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VLBI of Sgr A*: Scattering

Kellerman et al. (1977), Lo et al. (1981 & 1985), Jauncey et al. (1989), van 
Langevelde et al. (1992), Marcaide et al. (1992)



From first 7mm VLBI 
observations to the shadow 

Krichbaum et al. (1993)

Jet Model for Sgr A*:

Falcke, Mannheim, Biermann (1993)
see also Falcke & Markoff (2000)

⇒ Black Hole Shadow
Falcke, Melia, Agol (2000)

First 7mm VLBI
wavelength-dependent size & low accretion rate

(see also Backer et al. (1993))



Observed slope: size ∝λ1.3 (Ortiz-Leon et al 2016)
Prediction: size ∝λ1.1 (Falcke 1996) 22 GHz
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Shen et al. (2006)
(see also Rogers et al. 1994

Ortiz-Leon et al. 2016) 

Bower et al. (2004)

Shadow of event horizon

43 GHz
(λ=7 mm)

220 GHz
(λ=1.3 mm)

Krichbaum
et al. (1998)

Intrinsic Radio Size of Sgr A*
The higher the radio frequency – the closer to the black hole. 
At 230 GHz the emission comes from the event horizon scale. 



Radio Lags 
measured with ALMA & VLA

Higher frequencies, lead lower frequencies
delay is 30 – 90 min, size is ~1 light hour

⇒ relativistic outflow

Flux evolution at different frequencies
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Brinkerink et al. (2015, A&A), see also Yusef-Zadeh et al. (2009)

Palla et al. (2016)
in prep.



Two-dimensional structure of 
Sgr A*: fairly elongated

• Accurate closure 
amplitude 
measurements of 
2D-size of Sgr A* 
with the VLBA.

• Size at 43 GHz: 
(35.4 ±0.4) Rs ×
(12.6±5.5) Rs
at PA (95±4)°

Bower et al. (2014, ApJ)

3σ
2σ
1σ



Intrinsic asymmetries in 
Sgr A* (or scattering after all?)

Bower et al. (2014, ApJ)

(35.4 ±0.4)Rs × (12.6±5.5)Rs at PA 
(95±4)°

43 GHz
Closure
amplitudes

230 GHz
cl. phases

East-West asymmetries

Fish et al. (2016)

~50 µarcsecond (5 Rs)

86 GHz
VLBA+LMT+GBT

Brinkerink et al. (2016)

86 GHz
VLBA+LMT+GBT

Ortiz et al. (2016)



Event Horizon Telescope
Closure phases at 1.3 mm

all-years closure phases -
Median cl.-phase: +6°

Hawaii-California-Arizona triangle

allowed point source offsets

shadow 
size

Fish et al. (2016, ApJ)

See also “Polarization on EH scales”:
Johnston et al. (2015, Science)

Event Horizon Telescope



VLBA+LMT+GBT: Shadow-
sized substructure @ λ3mm

📡

📡

📡📡
📡 📡

~50 µarcsecond (5 Rs)

Non-zero 
closure phases

Brinkerink et al. (2016, MNRAS, in press)
(see also Ortiz et al. 2016)

Scattering
or 
source 
Structure?

scattered 
image

2-component
East-West extension



Event Horizon Telescope
Event Horizon Telescope
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IRAM PdB
(NOEMA) Create a virtual 
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size of the earth, 
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Very Long Baseline Intererometry at mm-waves (mmVLBI)

Event Horizon Telescope
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Event Horizon Telescope

GLT

Event Horizon Telescope
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VLBI with Africa mm-telescope?

Earth seen from Sgr A*

A dedicated African cm and mm-VLBI telescope for EHT, EVN, 
& SKA. investment cost: ~8 M€ + operations …



Gamsberg – 2347 m

Mountain owned by Max-Planck Gesellschaft

Site monitoring starting this summer
(HartRAO, U. Namibia, Radboud)



An African Dream:
A future EHT Array for M87



Event Horizon Telescope
1.3 mm EHT with APEX

Lu, Krichbaum et al., in prep.

Arizona/California - Chile



Event Horizon Telescope
South Pole – APEX fringes

led by Dan Marrone (Arizona)

South Pole -
Chile



Event Horizon Telescope
LMT – JCMT fringes

Mexico-Hawaii



Event Horizon Telescope

4 Gbps
16 Gbps

32 Gbps

64 Gbps

128 Gbps

Future	  mmVLBI	  bandwidths

R. Tilanus

Event Horizon Telescope

0.1 GHZ
excl. ALMA

1 GHz:
2×0.5 GHz

4 GHz:
2×2 GHz

8 GHz:
2×4 GHz

16 GHz:
2×8 GHz
2×2×4 

GHz

32 GHz:
2×16 GHz

2×2×8 
GHz



Event Horizon Telescope

• 1995 IRAM 1.3 mm experiment (PI Krichbaum)

• 2004 Green Bank Sgr A*@40 conference joint declaration
– 2005 informal telecons towards mmVLBI consortium

• 2005 Haystack-led 1.3 mm three-station experiments (PI Doeleman), 
EHT precursor
– ALMA phasing project (PI Doeleman)

