverman 1986; Stuckey 1992; Ellis & Rothman
1993; Harrison 1993; Kiang 1997; Davis & Lineweaver
2001; Kiang 2001; Gudmundsson & Björnsson 2002).
Misconceptions include misleading comments about
the observability of objects receding faster than light
(Appendix B: 9–13). Related, but more subtle confusions
can be found surrounding cosmological event horizons
(Appendix B: 14–15). The concept of the expansion of
the universe is so fundamental to our understanding of
cosmology and the misconceptions so abundant that it is
important to clarify these issues and make the connection
with observational tests as explicit as possible. In Section 2
we review and illustrate the standard general relativistic

description of the expanding universe using spacetime
diagrams and we provide a mathematical summary in
Appendix A. On the basis of this description, in Section 3
we point out and clarify common misconceptions about
superluminal recession velocities and horizons. Examples
of misconceptions, or easily misinterpreted statements,
occurring in the literature are given inAppendix B. Finally,
in Section 4 we provide explicit observational tests demon-
strating that attempts to apply special relativistic (SR)
concepts to the expansion of the universe are in conflict
with observations.

2 Standard General Relativistic Description
of Expansion

The results in this paper are based on the standard
general relativistic description of an expanding homo-
geneous, isotropic universe (AppendixA). Here we briefly
summarise the main features of the GR description,
about which misconceptions often arise. On the space-
time diagrams in Figure 1 we demonstrate these features
for the observationally favoured �CDM concordance
model: (�M, ��) = (0.3, 0.7)withH0 = 70 km s−1 Mpc−1

(Bennett et al. 2003, to one significant figure). The
three spacetime diagrams in Figure 1 plot, from top to bot-
tom, time versus proper distance D, time versus comoving
distance R0χ, and conformal time τ versus comoving
distance. They show the relationship between comov-
ing objects, our past light cone, the Hubble sphere and
cosmological horizons.

Two types of horizon are shown in Figure 1. The
particle horizon is the distance light can have travelled
from t = 0 to a given time t (Equation (27)), whereas
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Figure 1 Spacetime diagrams showing the main features of the GR description of the expansion of the universe for the (�M, ��) = (0.3, 0.7)

model with H0 = 70 km s−1 Mpc−1. Dotted lines show the worldlines of comoving objects. We are the central vertical worldline. The current
redshifts of the comoving galaxies shown appear labelled on each comoving worldline. The normalised scalefactor, a = R/R0, is drawn as an
alternative vertical axis. All events that we currently observe are on our past light cone (with apex at t = now). All comoving objects beyond
the Hubble sphere (thin solid line) are receding faster than the speed of light. Top panel (proper distance): The speed of photons relative to us
(the slope of the light cone) is not constant, but is rather vrec − c. Photons we receive that were emitted by objects beyond the Hubble sphere
were initially receding from us (outward sloping lightcone at t � 5 Gyr). Only when they passed from the region of superluminal recession
vrec > c (grey crosshatching) to the region of subluminal recession (no shading) can the photons approach us. More detail about early times
and the horizons is visible in comoving coordinates (middle panel) and conformal coordinates (lower panel). Our past light cone in comoving
coordinates appears to approach the horizontal (t = 0) axis asymptotically. However it is clear in the lower panel that the past light cone at t = 0
only reaches a finite distance: about 46 Glyr, the current distance to the particle horizon. Currently observable light that has been travelling
towards us since the beginning of the universe was emitted from comoving positions that are now 46 Glyr from us. The distance to the particle
horizon as a function of time is represented by the dashed line. Our event horizon is our past light cone at the end of time, t = ∞ in this case. It
asymptotically approaches χ = 0 as t → ∞. The vertical axis of the lower panel shows conformal time. An infinite proper time is transformed
into a finite conformal time so this diagram is complete on the vertical axis. The aspect ratio of ∼3/1 in the top two panels represents the ratio
between the radius of the observable universe and the age of the universe, 46 Glyr/13.5 Gyr.

the event horizon is the distance light can travel from a
given time t to t = ∞ (Equation (28)). Using Hubble’s
law (vrec = HD), the Hubble sphere is defined to be the
distance beyond which the recession velocity exceeds the
speed of light, DH = c/H . As we will see, the Hubble
sphere is not an horizon. Redshift does not go to infinity

for objects on our Hubble sphere (in general) and for many
cosmological models we can see beyond it.

In the �CDM concordance model all objects with red-
shift greater than z ∼ 1.46 are receding faster than the
speed of light. This does not contradict SR because the
motion is not in any observer’s inertial frame. No observer
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ever overtakes a light beam and all observers mea-
sure light locally to be travelling at c. Hubble’s law is
derived directly from the Robertson–Walker (RW) met-
ric (Equation (15)), and is valid for all distances in any
homogeneous, expanding universe.

The teardrop shape of our past light cone in the top
panel of Figure 1 shows why we can observe objects that
are receding superluminally. Light that superluminally
receding objects emit propagates towards us with a local
peculiar velocity of c, but since the recession velocity at
that distance is greater than c, the total velocity of the light
is away from us (Equation (20)). However, since the radius
of the Hubble sphere increases with time, some photons
that were initially in a superluminally receding region later
find themselves in a subluminally receding region. They
can therefore approach us and eventually reach us. The
objects that emitted the photons however, have moved to
larger distances and so are still receding superluminally.
Thus we can observe objects that are receding faster than
the speed of light (see Section 3.3 for more detail).

Our past light cone approaches the cosmological event
horizon as t0 → ∞ (Equations (22) and (28)). Most obser-
vationally viable cosmological models have event hori-
zons and in the �CDM model of Figure 1, galaxies with
redshift z ∼ 1.8 are currently crossing our event horizon.
These are the most distant objects from which we will ever
be able to receive information about the present day. The
particle horizon marks the size of our observable universe.
It is the distance to the most distant object we can see at
any particular time. The particle horizon can be larger than
the event horizon because, although we cannot see events
that occur beyond our event horizon, we can still see many
galaxies that are beyond our current event horizon by light
they emitted long ago.

