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ABSTRACT
Using recent measurements of the supermassive black hole mass function we find that supermassive black

holes are the largest contributor to the entropy of the observable Universe, contributing at least an order of
magnitude more entropy than previously estimated. The total entropy of the observable Universe is corre-
spondingly higher, and isSobs = 3.1+3.0

−1.7×10104k. We calculate the entropy of the current cosmic event horizon
to beSCEH = 2.6±0.3×10122k, dwarfing the entropy of its interior,SCEH int = 1.2+1.1

−0.7×10103k. We make the first
tentative estimate of the entropy of dark matter within the observable Universe,Sdm = 1088±1k. We highlight
several caveats pertaining to these estimates and make recommendations for future work.
Subject headings: black hole physics — cosmology: miscellaneous — diffusion —elementary particles —

gravitation — neutrinos

1. INTRODUCTION

The entropy budget of the Universe is important because
its increase is associated with all irreversible processes, on
all scales, across all facets of nature: gravitational clus-
tering, accretion disks, supernovae, stellar fusion, terres-
trial weather, chemical, geological and biological processes
(Frautschi 1982; Lineweaver & Egan 2008).

Recently Frampton et al. (2008) and Frampton & Kephart
(2008) reported the entropy budget of the observable Uni-
verse. Their budgets (listed aside others in Table 1) es-
timate the total entropy of the observable Universe to be
Sobs ∼ 10102k−10103k, dominated by the entropy of supermas-
sive black holes at the centers of galaxies. That the increase of
entropy has not yet been capped by some limiting value, such
as the holographic bound (’t Hooft 1993; Susskind 1995) at
Smax ∼ 10123k (Frampton et al. 2008), is the reason dissipative
processes are ongoing and that life can exist.

In this paper we improve the entropy budget by using recent
observational data and quantifying uncertainties. The paper is
organized as follows. In what remains of the Introduction we
describe two different schemes for quantifying the increasing
entropy of the Universe, and we comment on caveats involv-
ing the identification of gravitational entropy. Our main work
is presented in Sections 2 and 3, where we calculate new en-
tropy budgets within each of the two accounting schemes. We
finish in Section 4 with a discussion touching on the time evo-
lution of the budgets we have calculated, and ideas for future
work.

Throughout this paper we assume flatness (Ωk = 0) as
predicted by inflation (Guth 1981; Linde 1982) and sup-
ported by observations (Spergel et al. 2007). Adopted val-
ues for other cosmological parameters areh = 0.705±0.013,
ωb = Ωbh2 = 0.0224± 0.0007, ωm = Ωmh2 = 0.136± 0.003
(Seljak et al. 2006) andTcmb = 2.725±0.002K (Mather et al.
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1999) (quoted uncertainties are 1σ).

1.1. Two Schemes for Quantifying the Increasing Entropy of
the Universe

Modulo statistical fluctuations, the generalized second law
of thermodynamics holds that the entropy of the Universe (in-
cluding Bekenstein-Hawking entropy in the case of any re-
gion hidden behind an event horizon), must not decrease with
time (Bekenstein 1974; Gibbons & Hawking 1977). Within
the FRW framework the generalized second law can be ap-
plied in at least two obvious ways:

1. The total entropy in a sufficiently large comoving vol-
ume of the Universe does not decrease with cosmic
time,

dScomoving volume ≥ 0; (1)

2. The total entropy of matter contained within the cosmic
event horizon (CEH) plus the entropy of the CEH itself,
does not decrease with cosmic time,

dSCEH interior + dSCEH ≥ 0. (2)

In the first of these schemes, the system is bounded by a
closed comoving surface. The system is effectively isolated
because large-scale homogeneity and isotropy imply no net
flows of entropy into or out of the comoving volume. The
time-slicing in this scheme is along surfaces of constant cos-
mic time. Event horizons of black holes are used to quantify
the entropy of black holes, however the cosmic event horizon
(CEH) is neglected since the assumption of large-scale homo-
geneity makes it possible for us to keep track of the entropy
of matter beyond it. A reasonable choice for the comoving
volume in this scheme is the comoving sphere that presently
corresponds to the observable Universe, i.e., the grey area
in Fig. 1. Correspondingly, in Section 2 we calculate the
present entropy budget of the observable Universe and we do
not include the cosmic event horizon.

http://arxiv.org/abs/0909.3983v1
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The second scheme is similar to the first in that we time-
slice along surfaces of constant cosmic time. However,
here the system (yellow shade in Fig. 1) is bounded by
the time-dependent cosmic event horizon instead of a co-
moving boundary. Migration of matter across the CEH
is not negligible, and the cosmic event horizon entropy
(Gibbons & Hawking 1977) must be included in the budget
to account for this (e.g. Davis et al. 2003). The present en-
tropy of the cosmic event horizon and its interior is calculated
in Section 3.

FIG. 1.— These two panels show the particle horizon (see Eq. 42 and Fig.
9) and the cosmic event horizon (see Eq. 46) as a function of time. The differ-
ence between the two panels is the spatial coordinate systemused: thex-axis
in the bottom panel is proper distanceD and in the top panel it is comoving
distanceχ ≡

D
a , wherea is the cosmic scalefactor. The origin is chosen so

that our galaxy is the central vertical dotted line. The other dotted lines rep-
resent distant galaxies, which are approximately comovingand recede as the
Universe expands. The region inside the particle horizon isthe observable
Universe. The comoving volume that corresponds to the observable Universe
today, about 13.7 Gyrs after the Big Bang, is filled grey. In scheme 1 the
entropy within this comoving volume increases (or remains constant) with
time. Alternatively, in scheme 2 the entropy within the event horizon (the
region filled yellow), plus the entropy of the horizon itself, increases (or re-
mains constant) with time.

