Key Results from last lecture
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Model Content of Universe by the Equation of
State of the different forms of Matter/Energy
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Flat Universe —Matter Dominated
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Solutions for matter-dominated era and no
cosmological constant

For convenience, use scaled variable
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Relation between density and scale factor
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Figuring Out the Equation of
State
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This solution is the same as for the Newtonian case and implies
the same age of the Universe, viz.
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This is less than the ages of the oldest stars in the Universe that
we see in globular clusters
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In this case we use the conform%I time substitutioy/tq solve the
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We solve this equation in the following way. Make the substitution:
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Hence the solution for k=1, can also be expressed in the form:
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Note that the timescale of this model Universe is still set by the

Hubble time HO'I, but the numerical factor is different.The unit of

length is set by the Hubble length c/Hy,

Flat Universe —Cosmological
Constant Dominated
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Flat Universe — Radiation

Dominated
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Domination of the Universe

As Universe Expands

— Photon density decays as a*

— Matter density decays as a3 Q
- Cosmolog|ca| Constant density rad 1
decays as a0 =7—( +Z)
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Note that exactly flat Universe QA a

remains flat —i.e. 2Q=1 =|— = (1 + Z)
Cosmological Constant Models QM a,

tend towards flatness overtime
Other models tend away from

flatness over time.






