Evolution and nucleosynthesis of AGB stars

Amanda Karakas
Research School of Astronomy & Astrophysics
Mount Stromlo Observatory
Lecture Outline

1. Introduction to AGB stars; evolution prior to the AGB phase
2. Evolution and nucleosynthesis before the AGB phase
3. Evolution and nucleosynthesis of AGB stars
4. The slow-neutron capture process in AGB stars
5. Low and zero-metallicity AGB evolution
6. Super-AGB stars and post-AGB objects
Outline of this lecture

1. The thermal-pulse cycle
2. Evolution and nucleosynthesis during a thermal pulse including the third dredge-up
3. Evolution and nucleosynthesis during the interpulse period including hot bottom burning
4. Yields from AGB stars
Asymptotic Giant Branch stars

From previous lectures:
AGB is the last nuclear burning phase for 0.8 to 8 Msun stars
AGB stars are cool (~3000 K) evolved giants, spectral types M, S, C
Many AGB stars are observed to be losing mass rapidly ($\dot{M} \sim 10^{-5}$ Msun/yr)
FDU and SDU altered the surface prior to the AGB
AGB stars are observed to be long-period variables, $P \sim 100$-1000 days
Thermal pulse cycle in more detail

Deep convective envelope

H-burning shell

He-rich intershell

He-burning shell

Carbon-Oxygen core

He-shell burns brightly, producing up to 10^8 L_{\odot}
Thermal pulse cycle in more detail

Deep convective envelope
H-burning shell
He-rich intershell
He-burning shell
Carbon-Oxygen core

Convective pocket reaches maximum extent, mixing the intershell with the products of He-burning

On phase
Thermal pulse cycle in more detail

- Deep convective envelope
- H-burning shell
- He-rich intershell
- He-burning shell
- Carbon-Oxygen core

intershell convection starts to retreat

Power down
Thermal pulse cycle in more detail

Deep convective envelope
H-burning shell
He-rich intershell
He-burning shell
Carbon-Oxygen core

Power down
Thermal pulse cycle in more detail

Deep convective envelope

H-burning shell

He-rich intershell

He-burning shell

Carbon-Oxygen core

the outer envelope reaches the intershell, thus mixing $^{12}\text{C},^{25,26}\text{Mg}$ and s-process elements into the envelope
Thermal pulse cycle in more detail

- Deep convective envelope
- H-burning shell
- He-rich intershell
- He-burning shell
- Carbon-Oxygen core

H-shell is re-ignited and will provide most of the surface luminosity for the next 10^4 years.

Interpulse phase
The AGB Evolution Cycle

1. **On phase:** He-shell burns brightly, producing up to 100 million L_{sun}, drives a convection zone in the He-rich intershell and lasts for \sim 100 years

2. **Power-down:** He-shell dies down, energy released by flash drives expansion which extinguishes the H-shell

3. **Third dredge-up:** convective envelope moves inward into regions mixed by flash-driven convection. Mixes partially He-burnt material to surface.

4. **Interpulse:** star contracts and H-shell is re-ignited, provides most of the surface luminosity for the next 10^4 to 10^5 years

Pulse (He-burning) \rightarrow TDU (mixing) \rightarrow Interpulse
Few $\sim 10^2$ yrs \rightarrow $\sim 10^2$ years \rightarrow $\sim 10^4$ yrs
AGB evolution: 3M\textsubscript{sun}, Z = 0.02
Zoom in on first few TPs: 3Msun

Time is scaled: \((t-4.23 \times 10^8/1 \times 10^5)\)

White = radiated luminosity
Green = he-burning luminosity, and Red = H-burning luminosity
Convective pockets during TPs

The huge luminosities (~10^8 L_{\odot}) produced by each TP drive a convective region in the He-rich intershell. The convective pocket extends over almost the whole intershell. It has the effect of homogenising abundances within this region. The mass of the pocket ~ few $10^{-3} \text{ M}_{\odot}$, depending on stellar mass. The duration of convection is ~few hundred years. Model number is a proxy for time.

Results for a 1.9M$_{\odot}$, Z = 0.008 model.

Convection zones = green, radiative = pink.
Luminosity variability

- Large amplitude red variables are all AGB stars near the tip of the AGB
- The LMC provides a large sample of long-period variables at a known distance, so absolute luminosities can be derived
- Pulsation periods, combined with pulsation theory, can be used to derive current stellar masses
- Three broad groups: Miras (up to 6 mag in visual!), semiregular and irregular variables
- Variability caused by envelope pulsation, with periods on the order of 100 to ~1000 days
- These pulsations are NOT related to thermal pulses, which have a cycle of 10^4 years!
- Radial pulsations of the envelope linked to mass loss
Making Carbon Stars!