1.2. Entropy and Gravity

It is widely appreciated that non-gravitating systems of par-
ticles evolve towards homogenous temperature and density
distributions. The corresponding increase in the volume of
momentum-space and position-space occupied by the con-
stituent particles represents an increase in entropy. On the
other hand, strongly gravitating systems become increasingly
lumpy. With “lumpyness” naively akin to “orderliness”, it is
not as easy to see that the total entropy increases. In these
systems the entropy is shared among numerous components,
all of which must be considered.

For example, approximately collisionless long-range grav-
itational interactions between stars result in dynamical relax-
ation of galaxies (Lynden-Bell 1967) (whereby bulk motions

are dissipated and entropy is transferred to stars in the outer
regions of the galaxy) and stellar evaporation from galaxies
(whereby stars are ejected altogether, carrying with them en-
ergy, angular momentum and entropy, and allowing what re-
mains behind to contract; e.g. Binney & Tremaine 2008). In
more highly dissipative systems, i.e., accretion disks, non-
gravitational interactions (viscosity and/or magnetorotational
instability; Balbus & Hawley 2002) transfer angular momen-
tum and dissipate energy and entropy.

In addition to these considerations, entropy also increases
when gravitons are produced. A good example is the in-spiral
of close binaries, such as the Hulse-Taylor binary pulsar sys-
tem (Hulse & Taylor 1975; Weisberg & Taylor 2005). Gravi-
tational waves emitted from the system extract orbital energy
(and therefore entropy) allowing the system to contract.

The entropy of a general gravitational field is still not
known. Penrose (1987, 1979, 2004) has proposed that it is
related to the Weyl curvature tensorWµνκλ. In conformally
flat spacetimes (such as an ideal FRW Universe) the Weyl
curvature vanishes and gravitational entropy is postulated to
vanish (to limits imposed by quantum uncertainty). In clumpy
spacetimes the Weyl curvature takes large values and the grav-
itational entropy is high. While Ricci curvatureRµν vanishes
in the absence of matter, Weyl curvature may still be non-zero
(e.g. gravitational waves traveling though empty space) and
the corresponding gravitational entropy may be non-zero.

If these ideas are correct then the low gravitational entropy
of the early Universe comes from small primordial gravi-
tational perturbations. Gravitational entropy then increases
with the growing amplitude of linear density fluctuations pa-
rameterized through the matter power spectrumP(k). The
present gravitational entropy, however, is expected to be dom-
inated by the nonlinear overdensities (with large Weyl ten-
sors) which have formed since matter-radiation equality.

In extreme cases, gravitational clumping leads to the forma-
tion of black holes. The entropy of black holes is well known
(Bekenstein 1973; Hawking 1976; Strominger & Vafa 1996).
The entropy of a Schwarzschild black hole is given by

SBH =
kc3

Gh̄
A
4

=
4πkG

ch̄
M2 (3)

whereA = 16πG2M2

c4 is the event-horizon area andM is the black
hole mass.

Because gravitational entropy is difficult to quantify, we
only include it in the two extremes: the thermal distribution
of gravitons and black holes.

2. THE PRESENT ENTROPY OF THE OBSERVABLE UNIVERSE

The present entropy budget of the observable Universe
was estimated most recently by Frampton et al. (2008) and
Frampton & Kephart (2008). Those papers and earlier
work (Kolb & Turner 1981; Frautschi 1982; Penrose 2004;
Bousso et al. 2007) identified the largest contributors to the
entropy of the observable Universe as black holes, followed
distantly by the cosmic microwave background (CMB) and
the neutrino background. The last column of Table 1 contains
previous estimates of the entropy in BHs, the CMB and neu-
trinos, as well as several less significant components.

Sections 2.1 through 2.7 below describe the data and as-
sumptions used to calculate our entropy densities (given in
column 2 of Table 1). Our entropy budget for the observable
Universe (column 3 of Table 1) is then found by multiplying
the entropy density by the volume of the observable Universe
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Vobs,

Si = siVobs (4)

wheresi is the entropy density of componenti. The volume
of the observable Universe is (see appendix)

Vobs = 43.2±1.2×104 Glyr3

= 3.65±0.10×1080 m3. (5)

2.1. Baryons

For a non-relativistic, non-degenerate gas the specific en-
tropy (entropy per baryon) is given by the Sakur-Tetrode
equation (e.g. Basu & Lynden-Bell 1990)

(s/nb) =
k
nb

∑

i

ni ln
[

Zi(T )(2πmikT )
3
2 e

5
2 n−1

i h−3
]

, (6)

wherei indexes particle types in the gas,ni is theith particle
type’s number density, andZi(T ) is its internal partition func-
tion. Basu & Lynden-Bell (1990) found specific entropies be-
tween 11k and 21k per baryon for main sequence stars of
approximately solar mass. For components of the interstellar
medium (ISM) and intergalactic medium (IGM) they found
specific entropies between 20k (H2 in the ISM) and 143k
(ionized hydrogen in the IGM) per baryon.

