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AN INTRODUCTION TO COSMOLOGICAL INFLATION
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An introductory account is given of the inflationary cosmology, which postulates
a period of accelerated expansion during the Universe’s earliest stages. The his-
torical motivation is briefly outlined, and the modelling of the inflationary epoch
explained. The most important aspect of inflation is that it provides a possible
model for the origin of structure in the Universe, and key results are reviewed,
along with a discussion of the current observational situation and outlook.

1 Overview

One of the central planks of modern cosmology is the idea of inflation. Orig-
inally introduced by Guth 1 in order to explain the initial conditions for the
hot big bang model, it has subsequently been given a much more impor-
tant role as the currently-favoured candidate for the origin of structure in
the Universe, such as galaxies, galaxy clusters and cosmic microwave back-
ground anisotropies. This article seeks to give an introductory account of the
inflationary cosmology, with the focus aimed towards inflation as a model for
the origin of structure.

It begins with a quick review of the big bang cosmology, and the prob-
lems with it which led to the introduction of inflation. The modelling of the
inflationary epoch using scalar fields is described, and then results giving the
form of perturbations produced by inflation are quoted. Finally, the current
observational situation is briefly sketched.

2 Big bang problems and the idea of inflation

The standard hot big bang theory is an extremely successful one, passing some
crucial observational tests of which I’d highlight five.

• The expansion of the Universe.

• The existence and spectrum of the cosmic microwave background radia-
tion.

• The abundances of light elements in the Universe (nucleosynthesis).
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• That the predicted age of the Universe is comparable to direct age mea-
surements of objects within the Universe.

• That given the irregularities seen in the microwave background by COBE,
there exists a reasonable explanation for the development of structure in
the Universe, through gravitational collapse.

In combination, these are extremely compelling. However, the standard hot
big bang theory is limited to those epochs where the Universe is cool enough
that the underlying physical processes are well established and understood
through terrestrial experiment. It does not attempt to address the state of the
Universe at earlier, hotter, times. Furthermore, the hot big bang theory leaves
a range of crucial questions unanswered, for it turns out that it can successfully
proceed only if the initial conditions are very carefully chosen. The assumption
of early Universe studies is that the mysteries of the conditions under which
the big bang theory operates may be explained through the physics occurring
in its distant, unexplored past. If so, accurate observations of the present state
of the Universe may highlight the types of process occurring during these early
stages, and perhaps even shed light on the nature of physical laws at energies
which it would be inconceivable to explore by other means.

2.1 A hot big bang reminder

To get us started, I’ll give a quick review of the big bang cosmology. More
detailed accounts can be found in any of a number of cosmological textbooks.
One of my aims in this section is to set down the notation for the rest of the
article.

2.2 Equations of motion

The hot big bang theory is based on the cosmological principle, which states
that the Universe should look the same to all observers. That tells us that
the Universe must be homogeneous and isotropic, which in turn tells us which
metric must be used to describe it. It is the Robertson–Walker metric

ds2 = −dt2 + a2(t)

[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

. (1)

Here t is the time variable, and r–θ–φ are (polar) coordinates. The constant k
measures the spatial curvature, with k negative, zero and positive correspond-
ing to open, flat and closed Universes respectively. If k is zero or negative,
then the range of r is from zero to infinity and the Universe is infinite, while
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if k is positive then r goes from zero to 1/
√

k. Usually the coordinates are
rescaled to make k equal to −1, 0 or +1. The quantity a(t) is the scale-factor
of the Universe, which measures its physical size. The form of a(t) depends on
the properties of the material within the Universe, as we’ll see.

If no external forces are acting, then a particle at rest at a given set of
coordinates (r, θ,φ) will remain there. Such coordinates are said to be comoving
with the expansion. One swaps between physical (ie actual) and comoving
distances via

physical distance = a(t) × comoving distance . (2)

The expansion of the Universe is governed by the properties of material
within it. This can be specified a by the energy density ρ(t) and the pressure
p(t). These are often related by an equation of state, which gives p as a function
of ρ; the classic examples are

p =
ρ

3
Radiation , (3)

p = 0 Non-relativistic matter . (4)

In general though there need not be a simple equation of state; for example
there may be more than one type of material, such as a combination of radiation
and non-relativistic matter, and certain types of material, such as a scalar field
(a type of material we’ll encounter later which is crucial for modelling inflation),
cannot be described by an equation of state at all.

The crucial equations describing the expansion of the Universe are

H2 =
8π

3m2
Pl

ρ−
k

a2
Friedmann equation (5)

ρ̇+ 3H(ρ+ p) = 0 Fluid equation (6)

where overdots are time derivatives and H = ȧ/a is the Hubble parameter.
The terms in the fluid equation contributing to ρ̇ have a simple interpretation;
the term 3Hρ is the reduction in density due to the increase in volume, and
the term 3Hp is the reduction in energy caused by the thermodynamic work
done by the pressure when this expansion occurs.

These can also be combined to form a new equation

ä

a
= −

4π

3m2
Pl

(ρ+ 3p) Acceleration equation (7)

aI follow standard cosmological practice of setting the fundamental constants c and h̄ equal
to one. This makes the energy density and mass density interchangeable (since the former
is c2 times the latter). I shall also normally use the Planck mass mPl rather than the
gravitational constant G; with the convention just mentioned they are related by G ≡ m−2

Pl
.
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in which k does not appear explicitly.

2.3 Standard cosmological solutions

When k = 0 the Friedmann and fluid equations can readily be solved for the
equations of state given earlier, leading to the classic cosmological solutions

Matter Domination p = 0 : ρ ∝ a−3 a(t) ∝ t2/3 (8)

Radiation Domination p = ρ/3 : ρ ∝ a−4 a(t) ∝ t1/2 (9)

In both cases the density falls as t−2. When k = 0 we have the freedom to
rescale a and it is normally chosen to be unity at the present, making physical
and comoving scales coincide. The proportionality constants are then fixed
by setting the density to be ρ0 at time t0, where here and throughout the
subscript zero indicates present value.

A more intriguing solution appears for the case of a so-called cosmological
constant, which corresponds to an equation of state p = −ρ. The fluid equation
then gives ρ̇ = 0 and hence ρ = ρ0, leading to

a(t) ∝ exp (Ht) . (10)

More complicated solutions can also be found for mixtures of components.
For example, if there is both matter and radiation the Friedmann equation can
be solved be using conformal time τ =

∫

dt/a, while if there is matter and a
non-zero curvature term the solution can be given either in parametric form
using normal time t, or in closed form with conformal time.

