AUSTRALIAN NATIONAL UNIVERSITY

 

Revision 1.00

 

Created: 5 December 2000

Last modified: 6 December 2000

 

---

 

NIFS USER'S MANUAL

 

Peter J. McGregor

 

Research School of Astronomy and Astrophysics

Institute of Advanced Studies

Australian National University

 

Revision History

 

Revision No.

Author &

Date

Approval &

Date

Description

Revision 1

Peter J. McGregor

5 December 2000

 

Original document.

 

 

 

 

 

 

Contents

 

1 Purpose. 3

2 Applicable Documents. 4

3 Introduction. 4

4 Instrument Overview.. 4

5 Preparing an Observation. 4

5.1 Object Selection. 4

5.2 Guide Star Selection. 4

5.3 Required Calibrations. 4

5.3.1 AO Imaging Spectroscopy. 4

5.3.2 AO Imaging Spectropolarimetry. 5

6 Operating the Instrument 5

6.1 Booting the System.. 5

6.2 Configuring the Science Instrument 5

6.2.1 Opening/Closing the Environmental Cover. 5

6.2.2 Setting the Focal Plane Mask Wheel 5

6.2.3 Setting the Blocking Filter Wheel 5

6.2.4 Setting the Grating Angle. 5

6.3 Configuring the Science Detector. 5

6.3.1 Setting the Read Out Method. 5

6.3.2 Setting the Integration Time. 6

6.3.3 Setting the Number of Fowler Samples. 6

6.3.4 Setting the NDR Read Out Period. 6

6.3.5 Setting the Number of Coadded Frames. 6

6.3.6 Setting the Number of Repeat Sequences. 6

6.3.7 Configuring the Quick Look Display. 6

6.4 Configuring the OIWFS Instrument 6

6.4.1 Initializing and Setting the OIWFS X-Y Gimbal Mirror. 6

6.4.2 Setting the OIWFS Filter and Field Stop. 6

6.5 Configuring the OIWFS Detector. 7

6.5.1 Setting the Integration Time. 7

6.5.2 Configuring the Quick Look Display. 7

6.6 Recording Science Detector Bias Frames. 7

6.7 Recording Science Detector Dark Frames. 7

6.8 Recording Science Detector Dome Flats. 7

6.9 Recording an Arc Lamp Frame. 7

6.10 Recording a Spatial Calibration Frame. 7

6.11 Locating the Occulting Disks. 7

6.12 Recording OIWFS Detector Bias Frames. 8

6.13 Recording OIWFS Detector Dark Frames. 8

6.14 Recording OIWFS Detector Dome Flats. 8

6.15 Calibrating the OIWFS X-Y Gimbal Mirror. 8

6.16 Recording Science Detector Sky Flats. 8

6.17 Recording OIWFS Detector Sky Flats. 8

6.18 Acquiring an Object 8

6.19 Focusing the Telescope. 8

6.20 Executing a Science Observation. 8

6.21 Interacting With ALTAIR.. 9

6.22 Interacting With GPOL.. 9

6.23 Interacting With GCAL.. 9

6.24 Checking Science Detector Performance. 9

6.25 Monitoring Cryostat Temperatures. 9

6.26 Initiating the Rapid Warm-Up Sequence. 9

6.27 Shutting Down the System.. 9

6.28 Archiving Your Data. 9

6.29 Summary of Commands. 9

7 Observing Scenarios. 10

7.1 Jets From Young Stellar Objects. 10

7.2 Massive Black Holes in Nearby Galaxies. 10

7.3 Inner Narrow-Line Regions of Seyfert Galaxies. 10

7.4 Imaging Spectropolarimetry of Cygnus A.. 10

8 Data Reduction Procedures. 10

8.1 Preparations. 10

8.2 Forming BIAS and DARK Frames. 10

8.2.1 BIAS Frames. 10

8.2.2 DARK Frames. 10

8.3 Linearity Correction. 10

8.4 Defining the Geometrical Calibration. 10

8.5 Combining Object and Sky Images. 10

8.6 Flat Fielding. 10

8.7 Fixing Known Bad Pixels. 11

8.8 Interactively Cleaning Bad Pixels. 11

8.9 Applying the Geometrical Transformation. 11

8.10 Forming Data Cubes. 11

8.11 Extracting 1D Spectra. 11

8.12 Flux Calibration. 11

8.13 Dividing by a Smooth Spectrum Star. 11

8.14 Extracting a 2D Image. 11

8.15 Plotting the Final Spectra. 11

8.16 Deriving Polarization IQU Values. 11

8.17 Plotting Polarization Spectra. 11

8.18 Plotting Polarization Percentage and Position Angle Images. 11

Appendix A: System Performance. 12

Appendix B: Spectrophotometric Standards. 13

Appendix C: Smooth Spectrum Stars. 16

Appendix D: Near-Infrared Spectral Features of Astronomical Significance. 17

Appendix E: Arc Lamp Wavelengths. 19

Appendix F: OH Airglow Wavelengths. 26

Appendix G: Terrestrial Atmospheric Absorption. 29

Appendix B: List of Figures. 30

 

 

1 Purpose

 

This manual describes the operation of the Gemini Near-infrared Integral Field Spectrograph (NIFS) from a user’s point of view. It is the primary reference describing the instrument modes, how to prepare for an observing run, how to use the instrument effectively, and how to reduce data generated by the instrument.

 

2 Applicable Documents

 

Document ID

Source

Title

 

 

 

 

 

3 Introduction

 

The Gemini Near-infrared Integral Field Spectrograph (NIFS) is the facility near-infrared spectrograph used with the ALTAIR adaptive optics system on Gemini North. NIFS is intended for near-diffraction limited imaging spectroscopy in the 0.94-2.5 mm wavelength range. As such, it is suitable for spectroscopic observations of complex high surface brightness structure, in a spatial or spectral sense, revealed at high spatial resolution by ALTAIR. NIFS records data at a two-pixel spectral resolving power of R ~ 5300. This moderate resolution is sufficient to significantly separate terrestrial OH emission lines. Post-detection OH suppression during data reduction significantly improves sensitivity relative to lower resolution instruments. The moderate spectral resolution is also suitable for dynamical studies of sufficiently high surface brightness astronomical objects.

 

4 Instrument Overview

 

This section will provide a general overview of the instrument and its observing modes; AO imaging spectroscopy, AO imaging spectropolarimetry, non-AO imaging spectroscopy, imaging spectroscopy using an occulting disk.

