Iteration and Problem Solving Strategies
 How to solve anything!

How to work out really complicated motion

- Break it up into little tiny steps.
- Use an approximate method for each step.
- Add them all up.

Vertical spring-mass

- Time t with $\mathrm{t}+\Delta \mathrm{t}$
- Position x with $\mathrm{x}+\mathrm{v} \Delta \mathrm{t}$
- Velocity v with

$$
v+\left(g-\frac{k}{m} x\right) \Delta t
$$

Let's go

- Start off with $t=0, x=0, v=0$
- Apply our equations:
- New value of t is $t+\Delta t=0+0.1=0.1$
- New value of x is $x+v \Delta t=0+0 \times 0.1=0$
- New value of v is

$$
v+\left(g-\frac{k}{m} x\right) \Delta t=0+\left(9.8-\frac{5}{0.1} 0\right) \times 0.1=0.98
$$

So after 0.1 seconds...

- According to our method, the position hasn't changed (still zero) but the velocity has increased to $0.98 \mathrm{~m} / \mathrm{s}$.
- Now do this again, using these new numbers as the starting parameters..

Second iteration

- Start off with $t=0.1, x=0, v=0.98$
- Apply our equations:
- New value of t is $t+\Delta t=0.1+0.1=0.2$
- New value of x is $x+v \Delta t=0+0.98 \times 0.1=0.098$
- New value of v is
$v+\left(g-\frac{k}{m} x\right) \Delta t=0.98+\left(9.8-\frac{5}{0.1} 0\right) \times 0.1=1.96$

Third iteration

- Start off with $\mathrm{t}=0.2, \mathrm{x}=0.098, \mathrm{v}=1.96$
- Apply our equations:
- New value of t is $t+\Delta=0.2+0.1=0.3$
- New value of x is $x+v \Delta t=0.098+1.96 \times 0.1=$ 0.294
- New value of v is
$v+\left(g-\frac{k}{m} x\right) \Delta t=1.96+\left(9.8-\frac{5}{0.1} 0.098\right) \times 0.1=2.45$

Fourth iteration

- Start off with $\mathrm{t}=0.3, \mathrm{x}=0.294, \mathrm{v}=2.45$
- Apply our equations:
- New value of t is $\mathrm{t}+\Delta \mathrm{t}=0.3+0.1=0.4$
- New value of x is $x+v \Delta t=0.294+2.45 \times 0.1=$ 0.539
- New value of v is
$v+\left(g-\frac{k}{m} x\right) \Delta t=2.45+\left(9.8-\frac{5}{0.1} 0.294\right) \times 0.1=1.96$

And so on...

- Do the calculations for each step, and then use the results as the input for the next step.
- That's what iteration means!
- What results do we get?

Results for first few iterations (steps)

\mathbf{t}	\mathbf{x}	\mathbf{v}
0	0	0
0.1	0	0.98
0.2	0.098	1.96
0.3	0.294	2.45
0.4	0.539	1.96
0.5	0.735	0.245

A graph of the first twenty interations...

Good and bad

- If you remember - the correct solution is an oscillation.
- Our iteration has correctly produced an oscillation.
- But it has the amplitude steadily increasing - which is wrong.
- Springs don't do that!

Our time step was too big.

- The approximation (that the speed and velocity are approximately constant within each time-step) wasn't good enough.
- If we make our time-step smaller... (say 0.01 sec)...
- We have to do a lot more steps...

But it gets better...

And if we make our time step smaller still - say 0.001 sec...

Really rather good...

- But I needed to do 2000 steps (iterations) to get the last plot.
- Which would have been very tedious and error-prone had I not used a computer...
- Luckily we have computers and doing those 2000 steps took less than 0.1 sec...

But it's painful

- So do it by computer!
- Example python program

So even this crude approximation...

- It pretty good with small timesteps.
- And with the speed of modern computers, small timesteps are not much of a problem.
- Using a better (more complicated) approximation to the motion in each timestep will mean that you can get away with bigger timesteps.
- But each timestep needs more calculations to evaluate - so overall you may not be better off.

Let's try an example

- A spaceship near a black hole...

What forces apply?

- In this case there is only one - the gravitational force.
- Being in space there is no friction or drag, so...

$$
F=\frac{G M m}{x^{2}} \quad \begin{aligned}
& \text { Where M is the mass } \\
& \text { of the black hole and } \mathrm{m} \\
& \text { the mass of the } \\
& \text { spaceship. }
\end{aligned}
$$

What variables will we track?