2.4 Critical density and the density parameter

The spatial geometry is flat if k = 0. For a given H , this requires that the
density equals the critical density

ρc(t) =
3m2

Pl
H2

8π
. (11)

Densities are often measured as fractions of ρc:

Ω(t) ≡
ρ

ρc

. (12)

The quantity Ω is known as the density parameter, and can be applied to
individual types of material as well as the total density.
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The present value of the Hubble parameter is still not that well known,
and is normally parametrized as

H0 = 100h km s−1 Mpc−1 =
h

3000
Mpc−1 , (13)

where h is normally assumed to lie in the range 0.5 ≤ h ≤ 0.8. The present
critical density is

ρc(t0) = 1.88 h2 × 10−29 g cm−3 = 2.77 h−1 × 1011 M"/(h−1Mpc)3 . (14)

2.5 Characteristic scales and horizons

The big bang Universe has two characteristic scales

• The Hubble time (or length) H−1.

• The curvature scale a|k|−1/2.

The first of these gives the characteristic timescale of evolution of a(t), and
the second gives the distance up to which space can be taken as having a
flat (Euclidean) geometry. As written above they are both physical scales; to
obtain the corresponding comoving scale one should divide by a(t). The ratio
of these scales actually gives a measure of Ω; from the Friedmann equation we
find

√

|Ω − 1| =
H−1

a|k|−1/2
. (15)

A crucial property of the big bang Universe is that it possesses horizons;
even light can only have travelled a finite distance since the start of the Universe
t∗, given by

dH(t) = a(t)

∫ t

t∗

dt

a(t)
. (16)

For example, matter domination gives dH(t) = 3t = 2H−1. In a big bang
Universe, dH(t0) is a good approximation to the distance to the surface of last
scattering (the origin of the observed microwave background, at a time known
as ‘decoupling’), since t0 ' tdec.

2.6 Redshift and temperature

The redshift measures the expansion of the Universe via the stretching of light

1 + z =
a(t0)

a(temission)
. (17)
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Redshift can be used to describe both time and distance. As a time, it simply
refers to the time at which light would have to be emitted to have a present
redshift z. As a distance, it refers to the present distance to an object from
which light is received with a redshift z. Note that this distance is not neces-
sarily the time multiplied by the speed of light, since the Universe is expanding
as the light travels across it.

As the Universe expands, it cools according to the law

T ∝
1

a
. (18)

In its earliest stages the Universe may have been arbitrarily hot and dense.

2.7 The history of the Universe

Presently the Universe is dominated by non-relativistic matter, but because
radiation reduces more quickly with the expansion, this implies that at ear-
lier times the Universe was radiation dominated. During the radiation era
temperature and time are related by

t

1 sec
(

(

1010 K

T

)2

. (19)

The highest energies accessible to terrestrial experiment, generated in particle
accelerators, correspond to a temperature of about 1015 K, which was attained
when the Universe was about 10−10 sec old. Before that, we have no direct
evidence of the applicable physical laws and must use extrapolation based on
current particle physics model building. After that time there is a fairly clear
picture of how the Universe evolved to reach the present, with the key events
being as follows:

• 10−4 seconds: Quarks condense to form protons and neutrons.

• 1 second: The Universe has cooled sufficiently that light nuclei are able
to form, via a process known as nucleosynthesis.

• 104 years: The radiation density drops to the level of the matter density,
the epoch being known as matter–radiation equality. Subsequently
the Universe is matter dominated.

• 105 years: Decoupling of radiation from matter leads to the formation of
the microwave background. This is more or less coincident with recom-
bination, when the up-to-now free electrons combine with the nuclei to
form atoms.

• 1010 years: The present.
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3 Problems with the Big Bang

In this section I shall quickly review the original motivation for the infla-
tionary cosmology. These problems were largely ones of initial conditions.
While historically these problems were very important, they are now some-
what marginalized as focus is instead concentrated on inflation as a theory for
the origin of cosmic structure.

3.1 The flatness problem

Taking advantage of the definition of the density parameter, and ignoring a
possible cosmological constant contribution, the Friedmann equation can be
written in the form

|Ω − 1| =
|k|

a2H2
. (20)

During standard big bang evolution, a2H2 is decreasing, and so Ω moves away
from one, for example

Matter domination: |Ω − 1| ∝ t2/3 (21)

Radiation domination: |Ω − 1| ∝ t (22)

where the solutions apply provided Ω is close to one. So Ω = 1 is an unstable
critical point. Since we know that today Ω is certainly within an order of
magnitude of one, it must have been much closer in the past. Inserting the
appropriate behaviours for the matter and radiation eras (or if you like just
assuming radiation domination all the way to the present) gives

nucleosynthesis (t ∼ 1 sec) : |Ω − 1| < O(10−16) (23)

electro-weak scale (t ∼ 10−11 sec) : |Ω − 1| < O(10−27) (24)

That is, hardly any choices of the initial density lead to a Universe like our own.
Typically, the Universe will either swiftly recollapse, or will rapidly expand and
cool below 3K within its first second of existence.

3.2 The horizon problem

Microwave photons emitted from opposite sides of the sky appear to be in
thermal equilibrium at almost the same temperature. The most natural ex-
planation for this is that the Universe has indeed reached a state of thermal
equilibrium, through interactions between the different regions. But unfor-
tunately in the big bang theory this is not possible. There was no time for

7



those regions to interact before the photons were emitted, because of the finite
horizon size,

∫ tdec

t∗

dt

a(t)
*

∫ t0

tdec

dt

a(t)
. (25)

This says that the distance light could travel before the microwave background
was released is much smaller than the present horizon distance. In fact, any
regions separated by more than about 2 degrees would be causally separated at
decoupling in the hot big bang theory. In the big bang theory there is therefore
no explanation of why the Universe appears so homogeneous.

In more recent years this problem has been brought into sharper focus
through the improving understanding of irregularities in the Universe, as will
be discussed later in this article. The same argument that prevents the smooth-
ing of the Universe also prevents the creation of irregularities. For example,
as we will see the COBE satellite observes irregularities on all accessible angu-
lar scales, from a few degrees upwards. In the simplest cosmological models,
where these irregularities are intrinsic to the last scattering surface, the per-
turbations are on too large a scale to have been created between the big bang
and the time of decoupling, because the horizon size at decoupling subtends
only a degree or so. Hence these perturbations must have been part of the
initial conditions.b

If this is the case, then the hot big bang theory does not allow a predictive
theory for the origin of structure. While there is no reason why it is required
to give a predictive theory, this would be a major setback and disappointment
for the study of structure formation in the Universe.

3.3 The monopole problem (and other relics)

Modern particle theories predict a variety of ‘unwanted relics’, which would
violate observations. These include

• Magnetic monopoles.

• Domain walls.

• Supersymmetric particles such as the gravitino.

• ‘Moduli’ fields associated with superstrings.

bNote though that it is not yet known for definite that there are large-angle perturbations
intrinsic to the last scattering surface. For example, in a topological defect model such as
cosmic strings, such perturbations could be generated as the microwave photons propagate
towards us.
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Typically, the problem is that these are expected to be created very early in
the Universe’s history, during the radiation era. But because they are diluted
by the expansion more slowly than radiation (eg as a−3 instead of a−4) it
is very easy for them to become the dominant material in the Universe, in
contradiction to observations. One has to dispose of them without harming
the conventional matter in the Universe.