The cosmic entropy density in starss∗ can be estimated by
multiplying the specific entropy of stellar material by the cos-
mic number density of baryons in starsnb∗:

s∗ = (s/nb)∗nb∗ = (s/nb)∗
ρ∗
mp

= (s/nb)∗

[

3H2

8πG
Ω∗

mp

]

. (7)

Using the stellar cosmic density parameterΩ∗ = 0.0027±
0.0005 (Fukugita & Peebles 2004), and the range of spe-
cific entropies for main sequence stars around the solar mass
(which dominate stellar mass), we find

s∗ = 0.26±0.12k m−3, (8)

S∗ = 9.5±4.5×1080 k. (9)

Similarly, the combined energy density for the ISM and IGM
is Ωgas = 0.040± 0.003 (Fukugita & Peebles 2004), and by
using the range of specific entropies for ISM & IGM compo-
nents we find

sgas = 20±15k m−3, (10)

Sgas = 7.1±5.6×1081 k. (11)

The uncertainties in (9) and (11) are dominated by uncertain-
ties in the mass weighting of the specific entropies, but also
include uncertainties inΩ∗, Ωgas and the volume of the ob-
servable Universe.

2.2. Photons

The cosmic microwave background (CMB) photons are the
most significant non-black hole contributors to the entropyof
the observable Universe. The distribution of CMB photons
is thermal (Mather et al. 1994) with a present temperature of
Tγ = 2.725±0.002K (Mather et al. 1999).

The entropy of the CMB is calculated using the equation
for a black body (e.g. Kolb & Turner (1990)),

sγ =
2π2

45
k4

c3h̄3 gγT 3
γ (12)

= 1.478±0.003×109 k m−3,

Sγ = 2.03±0.15×1089 k. (13)

wheregγ = 2 is the number of photon spin states. The uncer-
tainty in (13) is dominated by uncertainty in the size of the
observable Universe.

The non-CMB photon contribution to the entropy budget
(including starlight and heat emitted by the ISM) is somewhat
less, at around 1086k (Frautschi 1982; Bousso et al. 2007;
Frampton et al. 2008).

2.3. Relic Neutrinos

The neutrino entropy cannot be calculated directly since the
temperature of cosmic neutrinos has not been measured. Stan-
dard treaties of the radiation era (e.g. Kolb & Turner 1990;
Peacock 1999) describe how the present temperature (and en-
tropy) of massless relic neutrinos can be calculated from the
well known CMB photon temperature. Since this background
physics is required for Sections 2.4 and 2.5, we summarize it
briefly here.

A simplifying feature of the radiation era (at least at known
energies∼< 1012eV ) is that the radiation fluid evolves adiabati-
cally: the entropy density decreases as the cube of the increas-
ing scalefactorsrad ∝ a−3. The evolution is adiabatic because
reaction rates in the fluid are faster than the expansion rateH
of the Universe. It is convenient to write the entropy density
as

srad =
2π2

45
k4

c3h̄3 g∗ST 3
γ ∝ a−3 (14)

whereg∗S is the number of relativistic degrees of freedom in
the fluid (withm < kT/c2) given approximately by

g∗S(T )≈
∑

bosons, i

gi

(

Ti

Tγ

)3

+
∑

f ermions, j

7
8

g j

(

Tj

Tγ

)3

. (15)

For photons alone,g∗S = gγ = 2, and thus Eq. (14) becomes
Eq. (12). For photons coupled to an electron-positron com-
ponent, such as existed before electron-positron annihilation,
g∗S = gγ + 7

8ge± = 2+ 7
84 = 11

2 .
As the Universe expands, massive particles annihilate, heat-

ing the remaining fluid. The effect on the photon temperature
is quantified by inverting Eq. (14),

Tγ ∝a−1g−1/3
∗S . (16)

The photon temperature decreases less quickly thana−1 be-
causeg∗S decreases with time. Before electron-positrone±

annihilation the temperature of the photons was the same as
that of the almost completely decoupled neutrinos. Aftere±

annihilation heats only the photons, the two temperatures dif-
fer by a factorC,

Tν = C Tγ . (17)

A reasonable approximationC ≈ (4/11)1/3 is derived by as-
suming that only photons were heated duringe± annihilation,
where 4/11 is the ratio ofg∗S for photons tog∗S for photons,
electrons and positrons.

Corrections are necessary at the 10−3 level because neu-
trinos had not completely decoupled ate± annihilation
(Gnedin & Gnedin 1998). The neutrino entropy density
is computed assuming a thermal distribution withTν =
(4/11)1/3Tγ , and we assign a 1% uncertainty.
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TABLE 1
CURRENT ENTROPY OF THEOBSERVABLE UNIVERSE(SCHEME 1 ENTROPYBUDGET)

Component Entropy Densitys [k m−3] EntropyS [k] EntropyS [k] (previous work)

SMBHs 8.4+8.2
−4.7 ×1023 3.1+3.0

−1.7×10104 10101[1], 10102[2], 10103[3]

∗ Stellar BHs (42− 140M⊙) 8.5×1018+0.8
−1.6 3.1×1099+0.8

−1.6 −
Stellar BHs (2.5− 15 M⊙) 1.6×1017+0.6

−1.2 5.9×1097+0.6
−1.2 1097[2], 1098[4]