 

5 Preparing an Observation

 

5.1 Object Selection

 

This section will discuss issues that should be considered in selecting suitable objects for observation with NIFS; continuum surface brightness of structure on 0.1² spatial scales, emission-line surface brightness on 0.1² spatial scales, how to access on-line HST images to make these assessments, SNR expectations, saturation limits with and without the ND filter and occulting disks, spatial extent of the source and the need to mosaic, spectral features of interest between OH emission-line, sky subtraction versus dark subtraction strategies, sky determination from the image or via separate sky measurements by nodding the telescope, integration times to reduce the effect of dark current noise, precautions to avoid excessive detector remnance, position angle selection based on rectangular pixel size on the sky, the need to offset from a bright star to acquire very faint objects.

 

5.2 Guide Star Selection

 

This section will describe the guide star requirements for ALTAIR, the OIWFS, and the PWFS1 for both the natural guide star and laser guide star modes of ALTAIR. It will describe the operation of gs_search.pl and show how it should be used to identify suitable guide stars and determine their coordinates. It will also discuss likely zero point errors in various coordinate systems and make recommendations about ways of self-consistently defining PWFS1 guide star coordinates and science object coordinates.

 

5.3 Required Calibrations

 

5.3.1 AO Imaging Spectroscopy

 

This section will describe the calibration data that are required to extract scientific results from NIFS AO imaging spectroscopy data; bias frames, dark frames, flat field frames, a spatial calibration frame for correcting image distortion, smooth spectrum star spectra at the same airmass (±5%) for removing atmospheric absorption features, and spectrophotometric flux calibration star spectra. Many science programs will also need to determine the average PSF.

 

5.3.2 AO Imaging Spectropolarimetry

 

This section will describe the calibration data that are required to extract scientific results from NIFS AO imaging spectropolarimetry. These will generally be similar to §5.3.1 but will also include calibration of the waveplate polarizing efficiency and orientation (position angle zero point).

 

6 Operating the Instrument

 

6.1 Booting the System

 

This section will describe how to boot the system from a cold start. Visiting observers will not normally have to do this but it will be included for staff astronomers and for completeness.

 

6.2 Configuring the Science Instrument

 

This section will describe how to configure the mechanisms of the NIFS IFU spectrograph.

 

6.2.1 Opening/Closing the Environmental Cover

 

This section will describe how to operate the environmental cover – mainly as a reminder that this has to be done.

 

6.2.2 Setting the Focal Plane Mask Wheel

 

This section will describe how to set the Focal Plane Mask Wheel and will list its contents and the keywords used to identify them.

 

6.2.3 Setting the Blocking Filter Wheel

 

This section will describe how to set the Blocking Filter Wheel and will list its contents and the keywords used to identify them.

 

6.2.4 Setting the Grating Angle

 

This section will describe how to select the spectrograph grating to be used and how the grating angle can be varied over a small range to optimize the wavelength range recorded.

 

6.3 Configuring the Science Detector

 

This section will describe how to configure the NIFS IFU spectrograph detector and the associated Quick Look displays.

 

6.3.1 Setting the Read Out Method

 

This section will describe the read out methods of the NIFS science detector and how to select the active read out method. The read out methods offered will be Fowler sampling and linear fitting (integration up the ramp) . It will discuss the pros and cons of resetting the detector at the end of each integration; resetting the array avoids the saturation of bright sky emission lines, but it upsets the stability of the detector and may lead to unacceptably high dark current in subsequent frames.

 

6.3.2 Setting the Integration Time

 

This section will describe how to select and set the frame integration time for the NIFS science detector. It will discuss trade-offs between read noise (short integrations), dark current noise (long integrations), and variations in sky emission (on 5 min time scales).

 

6.3.3 Setting the Number of Fowler Samples

 

This section will discuss criteria for selecting and the method for setting the optimal number of Fowler samples to obtain at the beginning and end of integrations when using the Fowler sampling read out method. There is a trade-off here between the read noise reduction achieved and the extra dark current noise generated by accessing each pixel multiple times.

 

6.3.4 Setting the NDR Read Out Period

 

This section will discuss criteria for selecting and the method for setting the optimal Non-Destructive Read (NDR) period when using the linear fitting read out method. There is a trade-off here between the read noise reduction achieved and the extra dark current noise generated by accessing each pixel multiple times.

 

6.3.5 Setting the Number of Coadded Frames

 

This section will describe how to select and set the number of frames that are coadded before data are recorded to disk. Coadding frames is efficient when short integration times are used, but is not likely to be used on typical long integrations on science objects.

 

6.3.6 Setting the Number of Repeat Sequences

 

This section will describe how to select and set the number of repeat sequences. A sequence is defined as a basic data set; one set of coadded frames for imaging spectroscopy, but one full set of waveplate positions for imaging spectropolarimetry. Calibration data can usually be obtained more efficiently by recording multiple data sequences. Usually only one data sequence will be recorded on a science object before it is necessary to nod the telescope.

 

6.3.7 Configuring the Quick Look Display

 

This section will describe how to configure the science detector Quick Look Display to subtract a sky spectrum, extract and display a 1D spectrum, and display a 2D image over a specified wavelength range.

 

6.4 Configuring the OIWFS Instrument

 

This section will describe how to configure the mechanisms of the NIFS OIWFS.

 

6.4.1 Initializing and Setting the OIWFS X-Y Gimbal Mirror

 

This section will describe how to initialize the OIWFS X-Y gimbal mirror and how to set its so as to locate an OIWFS guide star.

 

6.4.2 Setting the OIWFS Filter and Field Stop

 

This section will describe how to set the OIWFS filter. The OIWFS filter should be set to the same pass band as the NIFS IFU spectrograph in order to minimize differential atmospheric refraction between the OIWFS and science instrument. The OIWFS filter wheel contains sets of identical filters, each with field stops of different diameters. The contents of the wheel will be listed and criteria for selecting the optimal field stop size for a particular application will be described.

 

6.5 Configuring the OIWFS Detector

 

This section will describe how to configure the NIFS OIWFS detector.

 

6.5.1 Setting the Integration Time

 

This section will describe how to select and set the frame integration time for the NIFS OIWFS detector. The OIWFS should be used for slow flexure compensation when tip-tilt and focus are being sensed by the ALTAIR AOWFS. Relatively long integrations on the OIWFS detector are possible in this mode. However, the OIWFS is used to sense rapid tip-tilt and focus changes when a laser guide star is used with the AOWFS. Integration times in the range 0.01-0.1 s are then required for the OIWFS detector.

 

6.5.2 Configuring the Quick Look Display

 

This section will describe how to configure the OIWFS detector Quick Look Display to subtract a sky spectrum and display the resulting image.

 

6.6 Recording Science Detector Bias Frames

 

This section will describe how to configure the instrument and record bias frames for the science detector.

 

6.7 Recording Science Detector Dark Frames

 

This section will describe how to configure the instrument and record dark frames for the science detector.

 

6.8 Recording Science Detector Dome Flats

 

This section will describe how to activate the GCAL flat field lamp, deploy the ISS science fold mirror to point to GCAL, configure the NIFS science instrument, configure the NIFS science detector, and record a sequence of lamp on/off flat field frames.