4 The Idea of Inflation

Seen with many years of hindsight, the idea of inflation is actually rather
obvious. Take for example the Friedmann equation as used to analyze the
flatness problem

|Ω − 1| =
|k|

a2H2
. (26)

The problem with the hot big bang model is that aH always decreases, and so
Ω is repelled away from one.

In order to solve the problem, we will clearly need to reverse this state
of affairs. Accordingly, define inflation to be any epoch where ä > 0, an
accelerated expansion. We can rewrite this in several different ways

INFLATION ⇐⇒ ä > 0 (27)

⇐⇒
d(H−1/a)

dt
< 0 (28)

⇐⇒ p < −
ρ

3
(29)

The middle definition is the one which I prefer to use, because it has the most
direct geometrical interpretation. It says that the Hubble length, as measured
in comoving coordinates, decreases during inflation. At any other time, the co-
moving Hubble length increases. This is the key property of inflation; although
typically the expansion of the Universe is very rapid, the crucial characteristic
scale of the Universe is actually becoming smaller, when measured relative to
that expansion.

As we will see, quite a wide range of behaviours satisfy the inflationary
condition. The most classic one is one we have already seen; when the equation
of state is p = −ρ, the solution is

a(t) ∝ exp (Ht) . (30)

Since the successes of the hot big bang theory rely on the Universe having
a conventional (non-inflationary) evolution, we cannot permit this inflationary
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period to go on forever — it must come to an end early enough that the
big bang successes are not threatened. Normally, then, inflation is viewed
as a phenomenon of the very early Universe, which comes to an end and is
followed by the conventional behaviour. Inflation does not replace the hot big
bang theory; it is a bolt-on accessory attached at early times to improve the
performance of the theory.

4.1 The flatness problem

Inflation solves the flatness problem more or less by definition (so that at least
any classical, as opposed to quantum, solution of the problem will fall under the
umbrella of the inflationary definition). From the middle condition, inflation
is precisely the condition that Ω is forced towards one rather than away from
it. As we shall see, this typically happens very rapidly. A short period of such
behaviour won’t do us any good, as the subsequent non-inflationary behaviour
(in particular the standard big bang evolution from nucleosynthesis onwards)
will take us away from flatness again, but all will be well provided we have
enough inflation that Ω is moved extremely close to one during the inflationary
epoch. If it is close enough, then it will stay very close to one right to the
present, despite being repelled from one for all the post-inflationary period.
Obtaining sufficient inflation to perform this task is actually fairly easy. A
schematic illustration of this behaviour is shown in Figure 1.

In the above discussion, I have ignored a possible cosmological constant
contribution, but if present it modifies the Friedmann equation to

|Ω + ΩΛ − 1| =
|k|

a2H2
, (31)

and so it is Ω + ΩΛ which is forced to one. In general, it is spatial flatness
(k ( 0) that we are driven towards, not a critical matter density.

4.2 Relic abundances

The rapid expansion of the inflationary stage rapidly dilutes the unwanted
relic particles, because the energy density during inflation falls off more slowly
(as a−2 or slower) than the relic particle density. Very quickly their density
becomes negligible.

This resolution can only work if, after inflation, the energy density of
the Universe can be turned into conventional matter without recreating the
unwanted relics. This can be achieved by ensuring that during the conversion,
known as reheating, the temperature never gets hot enough again to allow
their thermal recreation. Then reheating can generate solely the things which
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Figure 1: A possible evolution of Ω. There may or may not be evolution before inflation,
shown by the dotted line. During inflation Ω is forced dramatically towards one, and remains
there right up to the present. Only in the extremely distant future will it begin to evolve
away from one again.

we want. Such successful reheating allows us to get back into the hot big
bang Universe, recovering all its later successes such as nucleosynthesis and
the microwave background.

4.3 The horizon problem and homogeneity

The inflationary expansion also solves the horizon problem. The basic strategy
is to ensure that

∫ tdec

t∗

dt

a(t)
'

∫ t0

tdec

dt

a(t)
, (32)

so that light can travel much further before decoupling than it can afterwards.
This cannot be done with standard evolution, but can be achieved by inflation.

An alternative way to view this is to remember that inflation corresponds
to a decreasing comoving Hubble length. The Hubble length is ordinarily
a good measure of how far things can travel in the Universe; what this is
telling us is that the region of the Universe we can see after (even long after)
inflation is much smaller than the region which would have been visible before
inflation started. Hence causal physics was perfectly capable of producing
a large smooth thermalized region, encompassing a volume greatly in excess
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COMOVING

smooth patch

now
end

Hubble length

start

Figure 2: Solving the horizon problem. Initially the Hubble length is large, and a smooth
patch forms by causal interactions. Inflation then shrinks the Hubble length, and even
the subsequent expansion again after inflation leaves the observable Universe within the
smoothed patch.

of our presently observable Universe. In Figure 2, the outer circle indicates
the initial Hubble length, encompassing the shaded smooth patch. Inflation
shrinks this dramatically inwards towards the dot indicating our position, and
then after inflation it increases while staying within the initial smooth patch.c

cAlthough this is a standard description, it isn’t totally accurate. A more accurate argu-
ment is as follows.2 At the beginning of inflation particles are distributed in a set of modes.
This may be a thermal distribution or something else; whatever, since the energy density
is finite there will be a shortest wavelength occupied mode, e.g. for a thermal distribu-
tion λmax ∼ 1/T . Expressed in physical coordinates, once inflation has stretched all modes
including this one to be much larger than the Hubble length, the Universe becomes homo-
geneous. In comoving coordinates, the equivalent picture is that the Hubble length shrinks
in until it’s much smaller than the shortest wavelength, and the Universe, as before, appears
homogeneous.
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Equally, causal processes would be capable of generating irregularities in
the Universe on scales greatly exceeding our presently observable Universe,
provided they happened at an early enough time that those scales were within
causal contact. This will be explored in detail later.

5 Modelling the Inflationary Expansion

We have seen that a period of accelerated expansion — inflation — is sufficient
to resolve a range of cosmological problems. But we need a plausible scenario
for driving such an expansion if we are to be able to make proper calculations.
This is provided by cosmological scalar fields.

5.1 Scalar fields and their potentials

In particle physics, a scalar field is used to represent spin zero particles. It
transforms as a scalar (that is, it is unchanged) under coordinate transfor-
mations. In a homogeneous Universe, the scalar field is a function of time
alone.

In particle theories, scalar fields are a crucial ingredient for spontaneous
symmetry breaking. The most famous example is the Higgs field which breaks
the electro-weak symmetry, whose existence is hoped to be verified at the Large
Hadron Collider at CERN when it commences experiments next millennium.
Scalar fields are also expected to be associated with the breaking of other
symmetries, such as those of Grand Unified Theories, supersymmetry etc.

• Any specific particle theory (eg GUTS, superstrings) contains scalar
fields.

• No fundamental scalar field has yet been observed.

• In condensed matter systems (such as superconductors, superfluid he-
lium etc) scalar fields are widely observed, associated with any phase
transition. People working in that subject normally refer to the scalar
fields as ‘order parameters’.