In the GR description of the expansion of the universe
redshifts do not relate to velocities according to any SR
expectations. We do not observe objects on the Hubble
sphere (that recede at the speed of light) to have an infi-
nite redshift (solve Equation (24) for z using χ = c/Ṙ).
Instead photons we receive that have infinite redshift were
emitted by objects on our particle horizon. In addition,
all galaxies become increasingly redshifted as we watch
them approach the cosmological event horizon (z → ∞ as
t → ∞). As the end of the universe approaches, all objects
that are not gravitationally bound to us will be redshifted
out of detectability.

Since this paper deals frequently with recession veloc-
ities and the expansion of the universe the observational
status of these concepts is important and is discussed in
Sections 4 and 5.

3 Misconceptions

3.1 Misconception #1: Recession Velocities Cannot
Exceed the Speed of Light

A common misconception is that the expansion of
the universe cannot be faster than the speed of light.
Since Hubble’s law predicts superluminal recession at

large distances (D > c/H) it is sometimes stated that
Hubble’s law needs SR corrections when the recession
velocity approaches the speed of light (Appendix B:
6–7). However, it is well accepted that general relativity,
not special relativity, is necessary to describe cosmologi-
cal observations. Supernovae surveys calculating cosmo-
logical parameters, galaxy-redshift surveys and cosmic
microwave background anisotropy tests all use general
relativity to explain their observations. When observ-
ables are calculated using special relativity, contradictions
with observations quickly arise (Section 4). Moreover, we
know there is no contradiction with special relativity when
faster than light motion occurs outside the observer’s iner-
tial frame. General relativity was specifically derived to be
able to predict motion when global inertial frames were
not available. Galaxies that are receding from us super-
luminally can be at rest locally (their peculiar velocity,
vpec = 0) and motion in their local inertial frames remains
well described by special relativity. They are in no sense
catching up with photons (vpec = c). Rather, the galaxies
and the photons are both receding from us at recession
velocities greater than the speed of light.

In special relativity, redshifts arise directly from veloc-
ities. It was this idea that led Hubble in 1929 to convert
the redshifts of the ‘nebulae’ he observed into velocities,
and predict the expansion of the universe with the linear
velocity–distance law that now bears his name. The gen-
eral relativistic interpretation of the expansion interprets
cosmological redshifts as an indication of velocity since
the proper distance between comoving objects increases.
However, the velocity is due to the rate of expansion of
space, not movement through space, and therefore cannot
be calculated with the SR Doppler shift formula. Hubble
and Humason’s calculation of velocity therefore should
not be given SR corrections at high redshift, contrary to
their suggestion (Appendix B: 16).

The GR and SR relations between velocity and redshift
are (e.g. Davis & Lineweaver 2001):

GR vrec(t, z) = c

R0
Ṙ(t)

∫ z

0

dz′

H(z′)
, (1)

SR vpec(z) = c
(1 + z)2 − 1

(1 + z)2 + 1
. (2)

These velocities are measured with respect to the comov-
ing observer who observes the receding object to have
redshift, z. The GR description is written explicitly as a
function of time because when we observe an object with
redshift, z, we must specify the epoch at which we wish
to calculate its recession velocity. For example, setting
t = t0 yields the recession velocity today of the object that
emitted the observed photons at tem. Setting t = tem yields
the recession velocity at the time the photons were emit-
ted (see Equations (17) and (24)). The changing recession
velocity of a comoving object is reflected in the changing
slope of its worldline in the top panel of Figure 1. There
is no such time dependence in the SR relation.
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Figure 2 Velocity as a function of redshift under various assump-
tions. The linear approximation, v = cz, is the low redshift approx-
imation of both the GR and SR results. The SR result is calculated
using Equation (2) while the GR result uses Equation (1) and quotes
the recession velocity at the present day, i.e., uses Ṙ(t) = Ṙ0. The
solid dark lines and grey shading show a range of FRW models as
labelled in the legend. These include the observationally favoured
cosmological model (�M, ��) = (0.3, 0.7). The recession velocity
of all galaxies with z � 1.5 exceeds the speed of light in all viable
cosmological models. Observations now routinely probe regions that
are receding faster than the speed of light.

Despite the fact that special relativity incorrectly
describes cosmological redshifts it has been used for
decades to convert cosmological redshifts into velocity
because the SR Doppler shift formula (Equation (2))
shares the same low redshift approximation, v = cz, as
Hubble’s law (Figure 2). It has only been in the last decade
that routine observations have been deep enough that the
distinction makes a difference. Figure 2 shows a snap-
shot at t0 of the GR velocity–redshift relation for various
models as well as the SR velocity–redshift relation and
their common low redshift approximation, v = cz. Reces-
sion velocities exceed the speed of light in all viable
cosmological models for objects with redshifts greater
than z ∼ 1.5. At higher redshifts SR ‘corrections’ can
be more incorrect than the simple linear approximation
(Figure 5).

Some of the most common misleading applications of
relativity arise from the misconception that nothing can
recede faster than the speed of light. These include texts
asking students to calculate the velocity of a high red-
shift receding galaxy using the SR Doppler shift equation
(Appendix B: 17–21), as well as the comments that galax-
ies recede from us at speeds ‘approaching the speed of
light’ (Appendix B: 4–5, 8), or quasars are receding at
a certain percentage of the speed of light1 (Appendix B:
3, 18–21).

1Redshifts are usually converted into velocities using v = cz, which is
a good approximation for z � 0.3 (see Figure 2) but inappropriate for
today’s high redshift measurements. When a ‘correction’ is made for
high redshifts, the formula used is almost invariably the inappropriate
SR Doppler shift equation (Equation (2)).

Although velocities of distant galaxies are in principle
observable, the set of synchronised comoving observers
required to measure proper distance (Weinberg 1972,
p. 415; Rindler 1977, p. 218) is not practical. Instead,
more direct observables such as the redshifts of standard
candles can be used to observationally rule out the SR
interpretation of cosmological redshifts (Section 4).