 

6.9 Recording an Arc Lamp Frame

 

This section will describe how to activate the GCAL arc lamp, deploy the ISS science fold mirror to point to GCAL, configure the NIFS science instrument, configure the NIFS science detector, and record a sequence of lamp on/off arc lamp frames for wavelength calibration.

 

6.10 Recording a Spatial Calibration Frame

 

This section will describe how to insert the Ronchi grid in the Focal Plane Mask Wheel and record a spatial calibration frame using the GCAL flat field lamp as the light source. This frame is used to determine and correct for image distortion.

 

6.11 Locating the Occulting Disks

 

This section will describe how to determine the pixel positions of the occulting disks in the Focal Plane Mask Wheel using the GCAL flat field lamp as the light source.

 

6.12 Recording OIWFS Detector Bias Frames

 

This section will describe how to configure the OIWFS and record bias frames for the OIWFS detector.

 

6.13 Recording OIWFS Detector Dark Frames

 

This section will describe how to configure the OIWFS and record dark frames for the OIWFS detector.

 

6.14 Recording OIWFS Detector Dome Flats

 

This section will describe how to activate the GCAL flat field lamp, deploy the ISS science fold mirror to point to GCAL, configure the NIFS OIWFS, configure the NIFS OIWFS detector, and record a sequence of lamp on/off flat field frames.

 

6.15 Calibrating the OIWFS X-Y Gimbal Mirror

 

This section will describe how to initialize the OIWFS X-Y gimbal mirror.

 

6.16 Recording Science Detector Sky Flats

 

This section will describe how to configure ALTAIR, deploy the ISS science fold mirror to point to ALTAIR, configure the NIFS science instrument, configure the NIFS science detector, and record a sequence of sky flats.

 

6.17 Recording OIWFS Detector Sky Flats

 

This section will describe how to configure ALTAIR, deploy the ISS science fold mirror to point to ALTAIR, configure the NIFS OIWFS, configure the NIFS OIWFS detector, and record a sequence of sky flats.

 

6.18 Acquiring an Object

 

This section will describe how to set the ISS rotator angle, acquire a PWFS1 guide star, begin active mirror correction, acquire an OIWFS star, begin tip-tilt and focus correction, view the science field with the telescope acquisition camera, record and display an undispersed object image using the NIFS flip mirror, center the object in the NIFS field using the Quick Look display, acquire the AOWFS star and begin adaptive correction, and spectrally-compress a dispersed NIFS image and display the sky image.

 

6.19 Focusing the Telescope

 

This section will describe how to fix the telescope focus that is maintained by the OIWFS.

 

6.20 Executing a Science Observation

 

This section will describe how to initiate a science observation and assess the result using the Quick Look Display.

 

6.21 Recording a PSF Star

 

This section will discuss considerations in recording a star spectrum with which to determine the PSF.

 

6.22 Interacting With ALTAIR

 

This section will describe what is needed to know about interacting with ALTAIR. It will describe how to deploy the ALTAIR feed mirror, set the ISS science fold mirror to point to ALTAIR, locate the AOWFS guide star, how to set the AOWFS integration time and servo-loop parameters, and how to define whether tip-tilt and focus control is derived from the AOWFS or from the OIWFS.

 

6.23 Interacting With GPOL

 

This section will describe what is needed to know about interacting with GPOL. It will describe how to insert GPOL into the beam, how to select which waveplate is used, how to select the K band wire grid in NIFS, and how to synchronize data taking with movement of the waveplate.

 

There are calibration issues here since the GCAL beam will not pass through GPOL or ALTAIR. These will be explained.

 

6.24 Interacting With GCAL

 

This section will describe what is needed to know about interacting with GCAL. This may be covered in the sections on recording flat field and wavelength calibration frames. However, there are general issues that need to be described, such as the fact that the GCAL beam does not pass through ALTAIR.

 

6.25 Checking Science Detector Performance

 

This section will describe how to record and analyze test data that quantifies the performance of the science detector. Typical ranges of the detector parameters will be listed so that users can determine whether or not the detector performance is optimal. Detector parameters that will be measured are read noise, dark current, remnance, quantum efficiency, and cross-talk. Users who find that the detector is operating outside the acceptable range will be encouraged to contact observatory staff.

 

6.26 Monitoring Cryostat Temperatures

 

This section will describe how to monitor the cryostat and detector temperatures and will list typical temperature ranges for these temperatures.

 

6.27 Initiating the Rapid Warm-Up Sequence

 

This section will describe how to initiate the rapid warm-up sequence. It will be cautioned that this should only be performed by qualified observatory staff.

 

6.28 Shutting Down the System

 

This section will describe how to shut down the system.

 

6.29 Archiving Your Data

 

This section will describe how visiting NIFS users can archive their data.

 

6.30 Summary of Commands

 

This section will contain a summary list of the commands used to control NIFS that can be used as a quick reference for experienced users.

 

7 Observing Scenarios

 

7.1 Jets From Young Stellar Objects

 

 

 

7.2 Massive Black Holes in Nearby Galaxies

 

 

 

7.3 Inner Narrow-Line Regions of Seyfert Galaxies

 

 

 

7.4 Imaging Spectropolarimetry of Cygnus A

 

 

 

8 Data Reduction Procedures

 

This section will describe the procedures used to reduce NIFS imaging spectroscopy data using IRAF.

 

8.1 Preparations

 

 

 

8.2 Forming BIAS and DARK Frames

 

8.2.1 BIAS Frames

 

 

 

8.2.2 DARK Frames

 

 

 

8.3 Linearity Correction

 

 

 

8.4 Defining the Geometrical Calibration

 

 

 

8.5 Combining Object and Sky Images

 

 

 

8.6 Flat Fielding

 

 

 

8.7 Fixing Known Bad Pixels

 

 

 

8.8 Interactively Cleaning Bad Pixels

 

 

 

8.9 Applying the Geometrical Transformation

 

 

 

8.10 Forming Data Cubes

 

 

 

8.11 Extracting 1D Spectra

 

 

 

8.12 Flux Calibration

 

 

 

8.13 Dividing by a Smooth Spectrum Star

 

 

 

8.14 Extracting a 2D Image

 

 

 

8.15 Plotting the Final Spectra

 

 

 

8.16 Deriving Polarization IQU Values

 

 

 

8.17 Plotting Polarization Spectra

 

 

 

8.18 Plotting Polarization Percentage and Position Angle Images

 

 

 


Appendix A: System Performance

 

This section will summarize NIFS system performance.

 


Appendix B: Spectrophotometric Standards

 

Suitable flux calibration stars are listed in Table 1. These stars are drawn from Carter & Meadows (1995, MNRAS, 276, 734), Persson et al. 1998 (AJ, 116, 2475), the UKIRT standards list, and Hunt et al. 1998 (AJ, 115,2594). Only stars brighter than K = 12 mag and bluer than J-K = 0.5 are selected.