The traditional starting point for particle physics models is the action,
which is an integral of the Lagrange density over space and time and from
which the equations of motion can be obtained. As an intermediate step,
one might write down the energy–momentum tensor, which sits on the right-
hand side of Einstein’s equations. Rather than begin there, I will take as my
starting point expressions for the effective energy density and pressure of a
homogeneous scalar field, which I’ll call φ. These are obtained by comparison
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of the energy–momentum tensor of the scalar field with that of a perfect fluid,
and are

ρφ =
1

2
φ̇2 + V (φ) (33)

pφ =
1

2
φ̇2 − V (φ) . (34)

One can think of the first term in each as a kinetic energy, and the second
as a potential energy. The potential energy V (φ) can be thought of as a
form of ‘configurational’ or ‘binding’ energy; it measures how much internal
energy is associated with a particular field value. Normally, like all systems,
scalar fields try to minimize this energy; however, a crucial ingredient which
allows inflation is that scalar fields are not always very efficient at reaching
this minimum energy state.

Note in passing that a scalar field cannot in general be described by an
equation of state; there is no unique value of p that can be associated with
a given ρ as the energy density can be divided between potential and kinetic
energy in different ways.

In a given theory, there would be a specific form for the potential V (φ),
at least up to some parameters which one could hope to measure (such as the
effective mass and interaction strength of the scalar field). However, we are not
presently in a position where there is a well established fundamental theory
that one can use, so, in the absence of such a theory, inflation workers tend
to regard V (φ) as a function to be chosen arbitrarily, with different choices
corresponding to different models of inflation (of which there are many). Some
example potentials are

V (φ) = λ
(

φ2 − M2
)2

Higgs potential (35)

V (φ) = 1

2
m2φ2 Massive scalar field (36)

V (φ) = λφ4 Self-interacting scalar field (37)

The strength of this approach is that it seems possible to capture many of
the crucial properties of inflation by looking at some simple potentials; one
is looking for results which will still hold when more ‘realistic’ potentials are
chosen. Figure 3 shows such a generic potential, with the scalar field displaced
from the minimum and trying to reach it.

5.2 Equations of motion and solutions

The equations for an expanding Universe containing a homogeneous scalar field
are easily obtained by substituting Eqs. (33) and (34) into the Friedmann and

14
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Figure 3: A generic inflationary potential.

fluid equations, giving

H2 =
8π

3m2
Pl

[

V (φ) +
1

2
φ̇2

]

, (38)

φ̈+ 3Hφ̇ = −V ′(φ) , (39)

where prime indicates d/dφ. Here I have ignored the curvature term k, since we
know that by definition it will quickly become negligible once inflation starts.
This is done for simplicity only; there is no obstacle to including that term.

Since

ä > 0 ⇐⇒ p < −
ρ

3
⇐⇒ φ̇2 < V (φ) (40)

we will have inflation whenever the potential energy dominates. This should
be possible provided the potential is flat enough, as the scalar field would then
be expected to roll slowly. The potential should also have a minimum in which
inflation can end.

The standard strategy for solving these equations is the slow-roll ap-

proximation (SRA); this assumes that a term can be neglected in each of the
equations of motion to leave the simpler set

H2 (
8π

3m2
Pl

V (41)

3Hφ̇ ( −V ′ (42)
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If we define slow-roll parameters 3

ε(φ) =
m2

Pl

16π

(

V ′

V

)2

; η(φ) =
m2

Pl

8π

V ′′

V
, (43)

where the first measures the slope of the potential and the second the curvature,
then necessary conditions for the slow-roll approximation to hold are d

ε* 1 ; |η| * 1 . (44)

Unfortunately, although these are necessary conditions for the slow-roll ap-
proximation to hold, they are not sufficient, since even if the potential is very
flat it may be that the scalar field has a large velocity. A more elaborate ver-
sion of the SRA exists, based on the Hamilton–Jacobi formulation of inflation,4

which is sufficient as well as necessary.5

Note also that the SRA reduces the order of the system of equations by
one, and so its general solution contains one less initial condition. It works
only because one can prove 4,5 that the solution to the full equations possesses
an attractor property, eliminating the dependence on the extra parameter.

5.3 The relation between inflation and slow-roll

As it happens, the applicability of the slow-roll condition is closely connected
to the condition for inflation to take place, and in many contexts the conditions
can be regarded as equivalent. Let’s quickly see why.

The inflationary condition ä > 0 is satisfied for a much wider range of be-
haviours than just (quasi-)exponential expansion. A classic example is power-
law inflation a ∝ tp for p > 1, which is an exact solution for an exponential
potential

V (φ) = V0 exp

[

−
√

16π

p

φ

mPl

]

. (45)

We can manipulate the condition for inflation as

ä

a
= Ḣ + H2 > 0

⇐⇒ −
Ḣ

H2
< 1

∼⇐⇒
m2

Pl

16π

(

V ′

V

)2

< 1

dNote that ε is positive by definition, whilst η can have either sign.
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where the last manipulation uses the slow-roll approximation. The final con-
dition is just the slow-roll condition ε < 1, and hence

Slow-roll =⇒ Inflation

Inflation will occur when the slow-roll conditions are satisfied (subject to some
caveats on whether the ‘attractor’ behaviour has been attained.5)

However, the converse is not strictly true, since we had to use the SRA in
the derivation. However, in practice

Inflation
∼

=⇒ ε < 1

Prolonged inflation
∼

=⇒ η < 1

The last condition arises because unless the curvature of the potential is small,
the potential will not be flat for a wide enough range of φ.

5.4 The amount of inflation

The amount of inflation is normally specified by the logarithm of the amount
of expansion, the number of e-foldings N , given by

N ≡ ln
a(tend)

a(tinitial)
=

∫ te

ti

H dt , (46)

( −
8π

m2
Pl

∫ φe

φi

V

V ′
dφ , (47)

where the final step uses the SRA. Notice that the amount of inflation between
two scalar field values can be calculated without needing to solve the equations
of motion, and also that it is unchanged if one multiplies V (φ) by a constant.

The minimum amount of inflation required to solve the various cosmo-
logical problems is about 70 e-foldings, i.e. an expansion by a factor of 1030.
Although this looks large, inflation is typically so rapid that most inflation
models give much more.

5.5 A worked example: polynomial chaotic inflation

The simplest inflation model 6 arises when one chooses a polynomial potential,
such as that for a massive but otherwise non-interacting field, V (φ) = m2φ2/2
where m is the mass of the scalar field. With this potential, the slow-roll
equations are

3Hφ̇+ m2φ = 0 ; H2 =
4πm2φ2

3m2
Pl

, (48)
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and the slow-roll parameters are

ε = η =
m2

Pl

4πφ2
. (49)

So inflation can proceed provided |φ| > mPl/
√

4π, i.e. as long as we are not to
close to the minimum.