- Thermal pulses and third dredge-up can occur many times during the AGB
- Dredge up mixes ^{12}C from the He-shell to the surface, increasing the C/O ratio to > 1
- Can explain the transition from M-type star (with C/O < 1) to carbon star:
 \[\text{M} \rightarrow \text{MS} \rightarrow \text{S} \rightarrow \text{SC} \rightarrow \text{C} \ (\text{C/O} > 1) \]
- Carbon stars are also observed to have enrichments ($[\text{X}/\text{Fe}] > 0$) of heavy elements (e.g. Ba, Tc, La)
- Fluorine is observed to be enriched in carbon stars (Jorissen et al. 1992), with a correlation between increasing C/O and $[\text{F}/\text{O}]$
- Reviews: Busso et al. (1999), Herwig (2005)
The third dredge-up

3 M_{\odot}, Z = 0.02
Carbon star at pulse 21

\begin{itemize}
 \item C/O = 1.09
 \item C/O = 1.00
 \item C/O = 0.32
\end{itemize}

\textbf{Mass of H-exhausted Core}

\textbf{Time (in years)}

\textbf{M_{H}} \quad \textbf{M_{He}}
Let’s look at a TP again

Extent of convective pocket is $1.68 \times 10^{-2} \, \text{M}_{\odot}$

About half gets mixed into envelope

H-exhausted core mass is decreased by TDU

He-exhausted core mass

22nd thermal pulse for the $3 \, \text{M}_{\odot}$, $Z = 0.02$ model
Efficiency of third dredge-up, λ

\[\lambda = \frac{\Delta \text{Mass}_{\text{dredge}}}{\Delta \text{Mass}_h} \]

$\lambda = 0.78$ between 23rd and 22n TP
Lambda as a function of core mass

For the 5Msun, Z = 0.02 model

The efficiency of the third dredge up is a function of the core mass (or total mass) and metallicity.

General trend that we find:
For increasing M at a given Z: lambda increases
For decreasing Z at a given M: lambda increases!

This means it is easier to make C-stars in lower Z or higher mass models

….except we don’t see luminous C-stars!
….because of hot bottom burning!
Making carbon stars is easier at lower metallicity

\[M = 3, \ Z = 0.004, \ [\text{Fe/H}] \sim -0.7 \]
Constraining the third dredge up

- It is important to know if the models are giving us an accurate description of mixing in AGB stars.
- Are we predicting enough TDU, or too much? Do we predict the right mass range for carbon stars?
- The distances to the LMC and SMC are well determined and we know of lots of C-stars (e.g. Groenewegen 2004).
- This data enables carbon-star luminosity functions to be constructed for both these locations.
- Long-standing problem forming C-stars at low enough luminosities, and hence core masses.
Nucleosynthesis: He-burning

- Main energy-generating reactions:
 - 3α process: $3^4\text{He} \rightarrow ^{12}\text{C}$
 - $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ – relatively unimportant during thermal pulses

- Non-energetic reactions:
 - ^{14}N captures 2 α particles to make ^{22}Ne
 - ^{22}Ne can capture an α particle to produce $^{25,26}\text{Mg}$. Only occurs when $T > 300$ million K
 - ^{19}F can be produced through complex series of reactions involving both H, He-burning
 - The slow-neutron capture process can occur to make elements heavier than Fe
Nucleosynthesis from He-shell burning

3\,\text{Msun}, \ Z = 0.008:
Intershell ^4He and ^{12}C abundance evolution during first 6 TPs

3.5\,\text{Msun}, \ Z = 0.008:
Surface ^{22}Ne, ^{25}Mg and ^{26}Mg abundance evolution
How do AGB stars make F?

- The reaction chain: $^{18}\text{O}(p, \alpha)^{15}\text{N}(\alpha, \gamma)^{19}\text{F}(\alpha, p)^{22}\text{Ne}$
- Fluorine production takes place in the He-intershell region: He-rich, H poor
- There are almost no protons, and little ^{15}N
- These are created by other reactions including:
 - $^{13}\text{C}(\alpha, n)^{16}\text{O}$ - produces free neutrons
 - $^{14}\text{N}(n, p)^{14}\text{C}$ - produces free protons
 - $^{18}\text{F}(\alpha, p)^{21}\text{Ne}$ - alternative proton production
 - $^{14}\text{N}(\alpha, \gamma)^{18}\text{F}(\beta^+)^{18}\text{O}$ - main reaction to produce ^{18}O
 - $^{14}\text{C}(\alpha, \gamma)^{18}\text{O}$ - alternative reaction
 - $^{18}\text{O}(\alpha, \gamma)^{22}\text{Ne}$ - main ^{18}O destruction reaction
 - $^{15}\text{N}(p, \alpha)^{12}\text{C}$ - destroys ^{15}N
Fluorine production

Results for a 3Msun model:

Composition profile showing intershell region just after last TP. TDU will mix the 19F created by the pulse into the envelope.

