History of the Universe - according to the standard big bang

Inflation creates initial conditions BIG BANG PI 15 BILLION YE

The Big Bang: problems

• Flatness Problem

Why is the universe flat? Unless born flat, it should gradually move away from Flatness in the matter/radiation era.

• Horizon Problem

Why is the CMB The same temperature in all diréctions?

• Structure Problem

What seeded the structures we see today?

• INITIAL CONDITIONS SOLVES ALL!!

- The universe started out perfectly flat
- The universe started out all the same temperature
- The universe started with the seeds of structure

Flatness

• Friedmann's Equation

H² =
$$\frac{8\pi G}{3} \rho_{tot} - \frac{kc^2}{a^2}$$

$$\rho_{crit} = \frac{3H^2}{8\pi G}$$

• Rearranged, $\Omega_{\text{tot}} = \rho/\rho_{\text{crit}}$

$$\Omega_{tot} - 1 = \frac{kc^2}{H^2 a^2} = \frac{kc^2}{\dot{a}^2}$$

$$\begin{split} H^2 &\propto \rho_{tot} \propto a^{-4} \\ \frac{t_{now}}{t_{planck}} &= \frac{3 \times 10^{17} s}{1 \times 10^{-43} s} = 3 \times 10^{60} \\ a &\propto t^{1/2} \longrightarrow \frac{a_{now}}{a_{Planck}} = \left(3 \times 10^{60}\right)^{/2} \end{split}$$

problem, most of way,
Radiation dominated.
$$\frac{(\Omega_{tot} - 1)_{now}}{(\Omega_{tot} - 1)_{Planck}} = \left(\frac{a_{now}}{a_{Planck}}\right)^2 \approx 10^{60}$$

Universe is 60 orders of magnitude less Flat than it was at the Planck time!

Flatness

• Solved by accelerating expansion

(not just increase in size)
$$\Omega_{tot} - 1 = \frac{Kc^2}{H^2a^2} = \frac{Kc^2}{\dot{a}^2}$$

Eventstwe caillibreelsleetpacticular time

Structure

- Quantum fluctuations are the seeds of structure
- Quantum fluctuations produce real fluctuations when virtual particle pairs find themselves separated by more than a Hubble distance

$\Delta t \leq \hbar/\Delta E$

If the Universe is exponentially expanding, then this can happen quite a lot!

Scalar fields and their potentials

- In particle physics, a scalar field is used to represent spin zero particles.
 - It transforms as a scalar (that is, it is unchanged) under coordinate transformations.
 - In a homogeneous Universe, the scalar field is a function of time alone.
 - In particle theories, scalar fields are a crucial ingredient for spontaneous symmetry breaking. The most famous example is the Higgs field which breaks the electro-weak symmetry, whose existence is hoped to be verified at the Large Hadron Collider at CERN when it commences experiments.
 - Any specific particle theory (eg GUTS, superstrings) contains scalar fields.
 No fundamental scalar field has yet been observed.

Reheating

- Inflation cools down the universe some mechanism is needed for reheating and particle creation
 - Decay of the particle responsible for inflation might create a wealth of particles and energy.

Conditions for inflation

- · Need accelerated expansion for inflation
- Negative pressure will accelerate the expansion
- The cosmological constant has negative pressure

What drives inflation?

- Scalar Fields
 - A potential that depends on one parameter only.
 - It can depend on position but does not have a direction
 - e.g. temperature, or potentials...
- Usually represented $V(\phi)$, and $\phi(t)$ is assumed homogeneous, and associated with a "inflaton"

So What does Inflation give

us...

- Inflation invented to solve how the Cosmic Microwave Background is uniform in temperature without seemingly ever having been in causal contact.
- It naturally predicts that the Universe should be observed to be exactly flat. (It was sort of designed to do this too). This has been measured now.
- Predicts that the seeds of structure should be -gaussian and -scale invariant (that means equal power on all logarithmic scales).
 - scale independent density fluctuations measured by COBE+2dF/WMAP
- Very little more that it can predict... So is it a matter of philosophy now, rather than science? Is the above enough?

See Liddle article on inflation for a more complete Story on the course website.