3.2 Misconception #2: Inflation Causes Superluminal
Expansion of the Universe but the Normal
Expansion of the Universe Does Not

Inflation is sometimes described as ‘superluminal expan-
sion’(Appendix B: 22–23). This is misleading because any
expansion described by Hubble’s law has superluminal
expansion for sufficiently distant objects. Even during
inflation, objects within the Hubble sphere (D < c/H)
recede at less than the speed of light, while objects beyond
the Hubble sphere (D > c/H) recede faster than the speed
of light. This is identical to the situation during non-
inflationary expansion, except the Hubble constant during
inflation was much larger than subsequent values. Thus
the distance to the Hubble sphere was much smaller. Dur-
ing inflation the proper distance to the Hubble sphere stays
constant and is coincident with the event horizon — this is
also identical to the asymptotic behaviour of an eternally
expanding universe with a cosmological constant �� > 0
(Figure 1, top panel).

The oft-mentioned concept of structures ‘leaving the
horizon’ during the inflationary period refers to structures
once smaller than the Hubble sphere becoming larger than
the Hubble sphere. If the exponentially expanding regime,
R = R0e

Ht , were extended to the end of time, the Hub-
ble sphere would be the event horizon. However, in the
context of inflation the Hubble sphere is not a true event
horizon because structures that have crossed the horizon
can ‘reenter the horizon’ after inflation stops. The horizon
they ‘reenter’ is the revised event horizon determined by
how far light can travel in a Friedmann–Robertson–Walker
(FRW) universe without inflation.

It would be more appropriate to describe inflation
as superluminal expansion if all distances down to the
Planck length, lpl ∼ 10−35 m, were receding faster than
the speed of light. Solving DH = c/H = lpl gives H =
1043 s−1 (inverse Planck time) which is equivalent to
H = 1062km s−1 Mpc−1. If Hubble’s constant during
inflation exceeded this value it would justify describing
inflation as ‘superluminal expansion’.

3.3 Misconception #3: Galaxies with Recession
Velocities Exceeding the Speed of Light Exist
but We Cannot See Them

Amongst those who acknowledge that recession veloci-
ties can exceed the speed of light, the claim is sometimes
made that objects with recession velocities faster than the
speed of light are not observable (Appendix B: 9–13). We
have seen that the speed of photons propagating towards
us (the slope of our past light cone in the upper panel of
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Figure 1) is not constant, but is rather vrec − c. Therefore
light that is beyond the Hubble sphere has a total veloc-
ity away from us. How is it then that we can ever see
this light? Although the photons are in the superluminal
region and therefore recede from us (in proper distance),
the Hubble sphere also recedes. In decelerating universes
H decreases as ȧ decreases (causing the Hubble sphere to
recede). In accelerating universes H also tends to decrease
since ȧ increases more slowly thana.As long as the Hubble
sphere recedes faster than the photons immediately out-
side it, ḊH > vrec − c, the photons end up in a subluminal
region and approach us.2 Thus photons near the Hubble
sphere that are receding slowly are overtaken by the more
rapidly receding Hubble sphere.

Our teardrop shaped past light cone in the top panel
of Figure 1 shows that any photons we now observe that
were emitted in the first approximately five billion years
were emitted in regions that were receding superluminally,
vrec > c. Thus their total velocity was away from us. Only
when the Hubble sphere expands past these photons do
they move into the region of subluminal recession and
approach us. The most distant objects that we can see
now were outside the Hubble sphere when their comov-
ing coordinates intersected our past light cone. Thus, they
were receding superluminally when they emitted the pho-
tons we see now. Since their worldlines have always been
beyond the Hubble sphere these objects were, are, and
always have been, receding from us faster than the speed
of light.3

Evaluating Equation (1) for the observationally
favoured (�M, ��) = (0.3, 0.7) universe shows that all
galaxies beyond a redshift of z = 1.46 are receding faster
than the speed of light (Figure 2). Hundreds of galaxies
with z > 1.46 have been observed. The highest spectro-
scopic redshift observed in the Hubble deep field is
z = 6.68 (Chen, Lanzetta & Pascarelle 1999) and the Sloan
digital sky survey has identified four galaxies at z > 6 (Fan
et al. 2003). All of these galaxies have always been reced-
ing superluminally. The particle horizon, not the Hubble
sphere, marks the size of our observable universe because

2The behaviour of the Hubble sphere is model dependent. The Hubble

sphere recedes as long as the deceleration parameter q = −R̈R/Ṙ
2
> −1.

In some closed eternally accelerating universes (specifically �M +
�� > 1 and �� > 0) the deceleration parameter can be less than minus
one in which case we see faster-than-exponential expansion and some
subluminally expanding regions can be beyond the event horizon (light
that was initially in subluminal regions can end up in superluminal
regions and never reach us). Exponential expansion, such as that found
in inflation, has q = −1. Therefore the Hubble sphere is at a constant
proper distance and coincident with the event horizon. This is also the
late time asymptotic behaviour of eternally expanding FRW models with
�� > 0 (see Figure 1, upper panel).
3The myth that superluminally receding galaxies are beyond our view
may have propagated through some historical preconceptions. Firstly,
objects on our event horizon do have infinite redshift, tempting us to
apply our SR knowledge that infinite redshift corresponds to a velocity
of c. Secondly, the once popular steady state theory predicts expo-
nential expansion, for which the Hubble sphere and event horizon are
coincident.

we cannot have received light from, or sent light to, any-
thing beyond the particle horizon.4 Our effective particle
horizon is the cosmic microwave background (CMB),
at redshift z ∼ 1100, because we cannot see beyond the
surface of last scattering. Although the last scattering sur-
face is not at any fixed comoving coordinate, the current
recession velocity of the points from which the CMB
was emitted is 3.2c (Figure 2). At the time of emission
their speed was 58.1c, assuming (�M, ��) = (0.3, 0.7).
Thus we routinely observe objects that are receding faster
than the speed of light and the Hubble sphere is not a
horizon.5