Abundances from Jorissen et al. (1992) compared to model results. ⊘ - shows SC stars, with C/O = 1.0.
Hot bottom burning

- In massive ($M > 3 \text{Msun}$) AGB stars the base of the convective envelope can dip into the H-shell
- Typical temperatures between ~ 50 to 100 million K
- Burning region is thin in mass (10^{-4}Msun) but efficient mixing means that entire envelope is exposed to hot region at least 1000 times per interpulse!
- Envelope burning was originally proposed to explain existence of luminous O-rich AGB stars in the LMC (Wood, Bessel & Fox 1983)
- Many of these stars also rich in lithium and s-process elements (Smith & Lambert 1989, Garcia Hernandez et al. 2006)
- CNO cycling at the base of the envelope prevents the formation of a C-rich atmosphere
Dredge-up still occurs

6.5 Msun, Z = 0.012
HBB at ~ 90 million K
total of 53 TPs

C/O_final = 0.76
12C/13C = 10.4

Mass of H-exhausted Core

M_H

M_He

CO core

Time (in years)
But the base of the envelope is hot!

$6.5M_{\text{sun}}, Z = Z_{\text{solar}}$: Peak temperature $\sim 90 \times 10^6 \text{ K}$
HBB Nucleosynthesis

- Efficient mixing in the envelope, with a convective turn over time of ~1 year means that the surface composition is dramatically affected by HBB.
- The main result is CNO cycling: ^{12}C is destroyed to make ^{14}N.
- Base of the envelope gets hot enough to activate the NeNa and MgAl chains.
- Ne isotopes (in particular ^{22}Ne) are destroyed to make sodium.
- Mg isotopes, in particular ^{25}Mg, are destroyed to make Al, including the radioactive ^{26}Al ($\tau_{1/2} \sim 750,000$ years).
- Fluorine is easily destroyed by proton captures.
- Lithium can be made! Via the Cameron-Fowler mechanism.
- Note that TDU mixing still occurs to bring He-fusion products to the surface.
The ^{13}C content increases, due to the processing of ^{12}C into ^{12}C. In extreme cases, when the entire envelope can be processed many times between pulses, HBB can produce the equilibrium ratio of $^{12}\text{C}/^{13}\text{C}$ of about 3.5. A consequence of this burning is the copious production of primary ^{14}N.
C/O ratio as a function of M, Z
Examples: 6.5M_{\odot}, Z = 0.02

Surface abundance evolution during the AGB phase

Production of $^{25,26}\text{Mg}$

log γ

(Time - 1.0e+07)/ 1.0e+05 years

Na^{23}

Ne^{22}

Mg^{26}

Mg^{25}

Al^{27}
Lithium production

• The first thing to happen is that 7Li is produced via the Cameron-Fowler Beryllium Transport Mechanism.
• This is basically PP chains plus convection!
• The idea is that lithium is made by 3He(α, γ)7Be
• and then to use convection to move the 7Be away from the hot region before it can complete the PPII or PPIII chains:

\[^7\text{Li} (p, \alpha)^4\text{He} = \text{PPI} \\quad \text{BAD!} \]

\[^3\text{He} (\alpha, \gamma)^7\text{Be} (\beta, \nu)^7\text{Li} \]

\[^7\text{Be} (p, \gamma)^8\text{B} (\beta^+, \nu) \text{ Be}(\alpha)^4\text{He} = \text{PPIII} \quad \text{BAD!} \]

Cameron-Fowler mechanism
The upward stream is rich in ^7Be, where it was produced at the bottom of the convective envelope. The ^7Be is then taken to cooler regions where it captures an electron to form ^7Li. The Li production is limited by how much He-3 is present initially: once it is all used up then the ^7Li will eventually decline again.
Range of observed Li abundances

Below: notice that the observed range of Li abundances, shown here in blue, match very well the models!
Stellar yields

General definition: Amount of matter (ΔM) that is expelled from a star over the course of its life

More precisely... integrated amount (in mass) of species k that is expelled into the interstellar medium (ISM) over the stellar lifetime, τ,

\[
\int_{\tau} \left[X_k(t) - X_k(0) \right] \frac{dM}{dt} \, dt,
\]

minus the amount of k that is initially present in the wind ($X_k(0) \Delta M$)
Legend:

Black: my models
Blue: Izzard
Red: Marigo (2001)
Pink: van den Hoek & Groenewegen

Carbon-12

\[Z = 0.02 \]

\[Z = 0.008 \]

\[Z = 0.004 \]
Nitrogen-14

Z = 0.02

Z = 0.008

Z = 0.004
Summary of AGB nucleosynthesis

- Experience brief bursts of He-shell burning (TPs)
- May be followed by mixing from the core to the surface (TDU)
- As well as a longer interpulse phase (H-burning)
- For stars between 1 to 3\,M_{\odot}:
 - The third dredge-up may occur after each thermal pulse
 - Mixes He-burning products to the surface
 - Important for producing s-process elements (Lecture 4)
- For stars between 4 to 8\,M_{\odot}:
 - Proton capture nucleosynthesis at the base of the envelope
 - Alongside TDU mixing of He-shell material
 - Do these also produce s-process elements?