The slow-roll equations are readily solved to give

φ(t) = φi −
m mPl√

12π
t , (50)

a(t) = ai exp

[

√

4π

3

m

mPl

(

φit −
m mPl√

48π
t2

)

]

, (51)

(where φ = φi and a = ai at t = 0) and the total amount of inflation is

Ntot = 2π
φ2

i

m2
Pl

−
1

2
. (52)

This last equation can be obtained from the solution for a, but in fact is more
easily obtained directly by integrating Eq. (47), for which one needn’t bother
to solve the equations of motion.

In order for classical physics to be valid we require V * m4
Pl

, but it is
still easy to get enough inflation provided m is small enough. As we shall
later see, m is in fact required to be small from observational limits on the
size of density perturbations produced, and we can easily get far more than
the minimum amount of inflation required to solve the various cosmological
problems we originally set out to solve.

5.6 Reheating after inflation

During inflation, all matter except the scalar field (usually called the inflaton)
is redshifted to extremely low densities. Reheating is the process whereby
the inflaton’s energy density is converted back into conventional matter after
inflation, re-entering the standard big bang theory.

Once the slow-roll conditions break down, the scalar field switches from
being overdamped to being underdamped and begins to move rapidly on the
Hubble timescale, oscillating at the bottom of the potential. As it does so, it
decays into conventional matter. The details of reheating are an important area
of research in inflationary cosmology at the moment for several reasons, but
are not important for the generation and evolution of density perturbations
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which is the main focus of the remainder of this article. Consequently, I’ll
just note that recently there has been quite a dramatic change of view as
to how reheating takes place. Traditional treatments (e.g. as given in Kolb
& Turner 7) added a phenomenological decay term; this was constrained to
be very small and hence reheating was viewed as being very inefficient. This
allowed substantial redshifting to take place after the end of inflation and before
the Universe returned to thermal equilibrium; hence the reheat temperature
would be lower, by several orders of magnitude, than suggested by the energy
density at the end of inflation.

This picture is radically revised in work by Kofman, Linde & Starobinsky8

(see also Ref. 9), who suggest that the decay can undergo broad parametric
resonance, with extremely efficient transfer of energy from the coherent oscil-
lations of the inflaton field. This initial transfer has been dubbed preheating.
With such an efficient start to the reheating process, it now appears possible
that the reheating epoch may be very short indeed and hence that most of the
energy density in the inflaton field at the end of inflation may be available for
conversion into thermalized form.

5.7 The range of inflation models

Over the last fifteen years or so a great number of inflationary models have
been devised, both with and without reference to specific underlying particle
theories. Here I will discuss a very small subset of the models which have been
introduced, just to give you a flavour of the variety. At the moment particle
physics model building of inflation is undergoing a renaissance, and a detailed
snapshot of the current situation can be found in the review of Lyth & Riotto.10

However, as we shall be discussing in the next section, observations have
great prospects for distinguishing between the different inflationary models.
By far the best type of observation for this purpose appears to be high res-
olution satellite microwave background anisotropy observations, and we are
fortunate that two proposals have been approved — NASA has funded the
MAP satellite 11 for launch around 2000, and ESA has approved the Planck

satellite 12 for launch some later. These satellites should offer very strong dis-
crimination between the inflation models I shall now discuss. Indeed, it may
even be possible to attempt a more challenging type of observation — one
which is independent of the particular inflationary model and hence begins to
test the idea of inflation itself.

Chaotic inflation models

This is the standard type of inflation model.6 The ingredients are
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• A single scalar field, rolling in ...

• A potential V (φ), which in some regions satisfies the slow-roll conditions,
while also possessing a minimum with zero potential in which inflation
is to end.

• Initial conditions well up the potential, due to large fluctuations at the
Planck era.

There are a large number of models of this type. Some are

Polynomial chaotic inflation V (φ) = 1

2
m2φ2

V (φ) = λφ4

Power-law inflation V (φ) = V0 exp(
√

16π
p

φ
mPl

)

‘Natural’ inflation V (φ) = V0[1 + cos φ
f ]

Intermediate inflation V (φ) ∝ φ−β

Some of these actually do not satisfy the condition of a minimum in which
inflation ends; they permit inflation to continue forever. However, we shall see
power-law inflation arising in a more satisfactory context shortly.

Multi-field theories

A recent trend in inflationary model building has been the exploration of mod-
els with more than one scalar field. The classic example is the hybrid inflation
model,13 which seems particularly promising for particle physics model build-
ing. The simplest version has a potential with two fields φ and ψ of the form

V (φ,ψ) =
λ

4

(

ψ2 − M2
)2

+
1

2
m2φ2 +

1

2
λ′φ2ψ2 . (53)

which is illustrated in Figure 4. When φ2 is large, the minimum of the potential
in the ψ-direction is at ψ = 0. The field rolls down this ‘channel’ until it reaches
φ2

inst = λM2/λ′, at which point ψ = 0 becomes unstable and the field rolls
into one of the true minima at φ = 0 and ψ = ±M .

While in the ‘channel’, which is where all the interesting behaviour takes
place, this is just like a single field model with an effective potential for φ of
the form

Veff(φ) =
λ

4
M4 +

1

2
m2φ2 . (54)

This is a fairly standard form, the unusual thing being the constant term, which
would not normally be allowed as it would give a present-day cosmological

20



φ inst
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V

Figure 4: The potential for the hybrid inflation model. The field rolls down the channel
at ψ = 0 until it reaches the critical φ value, then falls off the side to the true minimum at
φ = 0 and ψ = ±M .

constant. The most interesting regime is where that constant dominates, and
it gives quite an unusual phenomenology. In particular, the energy density
during inflation can be much lower than normal while still giving suitably
large density perturbations, and secondly the field φ can be rolling extremely
slowly which is of benefit to particle physics model building.

Within the more general class of two and multi-field inflation models, it is
quite common for only one field to be dynamically important, as in the hybrid
inflation model — this effectively reduces the situation back to the single field
case of the previous subsection. However, it may also be possible to have
more than one important dynamical degree of freedom. In that case there
is no attractor behaviour giving a unique route into the potential minimum,
as in the single field case; for example, if the potential is of the form of an
asymmetric bowl one could roll into the base down any direction. In that
situation, the model loses some of its predictive power, because the late-time
behaviour is not independent of the initial conditions.e

eOf course, there is no requirement that the ‘true’ physical theory does have predictive
power, but it would be unfortunate for us if it does not.
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Beyond general relativity

Rather than introduce an explicit scalar field to drive inflation, some theories
modify the gravitational sector of the theory into something more complicated
than general relativity.14 Examples are

• Higher derivative gravity (R + R2 + · · ·).

• Jordan–Brans–Dicke theory.

• Scalar–tensor gravity.

The last two are theories where the gravitational constant may vary (indeed
Jordan–Brans–Dicke theory is a special case of scalar–tensor gravity).

However, a clever trick, known as the conformal transformation,15 allows
such theories to be rewritten as general relativity plus one or more scalar fields
with some potential. Often, only one of those fields is dynamical which returns
us once more to the original chaotic inflation scenario!

