Final Parametric Solution

$$
\begin{aligned}
& \xi=\frac{1}{2}(1-\cos \eta)=\frac{\left|1-\Omega_{0}\right|}{\Omega_{0}} \frac{r}{r_{0}} \\
& \tau=\left(\frac{1}{2} \eta-\frac{1}{2} \sin \eta\right)=\frac{\left|1-\Omega_{0}\right|^{3 / 2}}{\Omega_{0}} H_{0} t
\end{aligned}
$$

A Quick Overview of Relativity

- Special Relativity:
- The manifestation of requiring the speed of light to be invariant in all inertial (nonaccelerating) reference frames
- Leads to a more complicated view of the world where space and time have to be considered together - space-time

Minkowski Space

- Special relativity defined by cartesian coordinates, x^{μ} on a 4-dimensional manifold.
- Events in special relativity are specified by its location in time and space - a fourvector - e.g. V^{μ}

Minkowski Metric

- Metric tells you how to take the norm of a vector - e.g. the dot product.

In Minkowski space, the dot $\eta_{\mu \nu}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ product of two vectors is, where we use the summation convention (lower and upper indice are summed over all are summed over
Minkowski Metric
$A \cdot B \equiv \eta_{\mu v} A^{u} B^{\nu}=-A^{0} B^{0}+A^{1} B^{1}+A^{2} B^{2}+A^{3} B^{3}$

$d s^{2} \equiv \eta_{\mu v} d x^{\mu} d x^{v}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}$

Time

- Note that for a particle with fixed coordinates, $\mathrm{ds}^{2}=-\mathrm{dt}^{2}<0$
Define Proper time as $d \tau^{2} \equiv-d s^{2}$
The proper time elapsed along a trajectory through spacetime represents the actual time measured by the observer.

Tensors

- General Relativity requires curved space
- Use Tensors - which are a way of expressing information in a coordinate invariant way. If an equation is expressed as a tensor in one coordinate system, it will be valid in all systems.
- Tensors are objects like vectors, or matrices, except they may have any range of indices and must transform in a coordinate invariant way.

The Metric Tensor

The metric tensor in GR is the foundation of the subject. It is the generalisation of the Minkowski metric.
It describes spacetime in a possibly a non-flat, noncartesian case.
e.g. Spherical coordinate flat case

$g_{\mu \nu}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & r^{2} & 0 \\ 0 & 0 & 0 & r^{2} \sin ^{2} \theta\end{array}\right)$

An Example -Maxwell's

Einstein's Equation of motion

$$
G_{\mu v} \equiv R_{\mu v}-\frac{1}{2} R g_{\mu \nu}=8 \pi G T_{\mu v}
$$

Lefthand side describes curvature of space time
$\mathrm{T}_{\mu \nu}$ is called the stress-energy Tensor and contains a complete description of energy and momentum of all matter fields.

Lots of information in the $T_{\mu \nu}$ and $G_{\mu \nu}$ - end up with very complicated linked highly non-linear equations.

GR and Cosmology

- Robertson Walker Metric (independent of Einstein's Equations) Provides a completely descriptive metric for a homogenous and isotropic universe

$$
d s^{2}=(c d t)^{2}-a(t)^{2}\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

- r, θ, ϕ are spherical coordinates
- $a(t)$ describes the size of a piece of space over time
- k tells you the curvature $(-1,0,1)$-> (open, flat, closed)

Einstein's equation for a perfect fluid

- a is the scale factor - tracks a piece of the Universe.
p and ρ are pressure and density of matter (perfect fluid)

Summary of Behaviour of Density parameter and Geometry

$$
\begin{gathered}
\text { FLAT } \\
\text { OPEN } \\
\operatorname{CLOSED}
\end{gathered}\left\{\begin{array}{ccc}
\Omega_{0}=1 & k=0 & \Omega(t)=1 \\
\Omega_{0}<1 & k=-1 & \Omega(t)<1 \\
\Omega_{0}>1 & k=+1 & \Omega(t)>1
\end{array}\right\} \text { for all time }
$$

Contributions to Density

$$
\begin{aligned}
& \Omega_{0}=\sum \frac{\rho_{i, 0}}{\rho_{c r i t, 0}}=\sum \Omega_{i, 0} \\
& \Omega_{0}=\Omega_{M, 0}+\Omega_{\gamma, 0}+\Omega_{v, 0}+\Omega_{\Lambda, 0}+\Omega_{?, 0}
\end{aligned}
$$

Contributions to Ω

- Within a Megaparsec (Mpc) There are two large galaxies - Andromeda and Milky Way - 10^{12} solar masses of material - So density is roughly 10^{-6} solar Masses per cubic parsec.
- Radiation from Big Bang has approx $\Omega_{\mathrm{rad}}=5 \times 10^{-5}$
- Current Concordance Model of Cosmology has
$-\Sigma \Omega_{1}=1.00$
$-\Omega_{M}=0.27$
$-\Omega_{\wedge}=0.73$
$-\Omega_{\text {evenathing else }}<0.01$

Relation between different time coordinates

$$
\begin{aligned}
\eta=c \int \frac{d t}{a(t)} & =a(t) d \eta \\
\Rightarrow \frac{d t}{d \eta} & =\frac{a(t)}{c} \\
\frac{1}{c} \frac{d \eta}{d t} & =\frac{1}{a}
\end{aligned}
$$

The Friedmann equation is transformed by substituting:

$$
\frac{1}{c} \frac{d a}{d t}=\frac{d a}{d \eta} \times \frac{1}{c} \frac{d \eta}{d t}=\begin{gathered}
\text { diain nut tor } \\
\text { difierensition }
\end{gathered}
$$