3.4 Ambiguity: The Depiction of Particle Horizons on
Spacetime Diagrams

Here we identify an inconvenient feature of the most
common depiction of the particle horizon on spacetime
diagrams and provide a useful alternative (Figure 3). The
particle horizon at any particular time is a sphere around
us whose radius equals the distance to the most distant
object we can see. The particle horizon has traditionally
been depicted as the worldline or comoving coordinate
of the most distant particle that we have ever been able
to see (Rindler 1956; Ellis & Rothman 1993). The only
information this gives is contained in a single point: the
current distance of the particle horizon, and this indicates
the current radius of the observable universe. The rest of
the worldline can be misleading as it does not represent
a boundary between events we can see and events we can-
not see, nor does it represent the distance to the particle
horizon at different times. An alternative way to represent
the particle horizon is to plot the distance to the particle
horizon as a function of time (Kiang 1991). The particle
horizon at any particular time defines a unique distance
which appears as a single point on a spacetime diagram.
Connecting the points gives the distance to the particle
horizon vs time. It is this time dependent series of particle
horizons that we plot in Figure 1. (Rindler (1956) calls this
the boundary of our creation light cone — a future light
cone starting at the Big Bang.) Drawn this way, one can
read from the spacetime diagram the distance to the parti-
cle horizon at any time. There is no need to draw another
worldline.

Specifically, what we plot as the particle horizon is
χph(t) from Equation (27) rather than the traditional
χph(t0). To calculate the distance to the particle horizon at
an arbitrary time t it is not sufficient to multiply χph(t0) by
R(t) since the comoving distance to the particle horizon
also changes with time.

4The current distance to our particle horizon and its velocity is difficult
to say due to the unknown duration of inflation. The particle horizon
depicted in Figure 1 assumes no inflation.
5Except in the special cases when the expansion is exponential,
R = R0e

Ht , such as the de Sitter universe (�M = 0, �� > 0), dur-
ing inflation or in the asymptotic limit of eternally expanding FRW
universes.
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Figure 3 The traditional depiction of the particle horizon on spacetime diagrams is the worldline of the object currently on
our particle horizon (thick solid line). All the information in this depiction is contained in a single point, the current distance
to the particle horizon. An alternative way to plot the particle horizon is to plot the distance to the particle horizon as a
function of time (thick dashed line and Figure 1). This alleviates the need to draw a new worldline when we need to determine
the particle horizon at another time (for example the worldline of the object on our particle horizon when the scalefactor
a = 0.5).

The particle horizon is sometimes distinguished from
the event horizon by describing the particle horizon as
a ‘barrier in space’ and the event horizon as a ‘barrier
in spacetime’. This is not a useful distinction because
both the particle horizon and event horizon are surfaces
in spacetime — they both form a sphere around us whose
radius varies with time. When viewed in comoving coor-
dinates the particle horizon and event horizon are mirror
images of each other (symmetry about z = 10 in the mid-
dle and lower panels of Figure 1). The traditional depiction
of the particle horizon would appear as a straight vertical
line in comoving coordinates, i.e., the comoving coordi-
nate of the present day particle horizon (Figure 3, lower
panel).

The proper distance to the particle horizon is not
Dph = ct0. Rather, it is the proper distance to the most
distant object we can observe, and is therefore related
to how much the universe has expanded, i.e. how far
away the emitting object has become, since the begin-
ning of time. In general this is ∼3ct0. The relationship
between the particle horizon and light travel time arises
because the comoving coordinate of the most distant
object we can see is determined by the comoving distance
light has travelled during the lifetime of the universe
(Equation (27)).

4 Observational Evidence for the General Relativistic
Interpretation of Cosmological Redshifts

4.1 Duration–Redshift Relation for Type Ia Supernovae

Many misconceptions arise from the idea that recession
velocities are limited by SR to less than the speed of light
so in Section 4.2 we present an analysis of supernovae
observations yielding evidence against the SR interpre-
tation of cosmological redshifts. But first we would like
to present an observational test that can not distinguish
between SR and GR expansion of the universe.

General relativistic cosmology predicts that events
occurring on a receding emitter will appear time dilated
by a factor,

γGR(z) = 1 + z. (3)

A process that takes �t0 as measured by the emitter
appears to take �t = γGR�t0 as measured by the observer
when the light emitted by that process reaches them.
Wilson (1939) suggested measuring this cosmological
time dilation to test whether the expansion of the uni-
verse was the cause of cosmological redshifts. Type Ia
supernovae (SNe Ia) lightcurves provide convenient stan-
dard clocks with which to test cosmological time dilation.
Recent evidence from supernovae includes Leibundgut
et al. (1996) who gave evidence for GR time dilation
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using a single high-z supernova and Riess et al. (1997)
who showed 1 + z time dilation for a single SN Ia at the
96.4% confidence level using the time variation of spec-
tral features. Goldhaber et al. (1997) show five data points
of lightcurve width consistent with 1 + z broadening and
extend this analysis in Goldhaber et al. (2001) to rule out
any theory that predicts zero time dilation (for example
‘tired light’ scenarios (see Wright 2001)), at a confidence
level of 18σ. All of these tests show that γ = (1 + z)

time dilation is preferred over models that predict no time
dilation.

We want to know whether the same observational test
can show that GR time dilation is preferred over SR time
dilation as the explanation for cosmological redshifts.
When we talk about SR expansion of the universe we are
assuming that we have an inertial frame that extends to
infinity (impossible in the GR picture) and that the expan-
sion involves objects moving through this inertial frame.
The time dilation factor in SR is,

γSR(z) = (1 − v2
pec/c

2)−1/2, (4)

= 1

2
(1 + z + 1

1 + z
) ≈ 1 + z2/2. (5)

This time dilation factor relates the proper time in the
moving emitter’s inertial frame (�t0) to the proper time
in the observer’s inertial frame (�t1). To measure this time
dilation the observer has to set up a set of synchronized
clocks (each at rest in the observer’s inertial frame) and
take readings of the emitter’s proper time as the emitter
moves past each synchronized clock. The readings show
that the emitter’s clock is time dilated such that �t1 =
γSR�t0.