The most famous example is extended inflation.16 In its original form,
it transforms precisely into the power-law inflation model that we’ve already
discussed, with the added bonus that it includes a proper method of ending
inflation. Unfortunately though, this model is now ruled out by observations.3

Indeed, models of inflation based on altering gravity are much more constrained
than other types, since we know a lot about gravity and how well general rel-
ativity works,14 and many models of this kind are very vulnerable to observa-
tions.

Open inflation

In the early 1990s, in the face of ever increasing evidence of a sub-critical
matter density in the Universe, interest was refocussed on an idea which defies
the original inflationary motivation and gives rise to a homogeneous but open
Universe from inflation.f Often in the past it has been declared that this is
either impossible or contrived; however, it can be readily achieved in models
with quantum tunnelling from a false vacuum (a metastable state) followed by
a second inflationary stage.17 The tunnelling creates a bubble, and, incredibly,
the region inside the expanding bubble looks just like an open Universe, with
the bubble wall corresponding to the initial (coordinate) singularity. These
models are normally referred to as ‘open inflation’ or ‘single-bubble’ models.
So far it has turned out that such models are not all that easy to construct.

f That is, a genuinely open Universe with hyperbolic geometry and no cosmological constant.
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These models are already very different from traditional inflation mod-
els, and subsequently an even bolder idea has been proposed,18 that an open
Universe can be created via ‘tunnelling from nothing’ rather than from a pre-
existing inflationary phase. As I write this remains controversial.

While both these types of open inflation models remain viable, they are
considerably more complex than the standard inflation models, and at the mo-
ment not that well motivated as although observations continue to favour a low
matter density, they also favour spatial flatness reintroduced by a cosmological
constant. Therefore from now on I will restrict discussion to the single-field
chaotic inflation models.

5.8 Recap

The main points of this long section were the following.

• Cosmological scalar fields, which were introduced long before inflation
was thought of, provide a natural framework for inflation.

• Despite a wide range of motivations, most inflationary models are dy-
namically equivalent to general relativity plus a single scalar field with
some potential V (φ).

• Within this framework, solutions describing inflation are easily found.
Indeed, for many of the properties (amount of expansion, for example),
we do not even need to solve the equations of motion.

With this information under our belts, we are now able to discuss the strongest
motivation for the inflationary cosmology — that it is able to provide an ex-
planation for the origin of structure in the Universe.

6 Density Perturbations and Gravitational Waves

In modern terms, by far the most important property of inflationary cosmol-
ogy is that it produces spectra of both density perturbations and gravita-
tional waves. The density perturbations may be responsible for the formation
and clustering of galaxies, as well as creating anisotropies in the microwave
background radiation. The gravitational waves do not affect the formation of
galaxies, but as we shall see may contribute extra microwave anisotropies on
the large angular scales sampled by the COBE satellite.19,20 An alternative
terminology for the density perturbations is scalar perturbations and for the
gravitational waves is tensor perturbations, the terminology referring to their
transformation properties.
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Studies of large-scale structure typically make some assumption about the
initial form of these spectra. Usually gravitational waves are assumed not
to be present, and the density perturbations to take on a simple form such
as the scale-invariant Harrison–Zel’dovich spectrum, or a scale-free power-law
spectrum. It is clearly highly desirable to have a theory which predicts the
forms of the spectra. There are presently two rival models which do this,
cosmological inflation and topological defects. At present inflation is favoured
both on observational grounds and because it provides a simpler framework
for understanding the evolution of structure

6.1 Production during inflation

The ability of inflation to generate perturbations on large scales comes from
the unusual behaviour of the Hubble length during inflation, namely that (by
definition) the comoving Hubble length decreases. When we talk about large-
scale structure, we are primarily interested in comoving scales, as to a first
approximation everything is dragged along with the expansion. The qualita-
tive behaviour of irregularities is governed by their scale in comparison to the
characteristic scale of the Universe, the Hubble length.

In the big bang Universe the comoving Hubble length is always increas-
ing, and so all scales are initially much larger than it, and hence unable to be
affected by causal physics. Once they become smaller than the Hubble length,
they remain so for all time. In the standard scenarios, COBE sees perturba-
tions on large scales at a time when they were much bigger than the Hubble
length, and hence no mechanism could have created them.

Inflation reverses this behaviour, as seen in Figure 5. Now a given comov-
ing scale has a more complicated history. Early on in inflation, the scale could
be well inside the Hubble length, and hence causal physics can act, both to
generate homogeneity to solve the horizon problem and to superimpose small
perturbations. Some time before inflation ends, the scale crosses outside the
Hubble radius (indicated by a circle in the lower panel of Figure 5) and causal
physics becomes ineffective. Any perturbations generated become imprinted,
or, in the usual terminology, ‘frozen in’. Long after inflation is over, the scales
cross inside the Hubble radius again. Perturbations are created on a very wide
range of scales, but the most readily observed ones range from about the size
of the present Hubble radius (i.e. the size of the presently observable Universe)
down to a few orders of magnitude less. On the scale of Figure 5, all interest-
ing comoving scales lie extremely close together, and cross the Hubble radius
during inflation very close together.

It’s all very well to realize that the dynamics of inflation permits perturba-
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Figure 5: The behaviour of a given comoving scale relative to the Hubble length, both
during and after inflation, shown using physical coordinates (upper panel) and comoving
ones (lower panel).

tions to be generated without violating causality, but we need a specific mech-
anism. That mechanism is quantum fluctuations. Inflation is trying as hard as
it can to make the Universe perfectly homogeneous, but it cannot defeat the
Uncertainty Principle which ensures that there are always some irregularities
left over. Through this limitation, it is possible for inflation to adequately solve
the homogeneity problem and in addition leave enough irregularities behind to
attempt to explain why the present Universe is not completely homogeneous.
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The size of the irregularities depends on the energy scale at which inflation
takes place. It is outside the scope of these lectures to describe in detail
how this calculation is performed (see e.g. Ref. 21 for a reasonably accessible
description); I’ll just briefly outline the necessary steps and then quote the
result, which we can go on to apply.

(a) Perturb the scalar field φ = φ(t) + δφ(x, t)
(b) Expand in comoving wavenumbers δφ =

∑

(δφ)keik.x

(c) Linearized equation for classical evolution
(d) Quantize theory
(e) Find solution with initial condition giving

flat space quantum theory (k ' aH)
(f) Find asymptotic value for k * aH 〈|δφk|2〉 = H2/2k3

(g) Relate field perturbation to metric R = H δφ/φ̇
or curvature perturbation

Some important points are

• The details of this calculation are extremely similar to those used to
calculate the Casimir effect (a quantum force between parallel plates),
which has been tested in the laboratory.

• The calculation itself is not controversial, though some aspects of its
interpretation (in particular concerning the quantum to classical transi-
tion) are.

• Exact analytic results are not known for general inflation models (though
linear theory results for arbitrary models are readily calculated numer-
ically 22). The results I’ll be quoting will be lowest-order in the SRA,
which is good enough for present observations.