• 2009 EHT named at AAS coffee break
– mm-VLBI of Sgr A* listed in US & EU decadal

– 2012 1st EHT meeting, Tucson & “mm-VLBI with ALMA”, ESO

– 2014 Waterloo EHT meeting, f2f negotiations

• 2013 & 2014 ERC BlackHoleCam, NSF MSIP grant,  
& institutional grants at: ASIAA, MPIfR, NOAJ, …

• 2015 EHT interim board formed, telco negotiations

• 2016 Consortium Agreement accepted, legal review

Road towards the EHT



BlackHoleCam
ERC Synergy project: BlackHoleCam 

Blac
k 

Hole

Rezzolla
(theory)

Kramer
(pulsars)

Falcke
(imaging
& theory)

Black
Hole

14M€ funding to:
• image black hole
• model black hole
• map spacetime 
around black holes 
with stars & pulsars

European 
Research 
Council

To avoid confusion: BHC is a 
European funded project, which 
is a partner in EHT not a 
separate network!

EHT
Science

Matching grant from NSF MSIP:
6.5 M$ for EHT (PI Doeleman)



Event Horizon Telescope

• Arizona: SMTO, South Pole VLBI equipment, receiver, theory

• ASIAA: Greenland Telescope, Maser cost-sharing, SouthPole maser, 
Alma phasing

• BlackHoleCam (Radboud, Frankfurt, Bonn): Phasing PdeB (NOEMA), 
data pipelining (in CASA), monitoring & control, VLBI backend 
hardware & disks, theory

• Harvard/SAO: SMA, NSF-MSIP management, VLBI equipment, 
theory

• IRAM, LMT (INAOE), JCMT (EACOA), SPT (Chicago): telescope time.

• MPIfR: Apex, VLBI instrumentation for Pico Veleta and PdeBure, 
VLBI correlation, Alma phasing

• MIT Haystack: Alma phasing, correlation, analysis software, 
management

• NAOJ: ASTE experiment (2010), Alma phasing, software

• Perimeter: theory

Global EHT Investments



Event Horizon Telescope
EHT structure

Science&Council&

EHTC&Board&
Execu3ve&Group&

Director&

Project&Scien3st& Project&Manager&

Science&Working&
Groups&

Technical&Working&
Groups&

26&Sept&2015&

10 scientists named S. Doeleman

13 institutions
A. Zensus (chair)

EHT Stakeholders & board
• Harvard/SAO (USA)

• R. Brissenden
• MIT Haystack (USA)

• C. Lonsdale
• Univ. Arizona (USA)

• B. Jannuzzi
• Univ. Chicago (USA)

• J. Carlstrom
• Perimeter (Canada)

• A. Broderick
• MPIFR Bonn (Germany)

• A. Zenus
• IRAM  (D/F/E)

• K. Schuster
• Radboud Univ. (Netherlands)

• H. Falcke
• Univ. Frankfurt (Germany)

• L. Rezzolla
• INAOE (Mexico)

• D. Hughes
• EACOA (East Aisa)

• P. Ho
• NOAJ (Japan)

• M. Honma
• ASIAA (Taiwan)

• M. InoueIndividual EHT membership still to be defined (and possible)!



Event Horizon Telescope

• GMVA operates as 3mm VLBI operator
• EHT operates as experiment and 1.3 mm VLBI 

operator (trial)
– can support limited number of external proposals

• ALMA makes some fraction of time available for 
VLBI at 1.3 and 3 mm

• NRAO receives proposals and distributes to EHT 
and partner telescopes
– EHT provides technical and scientific assessment
– Proposals are reviewed by individual telescopes 

• ALMA receives, reviews & ranks proposals
• EHT + ALMA jointly schedule successful proposals
• First session: April 5-14, 2017

ALMA & VLBI



Event Horizon Telescope
EHT Interim Board formed

ASIA

USA

Europe

Mexico

Event Horizon Telescope



Event Horizon Telescope
The VLBI System

receiver
up/down 
converter

digital backend
(A/D 

converter+proce
ssing)

R2DBE/DBBC3

4 x 16 Gb/s 
data recorder

IRAM Plateau de Bure Interferometer – France

rack units
monitoring 
& control)

Digital revolution: 
128 Mbit/s→2 Gbit/s→64 Gbit/s
more bandwidth=more sensitivity.

receiver

BH image

atomic 
clock

(maser)

Last campaign: March 20-30, 2015

Event Horizon Telescope



Event Horizon Telescope
EHT Roadmap



Scattering & Variability

Broderick, Johnson et al. (2016)



Scattering

Johnson & Gwinn (2015)



Image reconstruction

Full array              no CARMA                  no IRAM                no ALMA

Lu, Roelofs et al. (2016, APJ)

original image          scattered                  deblurred incl. variability



Future: 350 GHz VLBI images 
of 2D GRMHD

model

a=0.94, i=5°, Tp/Te=3 

reconstructed VLBI Image

“disk-only” model from Mościbrodzka et al. (2009) 
face-on orientation

Falcke et al. (2011)