We do not have this set of synchronized clocks at our
disposal when we measure time dilation of supernovae and
therefore Equation (5) is not the time dilation we observe.
In an earlier version of this paper we mistakenly attempted
to use this equation to show SR disagreed with observa-
tional results. This could be classed as an example of an
‘expanding confusion’. For the observed time dilation of
supernovae we have to take into account an extra time dila-
tion factor that occurs because the distance to the emitter
(and thus the distance light has to propagate to reach us)
is increasing. In the time �t1 the emitter moves a distance
v�t1 away from us. The total proper time we observe (�t)
is �t1 plus an extra factor describing how long light takes
to traverse this extra distance (v�t1/c),

�t = �t1(1 + v/c). (6)

The relationship between proper time at the emitter and
proper time at the observer is thus,

�t = �t0γ(1 + v/c), (7)

= �t0

√
1 + v/c

1 − v/c
, (8)

= �t0(1 + z). (9)
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Figure 4 Supernovae time dilation factor vs redshift. The solid
line is the time dilation factor predicted by both general relativity and
special relativity. The thick dashed line is the SR time dilation factor
that a set of synchronised clocks spread throughout our inertial frame
would observe, without taking into account the changing distance
light has to travel to reach us. Once the change in the emitter’s
distance is taken into account SR predicts the same time dilation
effect as GR, γ = (1 + z). The thin dotted line represents any theory
that predicts no time dilation (e.g. tired light). The 35 data points
are from Goldhaber et al. (2001). They rule out no time dilation at a
confidence level of 18σ.

This is identical to the GR time dilation equation. There-
fore using time dilation to distinguish between GR and SR
expansion is impossible.

Leibundgut et al. (1996), Riess et al. (1997) and
Goldhaber et al. (1997, 2001) do provide excellent evi-
dence that expansion is a good explanation for cosmo-
logical redshifts. What they can not show is that GR is
a better description of the expansion than SR. Never-
theless, other observational tests provide strong evidence
against the SR interpretation of cosmological redshifts,
and we demonstrate one such test in the next Section.

4.2 Magnitude–Redshift Relationship for SNe Ia

Another observational confirmation of the GR interpre-
tation that is able to rule out the SR interpretation is the
curve in the magnitude–redshift relation. SNe Ia are being
used as standard candles to fit the magnitude–redshift
relation out to redshifts close to one (Riess et al., 1998;
Perlmutter et al., 1999). Recent measurements are accurate
enough to put restrictions on the cosmological parameters
(�M, ��). We perform a simple analysis of the super-
novae magnitude–redshift data to show that it also strongly
excludes the SR interpretation of cosmological redshifts
(Figure 5).

Figure 5 shows the theoretical curves for several
GR models accompanied by the observed SNe Ia data
from Perlmutter et al. (1999, Figure 2(a)). The conver-
sion between luminosity distance, DL (Equation (13)),
and effective magnitude in the B-band given in Perlmutter
et al. (1999), is mB(z) = 5 log H0DL + MB where MB is
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Figure 5 Magnitude–redshift relation for several models with data
taken from Perlmutter et al. (1999, Figure 2(a)). The SR prediction
has been added (as described in the text), as has the prediction assum-
ing a linear v = cz relationship. The interpretation of the cosmolog-
ical redshift as an SR Doppler effect is ruled out at more than 23σ

compared with the �CDM concordance model. The linear v = cz

model is a better approximation than SR, but is still ruled out at 12σ.

the absolute magnitude in the B-band at the maximum of
the light curve. They marginalize over MB in their statis-
tical analyses. We have taken MB = −3.45 which closely
approximates their plotted curves.

We superpose the curve deduced by interpreting
Hubble’s law special relativistically. One of the strongest
arguments against using SR to interpret cosmological red-
shifts is the difficulty in interpreting observational features
such as magnitude. We calculate D(z) special relativisti-
cally by assuming the velocity in v = HD is related to
redshift via Equation (2), so,

D(z) = c

H

(1 + z)2 − 1

(1 + z)2 + 1
. (10)

Since all the redshifting happens at emission in the SR
scenario, v should be calculated at the time of emis-
sion. However, since SR does not provide a technique
for incorporating acceleration into our calculations for the
expansion of the universe, the best we can do is assume
that the recession velocity, and thus Hubble’s constant,
are approximately the same at the time of emission as they
are now.6 We then convert D(z) to DL(z) using Equation
(13), so DL(z) = D(z)(1 + z). This version of luminosity
distance has been used to calculate m(z) for the SR case
in Figure 5.

SR fails this observational test dramatically being 23σ

from the GR �CDM model (�M, ��) = (0.3, 0.7). We
also include the result of assuming v = cz. Equating this to
Hubble’s law gives DL(z) = cz(1 + z)/H . For this obser-
vational test the linear prediction is closer to the GR

6There are several complications that this analysis does not address. (1)
SR could be manipulated to give an evolving Hubble’s constant and
(2) SR could be manipulated to give a non-trivial relationship between
luminosity distance, DL, and proper distance, D. However, it is not clear
how one would justify these ad hoc corrections.

prediction (and to the data) than SR is. Nevertheless the
linear result lies 12σ from the �CDM concordance result.

4.3 Future Tests

Current instrumentation is not accurate enough to per-
form some other observational tests of GR. For example
Sandage (1962) showed that the evolution in redshift of
distant galaxies due to the acceleration or deceleration of
the universe is a direct way to measure the cosmological
parameters. The change in redshift over a time interval t0
is given by

dz

dt0
= H0(1 + z) − Hem, (11)

where Hem = Ṙem/Rem is Hubble’s constant at the time
of emission. Unfortunately the magnitude of the redshift
variation is small over human timescales. Ebert & Trümper
(1975), Lake (1981), Loeb (1998) and references therein
each reconfirmed that the technology of the day did not yet
provide precise enough redshifts to make such an obser-
vation viable. Figure 6 shows that the expected change in
redshift due to cosmological acceleration or deceleration
is only �z ∼ 10−8 over 100 years. Current Keck/HIRES
spectra with iodine cell reference wavelengths can mea-
sure quasar absorption line redshifts to an accuracy of
�z ∼ 10−5 (Outram, Chaffee & Carswell 1999). Thus, this
observational test must wait for future technology.