- Time, position (x) and velocity (v) as before.
- For one-dimensional problems it will always be these.
- In 3D, you will need to track vector position and vector velocity.

Iteration equations

- For time: $\mathrm{t}+\Delta \mathrm{t}$ (as before)
- For position: $\mathrm{x}+\mathrm{v} \Delta \mathrm{t}$ (as before)
- But what about for velocity?

Write it down...
$F=\frac{G M m}{x^{2}}$
What will the velocity be at the end of a time-step?
x increases away from the black hole. Velocity is (as always) rate of change of x.

Clicker Question

- What is the new velocity?

The answer...

- Gravity works to decrease the (outwards) velocity

$$
v-\frac{G M}{x^{2}} \Delta t
$$

Let's chose some values

- Mass of the black hole $=10^{31} \mathrm{~kg}$
- Starting distance $=1,000,000 \mathrm{~km}$
- Starting speed $=2000$ km/s away
(You've been blasting away from it as hard as you could - but now your fuel has run out... Is your speed great enough to escape?)

Python simulation

And then VPython simulation

Summary

- Divide up your problem into little tiny steps.
- Write down an approximate set of equations for each step
- Plug numbers into these formulae over and over again - taking the output from one step as the input to the next.

Chaos

- You can get extremely complicated results from this...
- Tlny changes in the starting positions can cause huge changes in the outcomes.
- This is the hallmark of "Chaos"

Computer Lab

- You will get to practice iteration in the computer lab.
- This is one of four rotations - check in which week you are doing it.
- Venue is different - BOZOII2

Contact Forces

Whenever one object touches another...

Peculiarly tricky

- Because they can point in different directions
- Because there is no simple formula to work them out

Is there really a force when you sit on something?

- Newton's laws say there must be...

> Must be an equal and opposite upward force or l'd be accelerating

Gravitational force downwards, due to Earth

But how can a chair push?

- A force is normally thought of as a "push" or "pull"
- But you don't normally think of chairs, walls, the floor pushing?

Imagine replacing the chair... - With a spring...

What would happen as I sat down?

- My weight would compress the spring.
- As I put more and more weight on it, the spring would compress more.
- And the more you compress a spring, the harder it pushes back.
- Eventually I would have compressed it so much that it would push back on me as much as my weight pushes down on it.

This is where contact forces come from

- At an atomic level, supposedly solid things (like chairs) are made of atoms stuck together by stretchy chemical bonds.
- These chemical bonds behave much like springs.
- When you apply a force to something, they bend and push back.

A brick on a table

Normal Force

- This is the explanation of normal force.
- Whenever you apply a force to a solid surface, it will push back with just enough force to stop you from sinking into that surface.
- Unless you push hard enough to break the solid surface.

How do you work it out?

- If you knew how much you were sinking into the surface, and the spring constant of the surface, you could use the spring equation. But you usually don't.
- Instead, work backwards from the motion. If an object is not sinking into a surface or leaping off it, the component of the forces perpendicular (normal) to the surface must add up to zero.
- The normal force is whatever you need to make this happen!

Perpendicular

- It's called the "normal force" because it is perpendicular ("normal") to the surface.
- How do you work it out?
- Usually by elimination. Work out all the other forces on some object.
- Add up (vector sum) these forces.
- Work out the component perpendicular to the surface.
- The normal force will be equal and opposite.

For example

You are dragging a box of mass M along the floor at a constant speed. You do it by pulling on a rope with force T.

What is the normal force?

Draw a free-body
 diagram

- Show the box as a dot
- Show only the forces that act ONTHE BOX

Free-body diagram...

Now what's the equation for the normal force?

Free-body diagram...

Forces perpendicular to the surface (vertical in this case) must balance. So -

$$
\begin{aligned}
& T \sin (\theta)+N=M g \\
& N=M g-T \sin (\theta)
\end{aligned}
$$

(as it's not accelerating, horizontal forces must balance too - so

$$
F=T \cos (\theta)
$$

Next time

Friction - another contact force.

Key points

- Whenever objects touch, there is a contact force.
- The normal force is usually whatever is needed to stop the objects moving into each other or springing apart.