• Results are known to second-order in slow-roll for arbitrary inflaton
potentials.23 Power-law inflation is the only standard model for which
exact results are known. In some other cases, high accuracy approxi-
mations give better results (e.g. small-angle approximation in natural or
hybrid inflation 23,24).

The formulae for the amplitude of density perturbations, which I’ll call
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δH(k), and the gravitational waves, AG(k), are g

δH(k) =

√

512π

75

V 3/2

m3
Pl
|V ′|

∣

∣

∣

∣

∣

k=aH

, (55)

AG(k) =

√

32

75

V 1/2

m2
Pl

∣

∣

∣

∣

∣

k=aH

. (56)

Here k is the comoving wavenumber; the perturbations are normally analyzed
via a Fourier expansion into comoving modes. The right-hand sides of the
above equations are to be evaluated at the time when k = aH during inflation,
which for a given k corresponds to some particular value of φ. We see that the
amplitude of perturbations depends on the properties of the inflaton potential
at the time the scale crossed the Hubble radius during inflation. The relevant
number of e-foldings from the end of inflation is given by 2

N ( 62 − ln
k

a0H0

+ numerical correction , (57)

where ‘numerical correction’ is a typically smallish (order a few) number which
depends on the energy scale of inflation, the duration of reheating and so on.
Normally it is a perfectly fine approximation to say that the scales of interest
to us crossed outside the Hubble radius 60 e-foldings before the end of inflation.
Then the e-foldings formula

N ( −
8π

m2
Pl

∫ φend

φ

V

V ′
dφ , (58)

tells us the value of φ to be substituted into Eqs. (55) and (56).

6.2 A worked example

The easiest way to see what is going on is to work through a specific example,
the m2φ2/2 potential which we already saw in Section 5.5. We’ll see that we
don’t even have to solve the evolution equations to get our predictions.

1. Inflation ends when ε = 1, so φend ( mPl/
√

4π.

gThe precise normalization of the spectra is arbitrary, as are the number of powers of k
included. I’ve made my favourite choice here (following Refs. 2,21), but whatever convention
is used the normalization factor will disappear in any physical answer. For reference, the
usual power spectrum P (k) is proportional to kδ2

H
(k).
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2. We’re interested in 60 e-foldings before this, which from Eq. (52) gives
φ60 ( 3mPl.

3. Substitute this in:

δH ( 12
m

mPl

; AG ( 1.4
m

mPl

4. Reproducing the COBE result requires25 δH ( 2×10−5 (provided AG *
δH), so we need m ( 10−6mPl.

Because the required value of m is so small, that means it is easy to get
sufficient inflation to solve the cosmological problems, without violating the
classicality condition V < m4

Pl
. That implies only that φ < m2

Pl
/m ( 106mPl,

and as Ntot ( 2πφ2/m2
Pl

, we can get up to about 1013 e-foldings in principle.
This compares extremely favourably with the 70 or so actually required.

6.3 Observational consequences

Observations have moved on beyond us wanting to know the overall normal-
ization of the potential. The interesting things are

1. The scale-dependence of the spectra.

2. The relative influence of the two spectra.

These can be neatly summarized using the slow-roll parameters ε and η we
defined earlier.3

The standard approximation used to describe the spectra is the power-

law approximation, where we take

δ2H(k) ∝ kn−1 ; A2
G(k) ∝ knG , (59)

where the spectral indices n and nG are given by

n − 1 =
d ln δ2H
d ln k

; nG =
d lnA2

G

d ln k
. (60)

The power-law approximation is usually valid because only a limited range
of scales are observable, with the range 1 Mpc to 104 Mpc corresponding to
∆ ln k ( 9.

The crucial equation we need is that relating φ values to when a scale k
crosses the Hubble radius, which from Eq. (58) is

d ln k

dφ
=

8π

m2
Pl

V

V ′
. (61)
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MODEL POTENTIAL n R

Polynomial φ2 0.97 0.1
chaotic inflation φ4 0.95 0.2
Power-law inflation exp(−λφ) any n < 1 2π(1 − n)
‘Natural’ inflation 1 + cos(φ/f) any n < 1 0
Hybrid inflation (standard) 1 + Bφ2 1 0
Hybrid inflation (extreme) 1 + Bφ2 1 < n < 1.15 ∼ 0

Table 1: The spectral index and gravitational wave contribution for a range of inflation
models.

(since within the slow-roll approximation k ( exp N). Direct differentiation
then yields 3

n = 1 − 6ε+ 2η , (62)

nG = −2ε , (63)

where now ε and η are to be evaluated on the appropriate part of the potential.
Finally, we need a measure of the relevant importance of density perturba-

tions and gravitational waves. The natural place to look is the microwave back-
ground; a detailed calculation which I cannot reproduce here (see e.g. Ref. 2)
gives

R ≡
CGW

$

CDP
$

( 4πε . (64)

Here the C$ are the contributions to the microwave multipoles, in the usual
notation.h

From these expressions we immediately see

• If and only if ε* 1 and |η| * 1 do we get n ( 1 and R ( 0.

• Because the coefficient in Eq. (64) is so large, gravitational waves can
have a significant effect even if ε is quite a bit smaller than one.

Table 1 shows the predictions for a range of inflation models. The infor-
mation I’ve given you so far should be sufficient to allow you to reproduce
them. Even the simplest inflation models can affect the large-scale structure
modelling at a level comparable to the present observational accuracy. The
predictions of the different models will be wildly different as far as future high-
accuracy observations are concerned.

hNamely, ∆T/T =
∑

a!mY !
m(θ, φ), C! = 〈|a!m|2〉.
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Observations have some way to go before the power-law approximation
becomes inadequate. Consequently ...

• Slow-roll inflation adds two, and only two, new parameters to large-scale
structure.

• Although ε and η are the fundamental parameters, it is best to take them
as n and R.

• Inflation models predict a wide range of values for these. Hence inflation
makes no definite prediction for large-scale structure.

• However, this means that large-scale structure observations, and espe-
cially microwave background observations, can strongly discriminate be-
tween inflationary models. When they are made, most existing inflation
models will be ruled out.

6.4 Testing the idea of inflation

The moral of the previous section was that different inflation models lead to
very different models of structure formation, spanning a wide range of possi-
bilities. That means, for example, that a definite measure of say the spectral
index n would rule out most inflation models. But it would always be possible
to find models which did give that value of n. Is there any way to try and test
the idea of inflation, independently of the model chosen?

The answer, in principle, is yes. In the previous section we introduced
three observables (in addition to the overall normalization), namely n, R and
nG. However, they depend only on two fundamental parameters, namely ε and
η.3 We can therefore eliminate ε and η to obtain a relation between observables,
the consistency equation

R = −2πnG . (65)

This relation has been much discussed in the literature.26,21 It is independent
of the choice of inflationary model (though it does rely on the slow-roll and
power-law approximations).