5 Discussion

Recession velocities of individual galaxies are of lim-
ited use in observational cosmology because they are
not directly observable. For this reason some of the
physics community considers recession velocities mean-
ingless and would like to see the issue swept under the
rug (Appendix B: 24–25). They argue that we should
refrain from interpreting observations in terms of veloc-
ity or distance, and stick to the observable, redshift.
This avoids any complications with superluminal reces-
sion and avoids any confusion between the variety of
observationally-motivated definitions of distance com-
monly used in cosmology (e.g. Equations (13) and (14)).

However, redshift is not the only observable that indi-
cates distance and velocity. The host of low redshift
distance measures and the multitude of available evidence
for the Big Bang model all suggest that higher redshift
galaxies are more distant from us and receding faster
than lower redshift galaxies. Moreover, we cannot cur-
rently sweep distance and velocity under the rug if we
want to explain the cosmological redshift itself. Expansion
has no meaning without well-defined concepts of veloc-
ity and distance. If recession velocity were meaningless
we could not refer to an ‘expanding universe’ and would
have to restrict ourselves to some operational description
such as ‘fainter objects have larger redshifts’. However,
within general relativity the relationship between cosmo-
logical redshift and recession velocity is straightforward.
Observations of SNe Ia apparent magnitudes provide inde-
pendent evidence that the cosmological redshifts are due to
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Figure 6 The change in the redshift of a comoving object as predicted by FRW cosmology for various
cosmological models. The horizontal axis represents the initial redshifts. The timescale taken for the change
is 100 years. The changes predicted are too small for current instrumentation to detect.

the GR expansion of the universe. Understanding distance
and velocity is therefore fundamental to the understanding
of our universe.

When distances are large enough that light has taken a
substantial fraction of the age of the universe to reach us
there are more observationally convenient distance mea-
sures than proper distance, such as luminosity distance
and angular-size distance. The most convenient distance
measure depends on the method of observation. Neverthe-
less, these distance measures can be converted between
each other, and so collectively define a unique concept.7

In this paper we have taken proper distance to be the fun-
damental radial distance measure. Proper distance is the
spatial geodesic measured along a hypersurface of con-
stant cosmic time (as defined in the RW metric). It is
the distance measured along a line of sight by a series
of infinitesimal comoving rulers at a particular time, t.
Both luminosity and angular-size distances are calcu-
lated from observables involving distance perpendicular
to the line of sight and so contain the angular coeffi-
cient Sk(χ). They parametrize radial distances but are
not geodesic distances along the three dimensional spa-
tial manifold.8 They are therefore not relevant for the
calculation of recession velocity.9 Nevertheless, if they

7 Proper distance D = Rχ (12)
Luminosity distance DL = RSk(χ)(1 + z) (13)

Angular-size distance Dθ = RSk(χ)(1 + z)−1 (14)
8Note also that the standard definition of angular-size distance is pur-
ported to be the physical size of an object, divided by the angle it subtends
on the sky. The physical size used in this equation is not actually a length
along a spatial geodesic, but rather along a line of constant χ (Liske
2000). The correction is negligible for the small angles usually measured
in astronomy.
9‘[McVittie] regards as equally valid other definitions of distance such
as luminosity distance and distance by apparent size. But while these are
extremely useful concepts, they are really only definitions of observa-
tional convenience which extrapolate results such as the inverse square
law beyond their range of validity in an expanding universe,’ (Murdoch
1977).

were used, our results would be similar. Only angular-size
distance can avoid superluminal velocities because Dθ = 0
for both z = 0 and z → ∞ (Murdoch 1977). Even then the
rate of change of angular-size distance does not approach
c for z → ∞.

Throughout this paper we have used proper time, t,
as the temporal measure. This is the time that appears in
the RW metric and the Friedmann equations. This is a
convenient time measure because it is the proper time of
comoving observers. Moreover, the homogeneity of the
universe is dependent on this choice of time coordinate —
if any other time coordinate were chosen (that is not a
trivial multiple of t) the density of the universe would be
distance dependent. Time can be defined differently, for
example to make the SR Doppler shift formula (Equation
(2)) correctly calculate recession velocities from observed
redshifts (Page 1993). However, to do this we would have
to sacrifice the homogeneity of the universe and the syn-
chronous proper time of comoving objects (T. M. Davis &
C. H. Lineweaver 2004, in preparation).

6 Conclusion

We have clarified some common misconceptions sur-
rounding the expansion of the universe, and shown with
numerous references how misleading statements mani-
fest themselves in the literature. Superluminal recession
is a feature of all expanding cosmological models that are
homogeneous and isotropic and therefore obey Hubble’s
law. This does not contradict special relativity because
the superluminal motion does not occur in any observer’s
inertial frame. All observers measure light locally to be
travelling at c and nothing ever overtakes a photon. Infla-
tion is often called ‘superluminal recession’ but even
during inflation objects with D < c/H recede sublumi-
nally while objects with D > c/H recede superluminally.
Precisely the same relationship holds for non-inflationary
expansion. We showed that the Hubble sphere is not a
horizon — we routinely observe galaxies that have, and



106 T. M. Davis and C. H. Lineweaver

always have had, superluminal recession velocities. All
galaxies at redshifts greater than z ∼ 1.46 today are reced-
ing superluminally in the �CDM concordance model. We
have also provided a more informative way of depict-
ing the particle horizon on a spacetime diagram than the
traditional worldline method. An abundance of observa-
tional evidence supports the GR Big Bang model of the
universe. The duration of supernovae light curves shows
that models predicting no expansion are in conflict with
observation. Using magnitude–redshift data from super-
novae we were able to rule out the SR interpretation of
cosmological redshifts at the ∼23σ level. Together these
observations provide strong evidence that the GR inter-
pretation of the cosmological redshifts is preferred over
SR and tired light interpretations. The GR description of
the expansion of the universe agrees with observations,
and does not need any modifications for vrec > c.