Photons 1.478±0.003×109 5.40±0.15×1089 1088[1,2,4], 1089[5]
Relic Neutrinos 1.411±0.014×109 5.16±0.15×1089 1088[2],1089[5]
Dark Matter 5×107±1 2×1088±1 −
Relic Gravitons 1.7×107+0.2

−2.5 6.2×1087+0.2
−2.5 1086[2,3]

ISM & IGM 20 ±15 7.1±5.6×1081 −
Stars 0.26±0.12 9.5±4.5×1080 1079[2]
Total 8.4+8.2

−4.7 ×1023 3.1+3.0
−1.7 ×10104 10101[1], 10102[2], 10103[3]

NOTE. — Our budget is consistent with previous estimates from theliterature with the exception that super-
massive black holes, which dominate the budget, contain at least an order of magnitude more entropy as previously
estimated, due to the contributions of black holes 100 timeslarger than those considered in previous budgets. Un-
certainty in the volume of the observable Universe (see appendix) has been included in the quoted uncertainties.
Stellar black holes in the mass range 42− 140M⊙ (marked with an∗) are included tentatively since their existence
is speculative. Previous work: [1] Penrose (2004), [2] Frampton et al. (2008), [3] Frampton & Kephart (2008), [4]
Frautschi (1982), [5] Kolb & Turner (1981).

sν =
2π2

45
k4

c3h̄3 gν

(

7
8

)

T 3
ν

= 1.411±0.014×109 k m−3 (18)

Heregν = 6 (3 flavors, 2 spin states each). The total neutrino
entropy in the observable Universe is then

Sν = 5.16±0.14×1089 k (19)

with an uncertainty dominated by uncertainty in the volume
of the observable Universe.

Neutrino oscillation experiments have demonstrated that
neutrinos are massive by measuring differences between
the three neutrino mass eigenstates (Cleveland et al. 1998;
Adamson et al. 2008; Abe et al. 2008). At least two of the
mass eigenstates are heavier than∼ 0.009 eV . Since this
is heavier than their current relativistic energy (k

2 C Tγ =
0.0001 eV ; computed under the assumption that they are
massless) at least two of the three masses are presently non-
relativistic.

Expansion causes non-relativistic species to cool asa−2 in-
stead ofa−1, which would result in a lower temperature for the
neutrino background than suggested by Eq. (17). The entropy
density (calculated in Eq. 18) and entropy (calculated in Eq.
19) are unaffected by the transition to non-relativistic cooling
since the cosmic expansion of relativistic and non-relativistic
gases are both adiabatic processes (the comoving entropy is
conserved, so in either cases ∝ a−3).

We neglect a possible increase in neutrino entropy due to
their infall into gravitational potentials during structure for-
mation. If large, this will need to be considered in future
work.

2.4. Relic Gravitons

A thermal background of gravitons is expected to exist,
which decoupled from the photon bath around the Planck
time, and has been cooling asTgrav ∝ a−1 since then. The
photons cooled less quickly because they were heated by the
annihilation of heavy particle species (Eq. 16). Thus we can
relate the current graviton temperature to the current photon

temperature

Tgrav =

(

g∗S(t0)
g∗S(tplanck)

)1/3

Tγ , (20)

whereg∗S(tplanck) is the number of relativistic degrees of free-
dom at the Planck time andg∗S(t0) = 3.91 today (this is ap-
propriate even in the case of massive neutrinos because they
decoupled from the photon bath while they were still relativis-
tic). Given the temperature of background gravitons, theiren-
tropy can be calculated as

sgrav =
2π2

45
k4

c3h̄3 ggravT 3
grav (21)

whereggrav = 2.
Fig. 2 showsg∗S as a function of temperature. The func-

tion is well known for temperatures below about 1012eV ,
but is not known at higher temperatures. Previous esti-
mates of the background graviton entropy have assumed
g∗S(tplanck) ∼ g∗S(1012eV ) = 106.75 (Frampton et al. 2008;
Frampton & Kephart 2008), but this should be taken as a
lower bound ong∗S(tplanck) yielding an upper bound onTgrav
andsgrav.

To get a better idea of the range of possible graviton temper-
atures and entropies, we have adopted 3 values forg∗S(tplanck).
As a minimum likely value we useg∗S = 200 (Fig. 2, thick
blue line), which includes the minimal set of additional par-
ticles suggested by supersymmetry. As our middle value we
useg∗S = 350, corresponding to the linear extrapolation ofg∗S
in log(T ) to the Planck scale (Fig. 2, grey line). And as a
maximum likely value we useg∗S = 105, corresponding to an
exponential extrapolation (Fig. 2, thin blue line).

The corresponding graviton temperatures today are (Eq.
20).

Tgrav = 0.61+0.12
−0.52 K (22)

Inserting this into Eq. (21) we find the entropy in the relic
graviton background to be

sgrav = 1.7×107+0.2
−2.5 k m−3, (23)

Sgrav = 6.2×1087+0.2
−2.5 k. (24)
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FIG. 2.— The number of relativistic degrees of freedomg∗S as a function
of temperature, computed using the prescription given by Coleman & Roos
(2003). All the particles of the standard model are relativistic atT

∼
> 1012 eV

andg∗S(1012 eV ) = 106.75. The value ofg∗S is not known aboveT ∼ 1012.
To estimate plausible ranges of values we extrapolateg∗S linearly (grey line)
and exponentially (thin blue line) in log(T ). The minimum contribution to
g∗S from supersymmetric partners is shown (blue bar) and taken to indicate
a minimum likely value ofg∗S at higher temperatures (thick blue line).