 

Table 1: Spectrophotometric Standard Stars

Star

RA (J2000) Dec

SpT

J

H

K

Ref

HD 590

00 10 16.82

-18 51 45.8

F2V

 9.195

 8.969

 8.947

1

FS 101

00 13 43.58

+30 37 59.9

10.553

10.420

10.381

3

HR 9101

00 24 28.44

+07 49 00.2

11.622

11.298

11.223

2

FS 2

00 55 09.93

+00 43 13.1

10.707

10.509

10.467

3

AS 02-0

00 55 58.60

+39 10 09.0

 8.775

 8.771

 8.770

4

HR 9104

01 03 15.94

-04 20 49.1

11.045

10.750

10.693

2

FS 104

01 04 59.43

+41 06 30.8

10.534

10.437

10.406

3

HD 8864

01 27 29.57

+04 27 43.4

A5

 8.631

 8.510

 8.474

1

FS 107

01 54 10.24

+45 50 37.7

10.490

10.286

10.226

3

FS 4

01 54 37.72

+00 43 00.6

10.547

10.318

10.279

3

HD 15189

02 26 26.32

-13 52 47.1

G0V

 8.460

 8.159

 8.126

1

HD 15274

02 27 45.52

+08 51 28.6

F5

 8.490

 8.276

 8.250

1

HR 9105

02 33 32.26

+06 25 36.2

11.309

10.975

10.897

2

AS 06-0

02 41 03.87

+47 41 22.9

 8.713

 8.694

 8.674

4

HD 17040

02 43 40.85

-17 28 53.3

F7V

 9.401

 9.141

 9.107

1

FS 7

02 57 21.17

+00 18 39.4

11.102

10.981

10.942

3

FS 108

03 01 09.85

+46 58 47.7

10.073

 9.795

 9.724

3

HD 18847

03 01 24.82

-19 59 13.7

F5V

 8.992

 8.686

 8.653

1

HR 9107

03 32 02.63

+37 20 38.8

11.934

11.610

11.492

2

AS 08-0

03 38 08.19

+35 10 53.2

 8.744

 8.723

 8.697

4

HR 9108

03 41 02.26

+06 56 15.7

11.737

11.431

11.337

2

FS 111

03 41 08.55

+33 09 35.5

10.641

10.389

10.282

3

FS 112

03 47 40.70

-15 13 14.4

11.203

10.950

10.893

3

AS 09-0

04 11 05.34

+60 10 24.7

 8.432

 8.380

 8.340

4

HD 29250

04 35 12.90

-29 38 09.8

A4IV

 9.465

 9.361

 9.354

1

FS 11

04 52 58.84

-00 14 41.5

11.341

11.279

11.252

3

FS 119

05 02 57.44

-01 46 42.6

 9.916

 9.873

 9.850

3

AS 11-0

05 29 55.50

+39 38 59.0

 9.151

 9.181

 9.183

4

HD 37567

05 38 53.86

-12 46 33.3

B8/9V

 8.997

 8.990

 8.993

1

HR 9116

05 42 32.11

+00 09 02.2

11.426

11.148

11.077

2

AS 12-1

05 52 21.51

+15 52 41.4

11.241

10.931

10.866

4

HD 39944

05 54 43.18

-25 34 39.3

G1V

 8.465

 8.144

 8.104

1

FS 13

05 57 07.55

+00 01 11.1

10.491

10.191

10.133

3

HD 40348

05 58 07.11

-02 33 27.9

A0

 8.926

 8.895

 8.892

1

AS 14-0

06 11 24.80

+61 32 12.2

 8.688

 8.623

 8.590

4

AS 14-1

06 11 30.03

+61 32 04.7

 9.871

 9.801

 9.755

4

HR 9118

06 22 43.86

-00 36 28.9

11.723

11.357

11.264

2

AS 15-0

06 40 34.31

+09 19 11.9

10.874

10.669

10.628

4

HR 9122

07 00 51.79

+48 29 22.9

11.680

11.408

11.356

2

AS 16-2

07 24 15.33

-00 32 47.7

11.411

11.428

11.445

4

AS 16-4

07 24 17.56

-00 33 05.8

11.402

11.106

11.043

4

HR 9126

07 30 34.49

+29 51 12.1

11.876

11.522

11.450:

2

HD 62388

07 43 15.04

-12 24 03.1

A0

 8.727

 8.691

 8.670

1

HD 62998

07 46 07.66

-16 34 37.3

F6V

 8.593

 8.323

 8.294

1

HR 9131

08 25 42.99

+73 01 18.4

10.819

10.546

10.499

2

HD 71264

08 26 18.18

-05 51 49.0

A0

 8.612

 8.565

 8.538

1

HR 9134

08 29 25.10

+05 56 08.0

11.881

11.624

11.575

2

HR 9135

08 36 12.61

-10 13 36.3

12.362

12.098

12.040:

2

AS 18-1

08 51 03.50

+11 45 03.0

10.769

10.614

10.575

4

FS 123

08 51 11.78

+11 45 22.8

10.173

10.185

10.212

3

AS 19-1

08 51 21.76

+11 52 37.7

10.095

 9.794

 9.746

4

FS 18

08 53 35.42

-00 36 41.3

10.812

10.570

10.521

3

FS 125

09 03 20.52

+34 21 02.9

10.789

10.428

10.365

3

AS 20-0

09 19 27.66

+43 31 45.7

 9.551

 9.519

 9.497

4

HR 9138

09 41 35.91

+00 33 15.4

11.354

11.041

10.981

2

HR 9139

09 42 58.33

+59 03 42.7

11.683

11.338

11.276

2

HD 84503

09 45 08.58

-26 16 30.5

F2V

 8.849

 8.638

 8.579

1

HR 9141

09 48 56.40

-10 30 32.0

11.081

10.775

10.715

2

HR 9142

10 06 28.88

+41 01 24.9

11.993

11.729

11.686

2

HD 88449

10 11 40.38

-15 25 25.4

F5V

 8.522

 8.257

 8.223

1

AS 21-0

10 28 42.10

+36 46 18.0

 9.061

 9.043

 9.031

4

HR 9143

10 33 51.66

+04 49 04.6

12.344

12.121

12.067

2

HD 94949

10 57 49.22

+09 01 07.4

F8

 8.267

 7.968

 7.938

1

HD 100501

11 33 48.19

-29 21 39.3

A9V

 9.305

 9.119

 9.087

1

AS 23-0

12 02 53.41

+04 08 45.9

 8.889

 8.847

 8.828

4

HR 9145

12 13 12.00

+64 28 56.0

11.958

11.711

11.664

2

HR 9148

12 14 25.40

+35 35 55.0

11.642

11.378

11.324

2

HD 106973

12 18 09.33

-01 10 01.6

F8

 9.148

 8.875

 8.836

1

HR 9149

12 21 39.27

-00 07 12.1

12.213

11.917

11.861

2

AS 24-0

12 35 15.47

+62 56 56.4

 9.398

 9.345

 9.338

4

FS 133

13 15 52.53

+46 06 38.1

12.292

11.940

11.868

3

HR 9150

13 17 29.31

-05 32 38.1

11.661

11.310

11.250

2

HR 9152

13 58 40.22

+52 06 25.9

11.149

10.878

10.831

2

HR 9153

14 07 33.76

+12 23 50.7

11.947

11.605

11.560

2

AS 27-0

14 40 06.96

+00 01 45.4

10.910

10.781

10.761

4

HR 9155

14 40 57.96

-00 27 45.8

12.045

11.701

11.622

2

HD 129540

14 43 13.81

-02 57 31.1

A2V

 8.466

 8.283

 8.247

1

HR 9156

14 51 58.28

+71 43 16.4

10.873

10.588

10.523

2

HR 9158

14 58 33.18

+37 08 31.9

11.640

11.277

11.210

2

AS 28-0

15 09 20.30

+39 25 49.0

 8.455

 8.378

 8.372

4

AS 29-0

15 38 33.41

+00 14 17.9

10.234

 9.842

 9.760

4

HR 9160

15 39 04.17

+00 15 01.9

10.914

10.701

10.649

2

HR 9162

15 59 13.65

+47 36 42.5

12.258

11.924

11.856

2

HD 147778

16 24 26.00

-17 44 42.0

F0V

 8.453

 8.151

 8.088

1

HR 9164

16 26 42.86

+05 52 23.4

12.180

11.895

11.842

2

HD 148332

16 27 23.37

-01 22 27.4

F5

 8.480

 8.218

 8.174

1

FS 138

16 28 06.72

+34 58 48.3

10.442

10.413

10.411

3

HR 9166

16 31 33.76

+30 08 46.9

11.816

11.479

11.419

2

HD 149226

16 33 28.44

-03 32 04.8

A5

 8.006

 7.667

 7.588

1

HD 154066

17 03 46.49

-12 51 44.9

B8V

 7.962

 7.845

 7.812

1

HR 9169

17 13 44.86

+54 33 18.3

11.355

11.118

11.075

2

FS 140

17 13 22.65

-18 53 33.8

10.786

10.432

10.360

3

HR 9170

17 27 22.26

-00 19 24.6

11.132

10.835

10.739

2

AS 31-0

17 44 06.76

-00 24 57.6

10.744

10.644

10.602

4

HD 161961

17 48 36.86

-02 11 46.4

B0.5III

 7.369

 7.330

 7.323

1

FS 141

17 48 59.05

+23 17 43.4

11.170

10.879

10.805

3

HD 166733

18 12 08.33

-02 15 29.4

F8

 8.495

 8.190

 8.130

1

FS 35

18 27 13.48

+04 03 09.8

12.194

11.840

11.739

3

AS 32-0

18 36 10.5

+65 04 30.0

 8.017

 7.917

 7.925

4

HR 9177

18 39 33.87

+49 05 37.6

12.104

11.764

11.688

2

FS 147

19 01 55.27

+42 29 19.6

 9.910

 9.883

 9.865

3

HR 9178

19 01 55.40

-04 29 12.0

10.966

10.658

10.566

2

AS 34-0

19 17 34.59

+48 06 03.2

 8.443

 8.434

 8.436

4

FS 148

19 41 23.43

-03 50 57.2

 9.509

 9.490

 9.477

3

FS 149

20 00 39.15

+29 58 37.4

10.104

10.082

10.086

3

HD 193727

20 22 15.40

-16 06 49.0

F0V

 8.977

 8.826

 8.783

1

AS 35-0

20 35 11.20

+36 08 49.0

 8.625

 8.544

 8.524

4

FS 150

20 36 08.40

+49 38 24.4

10.157

10.009

 9.956

3

HR 9182

20 41 05.42

-05 03 42.6

11.479

11.142

11.082

2

HR 9183

20 52 47.41

+06 40 03.9

12.247

11.940

11.873

2

HD 201916

21 12 35.11

+00 53 36.2

F0

 7.999

 7.819

 7.786

1

FS 151

21 04 14.82

+30 30 21.6

12.206

11.943

11.869

3

HR 9185

22 02 05.66

-01 06 01.6

12.021

11.662

11.586

2

HD 210427

22 10 51.36

-26 54 03.2

G1V

 9.245

 8.895

 8.852

1

HD 210863

22 13 26.42

-08 13 46.4

G0

 8.590

 8.272

 8.234

1

AS 37-0

22 25 20.70

+40 09 38.0

 8.669

 8.678

 8.635

4

HD 212874

22 27 19.52

+04 02 50.4

A2

 9.077

 8.921

 8.890

1

HD 214497

22 38 44.91

-14 48 46.7

F6V

 9.237

 8.951

 8.906

1

AS 38-2

22 41 50.20

+01 12 43.0

11.355

11.026

10.991

 

HR 9186

23 18 10.00

+00 32 56.0

11.403

11.120

11.045

2

HR 9187

23 23 34.27

-15 21 09.2

11.857

11.596

11.538

2

HR 9188

23 30 33.22

+38 18 56.7

11.634

11.337

11.257

2

HD 221462

23 32 27.40

-24 55 57.3

G3V

 8.630

 8.282

 8.219

1

AS 40-5

23 58 43.23

+61 09 40.2

 9.488

 9.418

 9.405

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Appendix C: Smooth Spectrum Stars

 

This section will list suitable smooth spectrum stars.

 


Appendix D: Unpolarized Standards

 

The unpolarized stars below are taken from “Planets, Stars, & Nebulae Studied With Photopolarimetry”, 1974, T. Gehrels (ed.), University of Arizona Press, Tucson, 168 (via the UKIRT web pages). Most unpolarized stars have large proper motions. If the stars in this list are not appropriate then it is probably acceptable to use other stars with large proper motions.

 

Table 2: Unpolarized Standard Stars

Star

RA (J2000) Dec

ma

md

SpT

K

(mag)

 

0

 

 

 

 

 

0

 

 

 

 

 


Appendix E: Polarized Standards

 

Polarized standards are polarized by dichroic absorption in the interstellar (or intracloud) medium). The “Serkowski” polarized standards in Table 3 are taken from “Planets, Stars, & Nebulae Studied With Photopolarimetry”, 1974, T. Gehrels (ed.), University of Arizona Press, Tucson, 170 (via the UKIRT web pages). They are based on fitting the Serkowski interstellar polarization law:

The maximum polarization, Pmax, occurs at the wavelength lmax.