$\frac{1}{c^{2}}\left(\frac{d a}{d t}\right)^{2}=\frac{8 \pi G}{3 c^{2}} \rho a^{2}-k$
$=\frac{1}{a} \frac{d a}{d \eta}$
so that it can be written:

Critical Density Value.

$$
\begin{aligned}
& \rho_{c, 0}=\frac{3 H_{0}^{2}}{8 \pi G} \\
& \rho_{c, 0}=9.2 \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3}\left(\frac{H_{0}}{70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}}\right)^{2} \\
& \rho_{c, 0}=1.4 \times 10^{-7} M_{\text {sun }} / p c^{3}\left(\frac{H_{0}}{70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}}\right)^{2}
\end{aligned}
$$

Solving Einstein's Equations

Robertson-Walker Metric

$d s^{2}=(c d t)^{2}-a(t)^{2}\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$
redefine as conformal time
$\eta=c \int \frac{d t}{a(t)} \quad d \Omega=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$
$d s^{2}=(a(\eta))^{2}\left[(d \eta)^{2}-\left(\frac{d r^{2}}{1-k r^{2}}+r^{2}(d \Omega)\right)\right]$

Friedman Equation
$\frac{1}{c^{2}}\left(\frac{a}{a}\right)^{2}+\frac{k}{a^{2}}=\frac{1}{c^{2}} \frac{8 \pi G}{3} \rho$
$\frac{1}{c^{2}}\left(\frac{d a}{d t}\right)^{2}=\frac{8 \pi G}{3 c^{2}} \rho a^{2}-k$

Love and moving
out an2

$$
\begin{aligned}
& \left(\frac{d a}{d \eta}\right)^{2}=\frac{8 \pi G}{3 c^{2}} \rho a^{4}-k a^{2} \quad \text { Normalise equation to } \\
& y \equiv \frac{a}{a_{0}} \quad \Omega_{0}=\frac{8 \pi G}{3 H_{0}^{2}} \quad \frac{d}{d \eta}\left(\frac{a}{a_{0}}\right)=\frac{1}{a_{0}} \frac{d a}{d \eta} \\
& {\left[\frac{d}{d \eta}\left(\frac{a}{a_{0}}\right)\right]^{2} a_{0}^{2}=\frac{\Omega_{0} H_{0}^{2}}{\rho_{0} c^{2}} \rho\left(\frac{a}{a_{0}}\right)^{4} a_{0}^{4}-k\left(\frac{a}{a_{0}}\right)^{2} a_{0}^{2}} \\
& {\left[\frac{d}{d \eta}\left(\frac{a}{a_{0}}\right)\right]^{2}=\frac{a_{0}^{2} \Omega_{0} H_{0}^{2}}{c^{2}} \frac{\rho}{\rho_{0}}\left(\frac{a}{a_{0}}\right)^{4}-k\left(\frac{a}{a_{0}}\right)^{2}}
\end{aligned}
$$

Boundary condition
$\frac{1}{c^{2}}\left(\frac{\dot{a}}{a}\right)^{2}=\frac{1}{c^{2}} \frac{8 \pi G}{3} \rho-\frac{k}{a^{2}} \quad H_{0}=\frac{\dot{a}}{a_{0}}$ (now)
$\frac{1}{c^{2}}\left(H_{0}\right)^{2}=\frac{1}{c^{2}} \frac{8 \pi G}{3} \rho_{0}-\frac{k}{a_{0}^{2}}$ at current epoch $\begin{aligned} & \text { Which at current } \\ & \text { epoch gives }\end{aligned}$

$$
\begin{gathered}
a_{0}^{2} \frac{H_{0}^{2}}{c^{2}}=a_{0}^{2}\left(\frac{8 \pi G \rho_{0}}{3 c^{2}}-\frac{k}{a_{0}^{2}}\right) \\
\frac{a_{0}^{2} H_{0}^{2}}{c^{2}}=\frac{a_{0}^{2} H_{0}^{2}}{c^{2}} \Omega_{0}-k \\
\Rightarrow \frac{a_{0}^{2} H_{0}^{2}}{c^{2}}\left(\Omega_{0}-1\right)=k \\
\frac{a_{0} H_{0}}{c}\left|\Omega_{0}-1\right|^{1 / 2}=|k|
\end{gathered}
$$

Hence a_{0} is determined by the Hubble constant, the density
Final form of Friedmann equations

$$
\begin{aligned}
k=\Omega_{0}-1=0 \quad\left[\frac{d}{d \eta}\left(\frac{a}{a_{0}}\right)\right]^{2} & =\frac{a_{0}^{2} H_{0}^{2}}{c^{2}}\left(\frac{\rho}{\rho_{0}}\right)\left(\frac{a}{a_{0}}\right)^{4} \\
k= \pm 1 \quad\left[\frac{d}{d \eta}\left(\frac{a}{a_{0}}\right)\right]^{2} & =\frac{k \Omega_{0}}{\Omega_{0}-1}\left(\frac{\rho}{\rho_{0}}\right)\left(\frac{a}{a_{0}}\right)^{4}-k\left(\frac{a}{a_{0}}\right)^{2} \\
\text { In all cases: } \quad \frac{d t}{d \eta} & =\frac{a(\eta)}{c}=\frac{a_{0}}{c}\left(\frac{a}{a_{0}}\right)
\end{aligned}
$$

Matter dominated era, with zero cosmological constant density parameter is not unity

Radius of Curvature of the Universe
In the present era of the Universe, matter dominates radiation. If we also assume that the cosmological constant is zero, then the above equations can be solved quite straightforwardly.