Appendix A: Standard General Relativistic
Definitions of Expansion and Horizons

The metric for an homogeneous, isotropic universe is the
RW metric,

ds2 = −c2dt2 + R(t)2[dχ2 + S2
k (χ)dψ2], (15)

where c is the speed of light, dt is the time separation,
dχ is the comoving coordinate separation and dψ2 =
dθ2 + sin2 θdφ2, where θ and φ are the polar and
azimuthal angles in spherical coordinates. The scale-
factor, R, has dimensions of distance. The function
Sk(χ) = sin χ, χ or sinh χ for closed (k = +1), flat (k = 0)
or open (k = −1) universes respectively (Peacock 1999,
p. 69). The proper distance D, at time t, in an expanding
universe, between an observer at the origin and a distant
galaxy is defined to be along a surface of constant time
(dt = 0). We are interested in the radial distance so dψ = 0.
The RW metric then reduces to ds = Rdχ which, upon
integration yields,

Proper distance D(t) = R(t)χ. (16)

Differentiating this yields the theoretical form of Hubble’s
law (Harrison 1993),

Recession velocity vrec(t, z) = Ṙ(t)χ(z), (17)

= H(t)D(t), (18)

where vrec is defined to be Ḋ when χ̇ = 0 (an overdot rep-
resents differentiation with respect to proper time, t) and
χ(z) is the fixed comoving coordinate associated with a
galaxy observed today at redshift z. Note that the redshift
of an object at this fixed comoving coordinate changes
with time (Equation (11)).10 A distant galaxy will have a
particular recession velocity when it emits the photon at
tem and a different recession velocity when we observe the

10In addition, objects that have a peculiar velocity also move through
comoving coordinates. Therefore more generally Equation (17) above
should be written with χ explicitly time dependent, vrec(t, z) =
Ṙ(t)χ(z, t).

photon at t0. Equation (18) evaluated at t0 gives the
recession velocities plotted in Figure 2.

The recession velocity of a comoving galaxy is a time
dependent quantity because the expansion rate of the
universe Ṙ(t) changes with time. The current recession
velocity of a galaxy is given by vrec = Ṙ0χ(z). On the
spacetime diagram of Figure 1 this is the velocity taken
at points along the line of constant time marked ‘now’.
The recession velocity of an emitter at the time it emitted
the light we observe is the velocity at points along our
the past light cone.11 However, we can also compute the
recession velocity a comoving object has at any time dur-
ing the history of the universe, having initially calculated
its comoving coordinate from its present day redshift.

Allowing χ to vary when differentiating Equation (16)
with respect to time gives two distinct velocity terms
(Landsberg & Evans 1977; Silverman 1986; Peacock
1999; Davis, Lineweaver & Webb 2003),

Ḋ = Ṙχ + Rχ̇, (19)

vtot = vrec + vpec. (20)

This explains the changing slope of our past light cone
in the upper panel of Figure 1. The peculiar velocity of
light is always c (Equation (21)) so the total velocity of
light whose peculiar velocity is towards us isvtot = vrec − c

which is always positive (away from us) when vrec > c.
Nevertheless we can eventually receive photons that ini-
tially were receding from us because the Hubble sphere
expands and overtakes the receding photons so the photons
find themselves in a region with vrec < c (Section 3.3).

Photons travel along null geodesics, ds = 0. To obtain
the comoving distance, χ, between an observer at the ori-
gin and a galaxy observed to have a redshift z(t), set ds = 0
(to measure along the path of a photon) and dψ = 0 (to
measure radial distances) in the RW metric yielding,

c dt = R(t)dχ. (21)

This expression confirms our previous statement that the
peculiar velocity of a photon, Rχ̇, is c. Since the veloc-
ity of light through comoving coordinates is not constant
(χ̇ = c/R), to calculate comoving distance we cannot sim-
ply multiply the speed of light through comoving space by
time. We have to integrate over this changing comoving
speed of light for the duration of propagation. Thus, the
comoving coordinate of a comoving object that emitted
the light we now see at time t is attained by integrating
Equation (21),

Past light cone χlc(tem) = c

∫ t0

tem

dt′

R(t′)
. (22)

We can parametrize time using redshift and thus recast
Equation (22) in terms of observables. The cosmological
redshift of an object is given by the ratio of the scalefactor

11The recession velocity at the time of emission is vrec(tem) =R(tem)χ(z)

where R(tem) = R(t) as defined in Equation (23).
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at the time of observation, R(t0) = R0, to the scalefactor
at the time of emission, R(t),

Redshift 1 + z = R0

R(t)
. (23)

Differentiating Equation (23) with respect to t gives
dt/R(t) = − dz/R0H(z) where redshift is used instead of
time to parametrize Hubble’s constant. H(z) is Hubble’s
constant at the time an object with redshift, z, emitted
the light we now see. Thus, for the limits of the integral
in Equation (22), the time of emission becomes z = 0
while the time of observation becomes the observed red-
shift, z. The comoving coordinate of an object in terms of
observables is therefore,

χ(z) = c

R0

∫ z

0

dz′

H(z′)
. (24)

Thus, there is a direct one to one relationship between
observed redshift and comoving coordinate. Notice that in
contrast to special relativity, the redshift does not indicate
the velocity, it indicates the distance.12 That is, the redshift
tells us not the velocity of the emitter, but where the emitter
sits (at rest locally) in the coordinates of the universe. The
recession velocity is obtained by inserting Equation (24)
into Equation (17) yielding Equation (1).

The Friedmann equation gives the time dependence of
Hubble’s constant,

H(z) = H0(1 + z)

[
1 + �Mz + ��

(
1

(1 + z)2
− 1

)]1/2

.

(25)

Expressing Hubble’s constant this way is useful because it
is in terms of observables. However, it restricts our calcula-
tions to objects with redshift z < ∞, that is, objects we can
currently see. There is no reason to assume the universe
ceases beyond our current particle horizon. Expressing
Hubble’s constant as H(t) = Ṙ(t)/R(t) allows us to extend
the analysis to a time of observation, t → ∞, which is
beyond what we can currently observe. Friedmann’s equa-
tion is then (using the scalefactor normalized to one at the
present day a(t) = R(t)/R0),

Ṙ(t) = R0H0

[
1 + �M

(
1

a
− 1

)
+ ��(a2 − 1)

]1/2

,

(26)

which we use with the identity dt/R(t) = dR/(ṘR) to
evaluate Equations (22), (27), and (28).