 

Table 3: “Serkowski” Polarized Standard Stars

Star

RA (J2000) Dec

SpT

Pmax

(%)

lmax

(mm)

P.A.

(deg)

K

(mag)

HD 23512

0

 

2.3

0.60

30

HD 204827

0

 

5.6

0.46

60

 

The fainter polarized stars in r Oph (Table 4) are taken from Sato et al. (1988, MNRAS, 230, 321). These still need to be checked for suitable guide stars.

Table 4: Polarized Embedded Stars

Star

RA (J2000) Dec

PK

(%)

s(PK)

(%)

P.A.

(deg)

K

(mag)

WL 1

0

 

3.51

0.54

157

10.58

WL 2

0

 

3.29

0.61

35

10.78

WL 3

 

 

2.17

0.68

126

11.07

WL 4

 

 

2.13

0.17

177

9.17

WL 5

 

 

5.88

0.44

153

10.12

WL 6

 

 

5.05

0.66

130

10.06

WL 7

 

 

1.40

0.50

170

11.04

WL 8

 

 

5.60

0.60

168

9.46

WL 9

 

 

3.82

1.07

28

11.80

WL 10

 

 

3.07

0.41

55

8.78

WL 12

 

 

4.90

0.23

50

8.99

WL 13

 

 

1.54

0.20

93

9.19

WL 14

 

 

2.16

0.94

54

11.69

WL 15

 

 

6.52

0.07

22

7.04

WL 16

 

 

4.87

0.23

27

7.81

WL 17

 

 

4.99

0.41

42

10.14

WL 18

 

 

1.14

0.26

45

9.85

WL 19

 

 

7.41

0.67

46

10.89

WL 20

 

 

5.21

0.35

56

9.11

GS 26

 

 

4.04

0.14

171

9.34

VS 5

 

 

3.13

0.20

19

9.99

VS 18

 

 

0.68

0.15

164

9.49

 


Appendix F: Near-Infrared Spectral Features of Astronomical Significance

 

Near-infrared spectral features that have been detected in astronomical objects are listed in Table 5.

 

Table 5: Vacuum(?) Wavelengths of Spectral Features of Astronomical Significance

Wavelength (mm)

Identification

Wavelength (mm)

Identification

0.991272

[S VIII] 2p5 2P03/2-2P01/2

1.572

He II 13-7

0.999756

Fe II

1.58

12CO 4-1

1.00494

H I Pd

1.58805

H I Br14

1.01236

He I

1.59

Si I

1.0174

Fe II

1.599

[Fe II]

1.03998

[N I]

1.60

12CO 5-2

1.0300

[S II]

1.6022

H2 6-4 Q(1)

1.0490

Fe II

1.607

[Si I]

1.0501

Fe II

1.61093

H I Br13

1.0747

[Fe XIII]

1.6131

H2 5-3 O(3)

1.0798

[Fe XIII]

1.62

12CO 6-3

1.082909

He I

1.64

12CO 7-4

1.083025

He I 23P-23S

1.64072

H I Br12

1.083034

He I

1.6435

[Fe II] a4D7/2-a4F9/2

1.0863

Fe II

1.6454

[Si I]

1.09381

H I Pg

1.66

12CO 8-5

1.11126

Fe II

1.664

[Fe II]

1.1287

O I

1.677

[Fe II] a4F7/2-a4D1/2

1.16264

He I

1.68065

H I Br11

1.1883

[P II]

1.688

Fe II

1.1910

[Ni II]

1.692

He II 12-7

1.233

H2 3-1 S(1)

1.700247

He I 43D-33P

1.25235

[S IX] 329 eV

1.736

C IV 9-8

1.2521

[Fe II] a6D3/2-a4D1/2

1.73621

H I Br10

1.2527

He I 33S-43P0

1.77

C2

1.2567

[Fe II] a6D1-a4d7

1.81741

H I Br9

1.270

[Fe II]

1.8358

H2 1-0 S(5)

1.28181

H I Pb

1.87510

H I Pa

1.294

[Fe II]

1.94456

H I Br8

1.298

[Fe II]

1.9499

H2 2-1 S(5)

1.313

H2 4-2 S(1), 3-1 Q(1,2,3)

1.9576

H2 1-0 S(3)

1.3164

O I

1.96287

[Si VI] 2p5 2P03/2-2P01/2

1.321

[Fe II]

1.99

Ca I

1.4305

[Si X]

2.0041

H2 2-1 S(4)

1.476

He II 9-6

2.0338

H2 1-0 S(2)

1.502499

Mg I 3S-3P0

2.040

[Al IX]

1.504024

Mg I 3S-3P0

2.047

[Fe II] a4P-a2P

1.504770

Mg I 3S-3P0

2.058130

He I 21P-21S

1.51918

H I Br20

2.061

Fe II c4F-z4F0

1.522

[Fe II]

2.0735

H2 2-1 S(3)

1.52606

H I Br19

2.089

Fe II c4F3/2-z4F03/2

1.533

[Fe II]

2.112007

He I 43S-33P

1.53418

H I Br18

2.112143

He I

1.54389

H I Br17

2.113203

He I 41S-31P

1.55565

H I Br16

2.1218

H2 1-0 S(1)

1.56

12CO 3-0

2.137

Mg II 5p2P3/2-5s2S1/2

1.57007

H I Br15

2.144

Mg II 5p2P1/2-5s2S1/2

2.1451

[Fe III] 3G3-3H4

 

 

2.1542

H2 2-1 S(2)

 

 

2.16553

H I Brg

 

 

2.189

He II 7-10

 

 

2.205644

Na I 42S-42P0

 

 

2.208367

Na I 42S-42P0

 

 

2.2178

[Fe III] 3G5-3H6

 

 

2.2233

H2 1-0 S(0)

 

 

2.2420

[Fe III] 3G4-3H4

 

 

2.2477

H2 2-1 S(1)

 

 

2.26

Ca I

 

 

2.295

12CO 2-0

 

 

2.32141

[Ca VIII] 3p 2P01/2-2P03/2

 

 

2.324

12CO 3-1

 

 

2.334841

Na I

 

 

2.337913

Na I

 

 

2.345

13CO 2-0

 

 

2.3479

[Fe III] 3G5-3H5

 

 

2.354

12CO 4-2

 

 

2.3556

H2 2-1 S(0)

 

 

2.374

13CO 3-1

 

 

2.385

12CO 5-3

 

 

2.3865

H2 3-2 S(1)

 

 

2.404

13CO 4-2

 

 

2.4066

H2 1-0 Q(1)

 

 

2.4134

H2 1-0 Q(2)

 

 

2.414

12CO 6-4

 

 

2.42

C IV 10-9

 

 

2.4237

H2 1-0 Q(3)

 

 

2.434

13CO 5-3

 

 

2.4375

H2 1-0 Q(4)

 

 

2.446

12CO 7-5

 

 

2.4547

H2 1-0 Q(5)

 

 

2.465

13CO 6-4

 

 

2.4754

H2 1-0 Q(6)

 

 

2.479

12CO 8-6

 

 

2.48266

[Si VII] 2p4 3P2-3P1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Appendix G: Arc Lamp Wavelengths

 

This section will list the wavelengths of near-infrared emission lines in the GCAL arc lamps and plot spectra for each NIFS grating. The spectra below were recorded at a resolving power of ~ 1000 with PIFS on the Palomar 200 inch telescope and are taken from the PIFS web page. Line lists are tabulated.