It is interesting to note the possibility of applying Eq. (20)
in reverse, i.e., calculating the number of relativistic degrees
of freedom at the Planck time using future measurements of
the graviton background temperature.

2.5. Dark Matter

The most compelling interpretation of dark matter is as a
weakly-interacting superpartner. According to this idea,dark
matter particles decoupled from the radiation background at
some energy above the particle mass.

If this interpretation is correct, the fraction of relativistic
background entropy in dark matter at the time dark matter
decoupledtdm dec is determined by the fraction of relativistic
degrees of freedom that were associated with dark matter at
that time (see Eq. 14).

sdm =
g∗S dm(tdm dec)

g∗S non−dm(tdm dec)
snon−dm rad (25)

This can be evaluated at dark matter decoupling, or any time
thereafter, since bothsdm andsnon−dm rad are adiabatic (∝ a−3).

We are unaware of any constraint on the number of su-
perpartners that may collectively constitute dark matter.The
requirements that they are only weakly interacting, and that
they decouple at a temperature above their mass, are proba-
bly only satisfied by a few (even one) species. Based on these
arguments we assumeg∗S dm(tdm dec) ∼< 20 andg∗S(tdm dec) ∼>

106.75 which yields the upper limit

g∗S dm(tdm dec)
g∗S(tdm dec) ∼

<
1
5
. (26)

On the other hand there may be many more degrees of free-
dom than suggested by minimal supersymmetry. By extrap-
olating g∗S exponentially beyond supersymmetric scales (to
1015 eV ) we findg∗S(tdm dec) ∼< 800. In the simplest case dark
matter is a single scalar particle sog∗S dm(tdm dec) ∼> 1 and we
take as a lower limit

g∗S dm(tdm dec)
g∗S non−dm(tdm dec) ∼

>
1

800
. (27)

Inserting this into Eq. (25) at the present day gives

sdm = 5×107±1 k m−3, (28)

where we have used the estimated limits given in Eq. (26)
and Eq. (27) and takensnon−dm rad to be the combined entropy
of neutrinos and radiation today (Eqs. 12 and 18). The cor-
responding estimate for the total dark matter entropy in the
observable Universe is

Sdm = 2×1088±1 k. (29)

As with our calculated neutrino entropy, our estimates here
carry the caveat that we have not considered changes in the
dark matter entropy associated with gravitational structure
formation.

2.6. Stellar Black Holes

In the top panel of Fig. 3 we show the stellar initial mass
function (IMF) parameterized by

dninitial

d log(M)
∝

(

M
M⊙

)α+1

, (30)

with α = −1.35 at M < 0.5M⊙ and α = −2.35+0.65
−0.35 at M ≥

0.5M⊙ (Elmegreen 2007). We also show the present distri-
bution of main sequence stars, which is proportional to the
initial distribution for M

∼
< 1M⊙, but which is reduced by a

factor of (M/M⊙)−2.5 for heavier stars (Fukugita & Peebles
2004).

dnpresent

d log(M)
=







dninitial
d log(M) for M < 1M⊙

dninitial
d log(M)

(

M
M⊙

)−2.5
for M ≥ 1M⊙

(31)

The initial and present distributions are normalized using
the present cosmic density of stars,Ω∗ = 0.0027± 0.0005
(Fukugita & Peebles 2004).

The yellow fill in the top panel represents stars of mass
1M⊙ ∼

< M ∼
< 8M⊙, which died leaving white dwarf remnants

of massM ∼
< 1.4M⊙ (yellow fill, bottom panel). The

blue fill represents stars of mass 8M⊙ ∼
< M

∼
< 25M⊙, which

died and left neutron star remnants of mass 1.4M⊙ ∼
< M

∼
<

2.5M⊙. The light grey area represents stars of mass 25M⊙ ∼
<

M ∼
< 42M⊙ which became black holes of mass 2.5M⊙ ∼

< M ∼
<

15M⊙ via supernovae (here we use the simplistic final-initial
mass function of Fryer & Kalogera (2001)). Stars larger than
∼ 42M⊙ collapse directly to black holes, without supernovae,
and therefore retain most of their mass (dark grey regions)
(Fryer & Kalogera 2001; Heger et al. 2005).
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FIG. 3.— Progenitors in the IMF (top panel) evolve into the distribution of
remnants in the bottom panel. The shape of the present main sequence mass
function differs from that of the initial mass function (toppanel) by the stars
that have died leaving white dwarfs (yellow) neutron stars (blue) and black
holes (light and dark grey). The present distribution of remnants is shown
in the bottom panel. Black holes in the range 2.5M⊙

∼
< M

∼
< 15M⊙ (light

grey) have been observationally confirmed. They form from progenitors in
the range 25M⊙

∼
< M ∼ 42M⊙ via core collapse supernova and fallback and

we calculate their entropy to be 5.9× 1097+0.6
−1.2k. Progenitors above about

42 M⊙ may evolve directly to black holes without significant loss of mass
(dark grey) and may carry much more entropy, but this population has not
been observed. The green curve, whose axis is on the right, shows the mass-
distribution of stellar black hole entropies in the observable Universe.