Altering the limits on the integral in Equation (22) gives
the horizons we have plotted on the spacetime diagrams.
The time dependent particle horizon we plot in Figure 1
uses Dph = R(t)χph(t) with,

Particle horizon χph(t) = c

∫ t

0

dt′

R(t′)
. (27)

12Distance is proportional to recession velocity at any particular time,
but a particular redshift measured at different times will correspond to
different recession velocities.

The traditional depiction of the particle horizon as a world-
line uses Dph = R(t)χph(t0). The comoving distance to the
event horizon is given by,

Event horizon χeh(t) = c

∫ tend

t

dt′

R(t′)
, (28)

where tend = ∞ in eternally expanding models or the time
of the big crunch in recollapsing models.

A conformal time interval, dτ, is defined as a proper
time interval dt divided by the scalefactor,

Conformal time dτ = dt/R(t). (29)

Appendix B: Examples of Misconceptions or Easily
Misinterpreted Statements in the Literature

In text books and works of popular science it is often stan-
dard practice to simplify arguments for the reader. Some of
the quotes below fall into this category. We include them
here to point out the difficulty encountered by someone
starting in this field and trying to decipher what is really
meant by ‘the expansion of the universe’.

[1] Feynman, R. P. 1995, Feynman Lectures on Gravitation
(1962/63), (Reading, Massachusetts:Addison-Wesley), p. 181.
‘It makes no sense to worry about the possibility of galaxies
receding from us faster than light, whatever that means, since
they would never be observable by hypothesis.’

[2] Rindler, W. 1956, MNRAS, 6, 662–667, Visual Horizons in
World-Models. Rindler acknowledged that faster than c expan-
sion is implicit in the mathematics, but expresses discomfort
with the concept: ‘… certain physical difficulties seem to be
inherent in models possessing a particle-horizon: if the model
postulates point-creation we have material particles initially
separating at speeds exceeding those of photons.’

[3] McVittie, G. C. 1974, QJRAS, 15, 246–263, Distances and
large redshifts, Section 4. ‘These fallacious arguments would
apparently show that many quasars had ‘velocities of reces-
sion’ greater than that of light, which contradicts one of the
basic postulates of relativity theory.’

[4] Weinberg, S. 1977, The First Three Minutes, (New York:
Bantam Books), p. 27. ‘The conclusion generally drawn from
this half century of observation is that the galaxies are reced-
ing from us, with speeds proportional to the distance (at least
for speeds not too close to that of light).’ See also p. 12
and p. 25. Weinberg makes a similar statement in his 1972
text Gravitation and Cosmology (New York: Wiley), p. 417:
‘a relatively close galaxy will move away from or toward
the Milky Way, with a radial velocity [vrec = Ṙ(t0)χ].’ (our
emphasis). Shortly thereafter he adds a caution about SR
and distant sources: ‘it is neither useful nor strictly correct
to interpret the frequency shifts of light from very distant
sources in terms of a special-relativistic Döppler shift alone.
[The reader should be warned though, that astronomers con-
ventionally report even large frequency shifts in terms of a
recessional velocity, a ‘red shift’ of v km/sec meaning that
z = v/(3 × 105).]’

[5] Field, G. 1981,This Special Galaxy, in Section II of Fire of Life,
the Book of the Sun, (Washington, DC: Smithsonian Books).
‘The entire universe is only a fraction of a kilometer across
[after the first millionth of a second], but it expands at huge
speeds — matter quite close to us being propelled at almost
the speed of light.’

[6] Schutz, B. F. 1985, A First Course in General Relativity,
(Cambridge: Cambridge University Press), p. 320. ‘[v = HD]
cannot be exact since, for D > 1.2 × 1026 m = 4000 Mpc, the
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velocity exceeds the velocity of light! These objections are
right on both counts. Our discussion was a local one (applica-
ble for recession velocity �1) and took the point of view of
a particular observer, ourselves. Fortunately, the cosmological
expansion is slow …’

[7] Peebles, P. J. E., Schramm, D. N., Turner, E. L., & Kron, R. G.
1991, Nature, 352, 769, The case for the relativistic hot Big
Bang cosmology. ‘There are relativistic corrections [to Hub-
ble’s law, v = H0D] when v is comparable to the velocity of
light c.’However, Peebles, in his 1993 text Principles of Physi-
cal Cosmology, (Princeton: Princeton University Press), p. 98,
explains: ‘Since Equation [D = Rχ] for the proper distance
[D] between two objects is valid whatever the coordinate sep-
aration, we can apply it to a pair of galaxies with separation
greater than the Hubble length … Here the rate of change of
the proper separation, [Ḋ = HD], is greater than the velocity
of light. This is not a violation of special relativity.’ Moreover,
in the next paragraph Peebles makes it clear that, dependent
upon the cosmological parameters, we can actually observe
objects receding faster than the speed of light.

[8] Peacock, J. A. 1999, Cosmological Physics, (Cambridge:
Cambridge University Press), p. 6. ‘… objects at a vector dis-
tance r appear to recede from us at a velocity v = H0r, where
H0 is known as Hubble’s constant (and is not constant at all as
will become apparent later). This law is only strictly valid at
small distances, of course, but it does tell us that objects with
r � c/H0 recede at a speed approaching that of light. This is
why it seems reasonable to use this as an upper cutoff in the
radial part of the above integral.’ However, Peacock makes it
very clear that cosmological redshifts are not due to the special
relativistic Doppler shift, p. 72, ‘it is common but misleading
to convert a large redshift to a recession velocity using the
special-relativistic formula 1 + z = [(1 + v/c)/(1 − v/c)]1/2.
Any such temptation should be avoided.’

[9] Davies, P. C. W. 1978, The Runaway universe, (London:
J. M. Dent & Sons Ltd), p. 26. ‘… galaxies several billion
light years away seem to be increasing their separation from
us at nearly the speed of light. As we probe still farther into
space the redshift grows without limit, and the galaxies seem
to fade out and become black. When the speed of reces-
sion reaches the speed of light we cannot see them at all,
for no light can reach us from the region beyond which the
expansion is faster than light itself. This limit is called our
horizon in space, and separates the regions of the universe
of which we can know from the regions beyond about which
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