 

Table 6: Air Wavelengths and Relative Intensities for Neon

Wavelength (mm)

Relative Intensity

Wavelength (mm)

Relative Intensity

1.11430

30

2.24281

4

1.11775

35

2.24668

1

1.13904

16

2.25304

23

1.14091

11

2.26618

4

1.15227

30

2.31005

6

1.15250

15

2.32603

10

1.15363

10

2.33730

11

1.16015

5

2.35654

9

1.16141

12

2.36365

35

1.16880

3

2.37016

3

1.17668

20

2.37076

11

1.17890

15

2.37092

11

1.17899

5

2.39514

18

1.19849

10

2.39565

6

1.20663

30

2.39781

10

1.24594

8

2.40985

2

1.25950

3

2.41614

5

1.26892

10

2.42696

6

1.27695

3

2.43650

15

1.29120

11

2.43716

8

1.32192

7

2.43834

1

1.49849

1

2.44479

4

1.49863

1

2.44594

7

1.52307

8

2.44597

7

1.54076

1

2.47765

4

1.54091

1

2.49037

2

1.71619

4

2.49289

5

1.71817

2

 

 

1.71825

2

 

 

1.71843

2

 

 

1.80832

1

 

 

1.82767

3

 

 

1.82826

2

 

 

1.83040

1

 

 

1.83849

1

 

 

1.83900

2

 

 

1.84029

1

 

 

1.84224

1

 

 

1.85915

1

 

 

1.85977

2

 

 

1.95771

2

 

 

2.03502

1

 

 

2.10413

12

 

 

2.17081

8

 

 

2.22473

3

 

 

Table 7: Vacuum Wavelengths and Relative Intensities for Argon

Wavelength (mm)

Relative Intensity

Wavelength (mm)

Relative Intensity

1.10819

10

1.40975

150

1.11095

3

1.42531

8

1.13968

8

1.42608

13

1.14450

12

1.45997

11

1.14707

6

1.46384

30

1.14912

120

1.46543

30

1.15835

1

1.46974

4

1.16719

200

1.47432

5

1.16908

1

1.50506

100

1.17227

10

1.51768

25

1.17364

9

1.53061

40

1.18877

4

1.53335

9

1.18999

1

1.53530

7

1.19466

12

1.53573

3

1.20299

2

1.54068

6

1.21156

150

1.59040

10

1.21430

30

1.59939

25

1.21547

2

1.61271

1

1.23468

30

1.61844

4

1.23597

10

1.64411

13

1.24062

100

1.65244

30

1.24427

300

1.65538

8

1.24595

100

1.67446

9

1.24911

200

1.69452

500

1.25577

2

1.74497

11

1.26251

2

1.78289

5

1.27369

30

1.79196

40

1.27497

12

1.84232

2

1.28062

200

1.84328

10

1.29602

500

1.98229

5

1.30118

200

1.99712

4

1.30320

2

2.03226

2

1.32176

200

2.06219

50

1.32317

200

2.06528

2

1.32345

200

2.07393

2

1.32763

500

2.08167

2

1.33059

4

2.09918

30

1.33168

800

2.13387

1

1.33338

6

2.15401

8

1.33708

1000

2.20456

1

1.34102

100

2.20832

8

1.35031

30

2.31395

20

1.35079

1000

2.38515

1

1.35479

8

2.39731

20

1.35773

12

2.51321

25

1.36030

40

 

 

1.36264

400

 

 

1.36823

200

 

 

1.37223

1000

 

 

1.38321

9

 

 

1.39113

8

 

 

1.39144

50

 

 

Table 8: Vacuum Wavelengths and Relative Intensities for Krypton

Wavelength (mm)

Relative Intensity

Wavelength (mm)

Relative Intensity

1.08779

80

1.58951

100

1.11902

100

1.63196

50

1.12608

200

1.64703

70

1.12622

150

1.65775

70

1.14606

500

1.67311

200

1.17956

150

1.67897

2000

1.18226

1500

1.68581

1000

1.20004

600

1.68951

2400

1.20805

160

1.69404

1800

1.21211

140

1.70746

40

1.21268

40

1.71034

600

1.22079

800

1.72354

30

1.27859

150

1.73724

700

1.28019

120

1.74092

120

1.28654

100

1.76216

150

1.28824

750

1.78476

650

1.29888

25

1.80071

700

1.30259

30

1.81043

80

1.31810

1100

1.81723

2600

1.32443

110

1.81900

90

1.33415

120

1.84234

20

1.36261

1000

1.85860

150

1.36379

2400

1.87015

300

1.36621

800

1.87901

170

1.37148

200

1.87929

50

1.37426

600

1.88028

200

1.38366

150

2.02153

140

1.38866

500

2.04295

300

1.39276

700

2.11713

600

1.39427

200

2.19085

1800

1.39778

150

2.24918

120

1.41081

140

2.33467

180

1.41601

50

2.35088

70

1.43445

30

2.42672

120

1.43513

800

2.42988

180

1.44062

180

2.47752

90

1.44307

2000

 

 

1.44730

140

 

 

1.47385

1600

 

 

1.47667

550

 

 

1.47695

450

 

 

1.49660

400

 

 

1.50094

120

 

 

1.52137

140

 

 

1.52438

1700

 

 

1.53307

130

 

 

1.53392

1500

 

 

1.53762

700

 

 

1.54782

200

 

 

1.56397

40

 

 

1.56853

180

 

 

1.58244

120

 

 

Table 9: Vacuum Wavelengths and Relative Intensities for Xenon

Wavelength (mm)

Relative Intensity

Wavelength (mm)

Relative Intensity

1.05308

120

 

 

1.07097

50

 

 

1.08413

1000

 

 

1.08983

120

 

 

1.10883

300

 

 

1.11302

40

 

 

1.11442

20

 

 

1.16173

50

 

 

1.17455

300

 

 

1.17968

150

 

 

1.18605

160

 

 

1.19564

40

 

 

1.20881

60

 

 

1.22386

200

 

 

1.22611

20

 

 

1.25937

150

 

 

1.26268

2500

 

 

1.35478

120

 

 

1.36608

3000

 

 

1.41462

2000

 

 

1.42448

600

 

 

1.43688

200

 

 

1.46648

50

 

 

1.47368

5000

 

 

1.51039

20

 

 

1.54226

2000

 

 

1.55614

50

 

 

1.59839

150

 

 

1.60442

50

 

 

1.60557

500

 

 

1.65590

30

 

 

1.67326

2000

 

 

1.73305

1500

 

 

1.87932

500

 

 

2.01926

80

 

 

2.02678

2000

 

 

2.13789

20

 

 

2.14759

300

 

 

2.24128

60

 

 

2.26244

10

 

 

2.31996

1500

 

 

2.32860

50

 

 

2.44504

100

 

 

2.47091

60

 

 

2.48314

5500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Created with The GIMPFigure 1: J band Xenon, Krypton, Argon, and Neon arc lamp spectra at a resolving power of ~ 1000.