Integrating Eq. (3) over stellar black holes in the rangeM ≤

15M⊙ (the light grey fill in the bottom panel of Fig. 3) we find

sSBH (M<15M⊙) = 1.6×1017+0.6
−1.2 k m−3, (32)

SSBH (M<15M⊙) = 5.9×1097+0.6
−1.2 k, (33)

which is comparable to previous estimates of the stellar black
hole entropy (see Table 1). Our uncertainty is dominated by
uncertainty in the slope of the IMF, but also includes uncer-
tainty in the normalization of the mass functions and uncer-
tainty in the volume of the observable Universe.

If the initial mass function extends beyondM ∼
> 42M⊙ as in

Fig. 3, then these higher-mass black holes (the dark grey fill
in the bottom panel of Fig. 3) may contain more entropy than
black holes of massM < 15M⊙ (Eq. 32). For example, if the
Salpeter IMF is reliable toM = 140M⊙ (the Eddington limit
and the edge of Fig. 3), then black holes in the mass range 42 -
140M⊙ would contribute about 3.1×1099+0.8

1.6 k to the entropy
of the observable Universe. Significantly less is known about
this potential population, and should be considered a tentative
contribution in Table 1.

2.7. Supermassive Black Holes

Previous estimates of the SMBH entropy (Penrose 2004;
Frampton et al. 2008; Frampton & Kephart 2008) have as-
sumed a typical SMBH mass and a number density and yield
SSMBH = 10101− 10103k. Below we use the SMBH mass func-

tion as measured recently by Graham et al. (2007). Assuming
a three-parameter Schechter function

dn
d log(M)

= φ∗

(

M
M∗

)α+1

exp

[

1−
(

M
M∗

)]

(34)

(number density per logarithmic mass interval) they findφ∗ =
0.0016± 0.0004Mpc−3, M∗ = 2.9± 0.7× 108 M⊙ andα =
−0.30±0.04. The data and best fit model are shown in black
in Fig. 4.

FIG. 4.— The black curve, whose axis is on the left, is the SMBH mass
function from Graham et al. (2007), i.e., the number of SMBHsper Mpc3

per logarithmic mass interval. The green curve, whose axis is on the right,
shows the mass-distribution of SMBH entropies in the observable Universe.

We calculate the SMBH entropy density by integrating Eq.
(3) over the SMBH mass function,

s =
4πkG

ch̄

∫

M2

(

dn
d log(M)

)

d log(M). (35)

The integrand is plotted using a green line in Fig. 4 showing
that the contributions to SMBH entropy are primarily due to
black holes around∼ 109M⊙. The SMBH entropy is found to
be

sSMBH = 8.4+8.2
−4.7×1023 k m−3, (36)

SSMBH = 3.1+3.0
−1.7×10104 k. (37)

The uncertainty here includes uncertainties in the SMBH
mass function and uncertainties in the volume of the observ-
able Universe. This is at least an order of magnitude larger
than previous estimates (see Table 1). The reason for the dif-
ference is that the (Graham et al. 2007) SMBH mass func-
tion contains larger black holes than assumed in previous es-
timates.

Frampton (2009) has suggested that intermediate mass
black holes (M = 102 - 106 M⊙) in galactic halos may con-
tain more entropy than SMBHs in galactic cores. Whether or
not this is so depends on the number density and mass distri-
bution of this population. Figure 5 combines Figs. 3 and 4 and
shows what intermediate black hole number densities would
be required.

3. THE ENTROPY OF THE COSMIC EVENT HORIZON AND ITS
INTERIOR
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FIG. 5.— Whether or not the total black hole entropy is dominatedby
SMBHs depends on the yet-unquantified number of intermediate mass black
holes.

In this section we calculate the entropy budget for scheme
2, consisting of the entropy of the cosmic event horizon, and
the entropy of its contents.

The proper distance to the cosmic event horizon is generally
time-dependent, increasing when the Universe is dominated
by an energy component with an equation of statew > −1 (ra-
diation and matter) and remaining constant when the Universe
is dark energy dominated (assuming a cosmological constant,
w = −1). Since our Universe is presently entering dark energy
domination, the growth of the event horizon has slowed, and
it is almost as large now as it will ever become (bottom panel
of Fig. 1). In the appendix we calculate the present radius and
volume of the cosmic event horizon

RCEH = 15.7±0.4 Glyr, (38)

VCEH = 1.62±0.12×104 Glyr3

= 1.37±0.10×1079 m3. (39)

We also calculate the present entropy of the cosmic event hori-
zon (following Gibbons & Hawking 1977),

SCEH =
kc3

Gh̄
A
4

=
kc3

Gh̄
πR2

CEH (40)

= 2.6±0.3×10122 k.

Entropies of the various components within the cosmic
event horizon are calculated using the entropy densitiessi
from Section 2:

Si = siVCEH (41)

Table 2 shows that the cosmic event horizon contributes al-
most 20 orders of magnitude more entropy than the next
largest contributor, supermassive black holes.

4. DISCUSSION

The second law of thermodynamics holds that the entropy
of an isolated system increases or remains constant, but does
not decrease. This has been applied to the large-scale Uni-
verse in at least two ways (Eq. 1 and 2). The first scheme

requires the entropy in a comoving volume of the Universe
to not decrease. The second scheme requires the entropy of
matter contained within the event horizon, plus the entropyof
the event horizon, to not decrease.