The idea of a consistency equation is in fact very general. The point is that
we have obtained two continuous functions, δH(k) and AG(k), from a single
continuous function V (φ). This can only be possible if the functions δH(k) and
AG(k) are related, and the equation quoted above is the simplest manifestation
of such a relation.

Vindication of the consistency equation would be a remarkably convincing
test of the inflationary paradigm, as it would be highly unlikely that any other
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production mechanism could entangle the two spectra in the way inflation does.
Unfortunately though, measuring nG is a much more challenging observational
task than measuring n or R and is likely to be beyond even next generation
observations. Indeed, this is a good point to remind the reader that even if
inflation is right, only one model can be right and it is perfectly possible (and
maybe even probable, see Ref. 27) that that model has a very low amplitude of
gravitational waves and that they will never be detected.

7 The inflationary origin of structure

At the summer school where these lectures were given, models of structure
formation were described in detail by Joe Silk and for a detailed treatment I
refer you to his corresponding article. Here I will address those issues of direct
relevance to the inflationary cosmology.

7.1 The parameters

The initial goal of structure formation studies is to accurately determine the
fundamental parameters describing our Universe. So far I’ve stressed the three
inflationary parameters, δH, n and r, which describe the initial perturbations
which inflation generates. However, except on very large scales where they
remain untouched by causal processes, we do not see the original perturbations
but rather than perturbations after they have been processed by a variety of
physical mechanisms. This processing depends on many quantities, all of which
must be either fixed by assumption or determined from observations. A basic
list features four categories; the global dynamics, the way in which the matter
content is divided amongst the different particle species, astrophysics effects
such as reionization which would affect the microwave background photons,
and the initial perturbation spectrum that we are here assuming comes from
inflation. A possible list might look like this

1. Global dynamics

Hubble constant h ∗
Spatial curvature k

2. Matter content

Baryons ΩB ∗
Hot dark matter? ΩHDM

Cosmological constant? Λ (∗)
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Massless species? g∗

3. Astrophysics

Reionization optical depth τ ∗

4. Initial perturbations

Amplitude δH(k = a0H0) ∗

Spectral index n ∗

Gravitational waves r

A cold dark matter contribution is not mentioned under matter content as it
is assumed to take the value required to make the sums add up (i.e. to give
the right spatial curvature k given the other matter densities).

In this list, I’ve starred those parameters which need to be included in even
the most minimal model, while the rest can be set to some particular value by
assumption. I’ve partially starred the cosmological constant because although
most people would like to set it to zero, the observational case for a non-zero
value is near to overwhelming.

7.2 The inflationary energy scale

The most solid observational result is the interpretation of the cosmic mi-
crowave anisotropies seen by COBE as giving the amplitude of the initial power
spectrum. COBE is a particularly powerful probe because its large beam size
makes it sensitive only to scales much larger than the horizon size when the
microwave background formed. The perturbations are therefore seen in their
primordial form, and depend only on the initial perturbations and not all the
other parameters. i

The COBE normalization requires the perturbation at the present Hubble
scale, δH ≡ δH(k = a0H0), to be given by 25

δH ( 2 × 10−5 . (66)

Since

δ2H =
32

75

V

m4
Pl

1

ε
, (67)

iThere is a residual dependence on Ω0 and Λ which determine the relation between the
metric perturbations and the matter perturbations, and also the evolution of perturbations,
but that is easily dealt with. I will assume critical density for simplicity.

32



then unless ε proves to be tiny (say much less than a hundredth) this will give

V 1/4 ( 10−3mPl ( 1016 GeV , (68)

at the time when observable scales crossed outside the horizon, pretty much
the scale that particle physicists associate with Grand Unified Theories.

7.3 Beyond the energy scale

To go beyond the energy scale entails bringing together as wide a range of
observations as possible to try and constrain the wide parameter family. When
restricted parameter sets are considered quite interesting constraints can be
quoted, but these weaken once the parameter space is widened. Until recently
no-one attempted a plausibly large parameter space, but recently Tegmark 28

considered a nine-parameter family of models, including the three inflationary
parameters, which is the first attempt to get to grips with the large families of
models that need to be considered for us to become convinced we are on the
right track.

At present, observations are only quite weakly constraining concerning
quantities beyond the inflationary energy scale. The spectral index is known
to lie near one, with the plausible range, depending on what parameters one
allows to vary, stretching from perhaps 0.8 to 1.2. As it happens, that is more or
less the range which current inflation models tend to cover, and so most models
survive. The holy grail for inflation model building is an accurate measurement
of n, say with an error bar of around 0.01 or better. Such a measurement would
exclude the vast majority of the models currently under discussion. MAP, and
certainly Planck, ought to be able to deliver a measurement at around this
accuracy level, and perhaps may even be able to see deviations from perfect
power-law behaviour.29,30

At the moment there is no evidence favouring a gravitational wave contri-
bution to COBE, but equally the upper limit on such a contribution, perhaps
around r < 1 depending on other parameters (see Ref.31 for a recent analysis),
is unable to rule out much in the way of interesting models (though it is a com-
bination of the constraints on n and r that kills extended inflation). If such a
contribution can be identified, it will be very strong support for inflation, but
since many models, especially of the currently-popular hybrid type, predict in-
significant gravitational wave production, even the strongest achievable upper
limits may tell us nothing.

A particularly powerful test of inflation will be whether or not the mi-
crowave anisotropy spectrum (the C$) proves to contain an oscillatory peak
structure.32 Such a structure is evidence of phase coherence in the evolution of
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perturbations (meaning that the perturbations of a given wavenumber are at
a calculable phase of oscillation). Such phase coherence would indicate that
perturbations are entirely in the growing mode, which in turn implies that they
have been evolving sufficiently long for the decaying mode to become negligi-
ble. For modes around the horizon scale at decoupling, this implies that they
were already in place while well outside the horizon, which is a characteristic
of inflationary perturbations (a characteristic not shared by topological de-
fect models, for instance). This fairly qualitative test, if satisfied, will provide
strong support for the inflationary paradigm, while if a multiple peak structure
is not observed that will imply that the inflationary mechanism is not the sole
source of perturbations in the Universe.

8 Summary

In this article I have introduced some of the facets of inflation in a fairly sim-
ple manner. If you are interested in going beyond this, then the inflationary
production of perturbations is reviewed in Ref. 21, inflation and structure for-
mation in Ref. 2 and particle physics aspects of inflation in Ref. 10.

At present, inflation is the most promising candidate theory for the origin
of perturbations in the Universe. Different inflation models lead to discernibly
different predictions for these perturbations, and hence high-accuracy mea-
surements are able to distinguish between models, excluding either all or the
vast majority of them.

Since its inception, the inflationary cosmology has been a gallery of differ-
ent models, and the gallery has continually needed extension after extension
to house new acquisitions. In all the time up to the present, very few models
have been discarded. However, the near future holds great promise to finally
begin to throw out inferior models, and, if the inflationary cosmology survives
as our model for the origin of structure, we can hope to be left with only a
narrow range of models to choose between.
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