 

Created with The GIMP

Figure 2: H band Xenon, Krypton, Argon, and Neon arc lamp spectra at a resolving power of ~ 1000.

 

Created with The GIMP

Figure 3: K band Xenon, Krypton, Argon, and Neon arc lamp spectra at a resolving power of ~ 1000.

 


Appendix H: OH Airglow Wavelengths

 

Vacuum wavelengths for predominantly OH airglow emission lines are listed in Table 10. Sky spectra are plotted for each NIFS grating below.

 

Table 10: Vacuum Wavelengths and Relative Intensities of Airglow Emission Lines

Wavelength (mm)

Relative Intensity

Wavelength (mm)

Relative Intensity

0.94397

5

1.14516

17

0.94769

5

1.15055

3

0.95029

4

1.15356

45

0.95674

4

1.15621

3

0.96823

4

1.15885

54

0.96993

4

1.116247

11

0.97198

4

1.16476

38

0.97911

7

1.16932

6

0.98721

11

1.17129

92

0.99147

12

1.17676

2

0.99465

21

1.17848

7

0.99566

18

1.18482

1

1.00128

22

1.18633

3

1.00825

14

1.19726

25

1.01240

17

1.19800

2

1.01721

22

1.19854

30

1.01897

16

1.19969

11

1.02111

21

1.20038

44

1.02258

12

1.20210

25

1.02866

39

1.20276

85

1.03729

26

1.20526

26

1.04184

29

1.21201

111

1.04690

22

121331

40

1.05248

16

1.21528

18

1.05859

11

1.21931

38

1.06523

11

1.22259

109

1.07288

12

1.22544

59

1.07432

4

1.22836

113

1.07510

49

1.23225

22

1.07721

16

1.23482

82

1.08313

60

1.23975

6

1.08418

22

1.24199

114

1.08957

11

1.24793

3

1.09234

27

1.24990

31

1.09484

11

1.25855

4

1.09723

39

1.26857

80

1.10063

11

1.26951

64

1.10268

28

1.27020

37

1.10694

8

1.27140

39

1.10870

17

1.27261

20

1.11379

1

1.27446

24

1.11530

4

1.27493

45

1.13098

3

1.27609

76

1.13281

6

1.27760

32

1.13511

3

1.27791

149

1.14398

22

1.27980

57

1.28035

107

1.56982

41

1.28248

25

1.57560

8

1.28311

58

1.58000

5

1.28450

35

1.58291

338

1.28660

31

1.58441

92

1.29019

261

1.58656

29

1.29178

84

1.58943

5

1.29399

26

1.59682

100

1.29821

67

1.60264

299

1.30181

187

1.60754

125

1.30492

82

1.61242

296

1.30817

277

1.61902

61

1.31242

99

1.62309

297

1.31532

77

1.62659

36

1.32072

47

1.62753

1

1.32329

104

1.62978

14

1.33210

29

1.63111

5

1.34179

26

1.63127

72

1.44652

7

1.63373

56

1.45150

22

1.63468

138

1.45600

12

1.63559

24

1.46008

19

1.63840

51

1.46611

5

1.64102

16

1.46944

15

1.64377

174

1.47360

6

1.64431

19

1.47797

13

1.64720

20

1.47958

2

1.64746

63

1.48017

13

1.64979

152

1.48290

22

1.65493

92

1.48603

6

1.65818

3

1.48836

30

1.66065

20

1.49050

4

1.66879

431

1.49278

9

1.67045

144

1.50523

102

1.67282

46

1.50651

38

1.67590

6

1.50841

11

1.68359

71

1.51830

20

1.68991

244

1.52368

90

1.69504

122

1.52836

45

1.70041

301

1.53282

177

1.70737

82

1.53911

54

1.71190

199

1.54279

163

1.72056

60

1.54579

4

1.72439

107

1.54966

17

1.72781

47

1.55055

44

1.72986

12

1.55136

20

1.73261

58

1.55361

71

1.73464

53

1.55419

44

1.73549

42

1.55659

32

1.73791

60

1.55934

113

1.73819

126

1.56271

1.74223

45

1.56273

56

1.74452

160

1.56507

188

1.74964

9

1.56527

1.75011

55

1.75246

28

2.22381:

54

1.76483

363

2.22978:

104

1.76673

130

2.24381:

31

1.76933

52

2.24948:

53

1.77280

3

2.26620:

14

1.78066

72

2.27097:

24

1.78754

268

 

 

1.79316:

95

 

 

1.79890

204

 

 

1.80630

84

 

 

1.81135

27

 

 

1.95233

14

 

 

1.95557

10

 

 

1.95881

6

 

 

1.96371

18

 

 

1.96726

7

 

 

1.96967

32

 

 

1.97461

10

 

 

1.97665

46

 

 

1.98343

15

 

 

2.00025

93

 

 

2.00260

28

 

 

2.00622

5

 

 

2.01929:

93

 

 

2.02709:

243

 

 

2.03370:

122

 

 

2.04060:

281

 

 

2.04961:

106

 

 

2.05561:

216

 

 

2.06672:

68

 

 

2.07153:

129

 

 

2.08504:

38

 

 

2.08924:

70

 

 

2.09494:

18

 

 

2.09704:

35

 

 

2.09975

72

 

 

2.10425

112

 

 

2.10785

28

 

 

2.10995:

147

 

 

2.11446

18

 

 

2.11656

157

 

 

2.12256:

33

 

 

2.12376:

131

 

 

2.13247:

17

 

 

2.14988:

223

 

 

2.15108:

115

 

 

2.15349:

56

 

 

2.17150:

62

 

 

2.17930:

165

 

 

2.18711:

81

 

 

2.19492:

200

 

 

2.20452:

79

 

 

2.21157:

156

 

 

 


Appendix I: Terrestrial Atmospheric Absorption

 

This section will contain plots of the transmission of the Earth’s atmosphere in the 0.94-2.50 mm range.

 


Appendix J: List of Figures

 

Figure 1

figure.gif