We have calcluated improved estimates of the current en-
tropy budget under scheme 1 (normalized to the current ob-
servable Universe) and scheme 2. These are given in Tables 1
and 2 respectively.

The entropy of dark matter has not been calculated previ-
ously. We find that dark matter contributes 1088±1 k to the
entropy of the observable Universe. We note that the neu-
trino and dark matter estimates do not include an increase
due to their infall into gravitational potentials during struc-
ture formation. It is not clear to usa priori whether this non-
inclusion is significant, but it may be since both components
are presently non-relativistic. This should be investigated in
future work.

Previous estimates of the relic graviton entropy have as-
sumed that only the known particles participate in the rel-
ativistic fluid of the early Universe att

∼
> tplanck. In terms

of the number of relativistic degrees of freedom, this means
g∗S → 106.75 at high temperatures. However, additional par-
ticles are expected to exist, and thusg∗S is expected to become
larger ast → tplanck. In the present work we have calculated
the relic graviton entropy corresponding to three high-energy
extrapolations ofg∗S (constant, linear growth and exponential
growth) and reported the corresponding graviton temperatures
and entropies.

In this paper we have computed the entropy budget of the
observable Universe todaySobs(t = t0). Figure 6 illustrates the
evolution of the entropy budget under scheme 1, i.e., the en-
tropy in a comoving volume (normalized to the current ob-
servable Universe). For simplicity, we have included only the
most important components. At the far-left of the figure

FIG. 6.— The entropy in a comoving volume (normalized to the present ob-
servable Universe). This figure illustrates the time dependence of the scheme

1 entropy budget. N.B. 1010100
= 1 googolplex.

we show a brief period of inflation. During this period all of
the energy is in the inflaton (Guth 1981; Linde 1982) which
has very few degrees of freedom and low entropy (blue fill)
(Linde 2009; Steinhardt 2009). Inflation ends with a period of
reheating somewhere between the Planck scale (10−45s) and
the GUT scale (10−35s), during which the inflaton’s energy is
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TABLE 2
ENTROPY OF THEEVENT HORIZON AND THE

MATTER WITHIN IT (SCHEME 2 ENTROPY
BUDGET)

Component EntropyS [k]

Cosmic Event Horizon 2.6±0.3×10122

SMBHs 1.2+1.1
−0.7 ×10103

∗Stellar BHs (42− 140M⊙) 1.2×1098+0.8
−1.6

Stellar BHs (2.5− 15 M⊙) 2.2×1096+0.6
−1.2

Photons 2.03±0.15×1088

Relic Neutrinos 1.93±0.15×1088

Dark Matter 6×1086±1

Relic Gravitons 2.3×1086+0.2
−3.1

ISM & IGM 2 .7±2.1×1080

Stars 3.5±1.7×1078

Total 2.6 ±0.3 ×10122

NOTE. — This budget is dominated by the cos-
mic event horizon entropy. Stellar black holes in the
mass range 42− 140M⊙ (marked with an∗) are in-
cluded tentatively since their existence is specula-
tive.

transferred into a relativistic fluid (yellow fill). During re-
heating the entropy increases by many orders of magnitude.
After reheating the constitution of the relativistic fluid con-
tinues to change, but the changes occur reversibly and do not
increase the entropy.

After a few hundred million years (∼ 1016s) the first stars
form from collapsing clouds of neutral hydrogen and helium.
Shortly thereafter the first black holes form. The entropy in
stellar black holes (light grey) and supermassive black holes
(dark grey) increases rapidly during galactic evolution. The
budget given in Table 1 is a snapshot of the entropies at the
present time (4.3×1017s). Over the next 1026s, the growth of
structures larger than about 1014 M⊙ will be halted by the ac-
celeration of the Universe. Galaxies within superclusterswill
merge and objects in the outer limits of these objects will be
ejected. The final masses of supermassive black holes will be
∼ 1010M⊙ (Adams & Laughlin 1997) with the entropy domi-
nated by the those withM ∼ 1012M⊙.

Stellar black holes will evaporate away into Hawking radi-
ation in about 1080s and supermassive black holes will follow
in 10110s. The decrease in black hole entropy is accompanied
by a compensating increase in radiation entropy. The thick
black line in Fig. 6 represents the radiation entropy growing
as black holes evaporate. The asymptotic future of the entropy
budget, under scheme 1, will be radiation dominated.

Figure 7 illustrates the evolution of the entropy budget un-
der scheme 2, i.e., the entropy within the cosmic event hori-
zon, plus the entropy of the cosmic event horizon.

Whereas in scheme 1 we integrate over a constant comov-
ing volume, here the relevant volume is the event horizon.
The event horizon is discussed in some detail in the appendix.
During radiation domination the comoving radius of the cos-
mic event horizon is approximately constant (the proper dis-
tance grows asRCEH ∝ a) and in the dark energy dominated
future it is a constant proper distance (RCEH = constant). The
few logarithmic decades around the present time cannot be
described well by either of these.

