Full derivation of the projectile motion equations

Acceleration is defined as the rate of change of velocity. So, by definition...

$$
a=\frac{d v}{d t}
$$

For the projectile motion case, acceleration is constant. So what is the velocity? We know $\mathrm{dv} / \mathrm{dt}$ and we want to know v . This means undoing the differentiation. To undo differentiation, you need to integrate. So lets integrate both sides of the equation.

$$
\int a d t=\int \frac{d v}{d t} d t
$$

The right hand is just the integral of the differential of v - i.e. it takes you back to v. For the left hand side, to integrate a constant, multiply it by whatever variable you are integrating against (in this case, t) and add a constant. So we get

$$
a t+C=v
$$

where C is a constant (whenever you do an indefinite integral, you end up with a constant).

As usual with constants like this, you work out their value by setting $t=0$. In this case, $\mathrm{v}=\mathrm{C}$. So C is just the velocity at time zero. Which can be written as v_{o}.

Now, let's try to work out the position s. By definition, velocity is the rate of change of position, i.e.

$$
\frac{d s}{d t}=v
$$

Once again, we need to reverse the differentiation, so we need to integrate both sides of the equation.

$$
\int \frac{d s}{d t} d t=\int v d t=\int\left(a t+v_{0}\right) d t
$$

The left hand term is just s (differentiating it then integrating it just takes you back to where you started).

The right-most part is just substituting the above equation for velocity in. So we need to integrate at $+v_{0}$ with respect to t.

A is a constant. t is raised to the power 1 , so its integral is t raised to the power 2 , with a constant of $1 / 2$ in front (usual law for integrating polynomials). v_{0} becomes v_{0}, and a new constant is needed (you always add a constant when you do an indefinite integral).

$$
s=\frac{1}{2} a t^{2}+v_{0} t+K
$$

I've written the constant as K rather than C , to make sure it doesn't get confused with the constant C above.

As usual you work out the constant by setting the time to zero, in which case you find that $\mathrm{s}+\mathrm{K}$, i.e. K is the position at time zero, which I will write S_{0}. So this becomes

$$
s-s_{0}=\frac{1}{2} a t^{2}+v_{0} t
$$

I hope this makes more sense!