Since the event horizon has been approximately comoving
in the past, the left half of Fig. 7 is almost the same as in
Fig. 6 except that we have included the event horizon entropy
(green fill). The event horizon entropy dominates this budget

FIG. 7.— The entropy of matter within the cosmic event horizon, and the
entropy of the cosmic event horizon. This figure illustratesthe time depen-
dence of the scheme 2 entropy budget. Note: the horizontal axis is shorter
than in Fig. 6.

from about 10−16s.
After dark energy domination sets in, the cosmic event hori-

zon becomes a constant proper distance. The expansion of the
Universe causes comoving objects to recede beyond the cos-
mic event horizon. On average, the number of galaxies, black
holes, photons etc. within our cosmic event horizon decreases
asa−3. The stellar and supermassive black hole entropy con-
tained within the CEH decreases accordingly (decreasing grey
filled regions).

The decreasing black hole entropy (as well as other compo-
nents not shown) is compensated by the asymptotically grow-
ing cosmic event horizon entropy (demonstrated explicitlyfor
a range of scenarios in Davis et al. 2003), and thus the second
law of thermodynamics is satisfied. See Egan & Lineweaver
(2009) for further discussion of the time dependence of the
entropy of the Universe.
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APPENDIX: THE OBSERVABLE UNIVERSE AND THE COSMIC
EVENT HORIZON

Here we calculate the radius and volume of the observable
Universe (for use in Section 2) and we calculate the radius,
volume and entropy of the cosmic event horizon (for use in
Section 3). We use numerical methods to track the propaga-
tion of errors from the cosmological parameters.

The radius of the observable Universe (or particle horizon)
is

Robs = a(t)
∫ t

t′=0

c
a(t ′)

dt ′. (42)

Here a(t) is the time dependent scalefactor of the Universe
given by the Friedmann equation for a flat cosmology

da
dt

=

√

Ωr

a2
+

Ωm

a
+

ΩΛ

a−2
. (43)

Hubble’s constant and the matter density parameter are taken
from Seljak et al. (2006):h = H/100km s−1 Mpc−1 = 0.705±
0.013, ωm = Ωmh2 = 0.136± 0.003. The radiation density
is calculated from the observed CMB temperature,Tcmb =
2.725±0.002K (Mather et al. 1999), usingΩr = 8πG

3H2
π2k4T 4

15c5 h̄3 .
The vacuum energy density parameter is determined by flat-
ness,ΩΛ = 1− Ωr − Ωm.

A distribution ofRobs values is built up by repeatedly eval-
uating Eq. (42) at the present time (defined bya(t0) = 1) using
cosmological parameters randomly selected from the allowed
region of h − ωm − Tcmb parameter space (assuming uncorre-
lated Gaussian errors in these parameters). We find

Robs = 46.9±0.4 Glyr (44)

with an approximately Gaussian distribution. The quoted con-
fidence interval here, and elsewhere in this appendix, is 1σ.
The volume of the observable UniverseVobs is calculated us-
ing the normal formula for the volume of a sphere.

Vobs = 43.2±1.2×104 Glyr3

= 3.65±0.10×1080 m3 (45)

See Fig. 8. Uncertainty inRobs andVobs is predominantly due
to uncertainty inωm howeverh also makes a non-negligible
contribution.

The radius of the cosmic event horizon at timet is given by
integrating along a photon’s world line from the timet to the
infinite future.

RCEH = a(tnow)
∫ ∞

t=tnow

c
a(t)

dt (46)

This integral is finite because the future of the Universe is
dark energy dominated. Using the same methods as for the
observable Universe, we find the present radius and volume
of the cosmic event horizon to be

RCEH = 15.7±0.4 Glyr, (47)

and

VCEH = 1.62±0.12×104 Glyr3,

= 1.37±0.10×1079 m3. (48)

FIG. 8.— 800 realizations ofVobs andVCEH indicate the volume of the ob-
servable Universe is 43.2±1.2×104 Glyr3 (horizontal axis) and the volume
of the cosmic event horizon isVCEH = 1.62±0.12×104 Glyr3 (vertical axis).
We note that there is only a weak correlation between uncertainties in the two
volumes.

FIG. 9.— We findSCEH = 2.6±0.3×10122 k, in agreement with previous
estimatesSCEH ∼ 10122 k (Bousso et al. 2007). Uncertainties inSCEH come
from uncertainties inRCEH , which are almost exclusively due to uncertainties
in h.

The entropy of the cosmic event horizon is calculated us-
ing the Bekenstein-Hawking horizon entropy equation as sug-
gested by Gibbons & Hawking (1977).

SCEH =
kc3

Gh̄
A
4

=
kc3

Gh̄
πR2

CEH

= 2.6±0.3×10122 k (49)

Uncertainty in the cosmic event horizon radius, volume and
entropy are dominated by uncertainties in Hubble’s constant
(Fig. 9).

The cosmic event horizon monotonically increases, asymp-
toting to a constant radius and entropy slightly larger thanits
current value (see Fig. 10). We calculate the asymptotic ra-
dius, volume and entropy to be

RCEH(t →∞) = 16.4±0.4 Glyr

= 1.55±0.04×1026 m (50)
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VCEH(t →∞) = 1.84±0.15×104 Glyr3

= 1.56±0.13×1079 m3 (51)

SCEH(t →∞) = 2.88±0.16×10122k. (52)

FIG. 10.— The proper distance to the event horizon is shown as a function
of time. The vertical grey line represents the present age ofthe Universe (and
its width, the uncertainty in the present age). During dark energy domination
the proper radius, proper volume and entropy of the cosmic event horizon
will monotonically increase, asymptoting to a constant.
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