Future: 350 GHz VLBI images 
of 2D GRMHD

scatter-broadened model reconstructed Image
edge-on orientation

Falcke et al. (2011)



Source Variability

Lu, Roelofs et al. (2016, APJ)

Simple 
reduction

8 epochs
Averaging 
smoothing

time



Fitting optimal shadow 
model to get BH parameters

Broderick et al. (2016)

Best Fit:
Spin: a = 0.10-0.1

+0.3

Inclination θ = 60º±3º
Orientation:  ξ= 156º±15º

7 years of data 
from 3 baselines Spin



Fitting optimal shadow 
model

Broderick et al. (2016)

(closure phases)

Spin



Models with jet emission 
give slightly different results 

λ3.5 mmλ7 mm λ1.3 mm

scatter broadened 

Sc
al

es
 c

ha
ng

in
g!

VLBI beam

Needs library of models to understand systematic uncertainties 
Take SED and other GC parameters into account (not just 1.3 mm image)
standardized data & science analysis pipeline(s) – ideally two or more

Moscibrodzka et al. (2014)

spin a=0.95
inclination θ=60º

Fits sizes and SED 
at all λs



Shadow Industry:
Different Spacetimes

Falcke & Markoff, Class. & Quant. Gravity (2013)
See also Johansen (2016), Class. & Quant. Gravity



Deviations from GR

Broderick et al. (2014), Johannsen (2016)
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Simulating and quantifying
non-Einstein gravity

• Example: Non-Einstein gravity with „Dilaton parameter“ b:

Rezzolla & Zhidenko (2014) 
metric expansion:

yields high accuracy approximation 
e.g. error of 1e-4 in gµν with seven 
expansion parameters

Schwarzschild, 
b=0

Einstein-Dilaton, 
b=0.1

General axisymmetric spacetime also 
available: Konoplya et al. (2016) Simulation credit: Yosuke Mizuno

• New 3DGRMHD code BHAC (U. Frankfurt, Rezzolla)
• Adaptive mesh and arbitrary space times

b4 ¼
1

12b1b2b3r3
ðr2ðr2ðr2hÞ0Þ0Þ0

!!!! r ¼ r0
ϵ1 ¼ 0

−
ðr2hÞ0

4a1a2a3r

"
ðr2ðr2hÞ0Þ0

ðr2hÞ0

#0!!!! r ¼ r0
ϵ1 ¼ 0

; ð27eÞ

a5 ¼ $ $ $ ; ð27fÞ

where we have indicated with a prime 0 the radial
derivative. Clearly, expressions (27) can be easily extended
to higher orders if necessary.
A few remarks are worth doing. First, because of

cancellations, the terms a1; a2; a3… do not depend on ϵ1
and ϵ2; similarly, the terms b1; b2; b3… do not depend on
ϵ1, but they do depend on ϵ2. Second, in the simplest case
and the one considered in Ref. [10], i.e., when only ϵ3 ≠ 0,
the coefficient a2 vanishes and our approximant for the
function N reproduces it exactly. Finally, and more impor-
tantly, expressions (27) clearly show the rapid-convergence
properties of the expansions (19). It is in fact remarkable
that a few coefficients only are sufficient to capture the
infinite series of coefficients needed instead in the JP
approach [cf., for instance, expressions (27b) for the
coefficients a1 and b1].

IV. PARAMETRIZATION FOR DILATON
BLACK HOLES

As another test of the convergence properties of our
metric parametrization we next consider a dilaton-axion
black hole [14]. When both the axion field and the spin
vanish, such a black hole is described by a spherically
symmetric metric with line element

ds2 ¼ −
"
ρ − 2μ
ρþ 2b

#
dt2 þ

"
ρþ 2b
ρ − 2μ

#
dρ2 þ ðρ2 þ 2bρÞdΩ2:

ð28Þ

The radial coordinate r and the ADM mass M are
expressed, respectively, as

r2 ¼ ρ2 þ 2bρ; M ¼ μþ b; ð29Þ

where b is the dilaton parameter.
By comparing now the expansions of (1) and (28) at

spatial infinity, we find that
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μ

s
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; ð30bÞ
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Similarly, by comparing the near-horizon expansions we
find the other coefficients, which also depend on b=μ only
and are given by
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b2 ¼
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1þ b=μ

p
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− 1 −

b2
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It is clear that a1 and b1 vanish if b ¼ 0, in which case we
reproduce the line element of the Schwarzschild black hole
exactly. If b > 0, on the other hand, we could in principle
calculate as many coefficients of the continued fractions
(19) as needed; in practice already the very first ones
suffice. For example, for b=μ ¼ 1 and setting a3 ¼ 0, the
maximum relative difference between the exact and the
expanded expression for the metric function gtt is
≲3 × 10−4. This relative difference becomes ≲3 × 10−6

if the order is increased of one, i.e., if a4 ¼ 0 (see also the
discussion below on Fig. 1).

V. OBSERVABLE QUANTITIES WITHIN THE
PARAMETRIZATION FRAMEWORK

A high precision in the mapping of the metric functions
does not necessarily translate in an equivalent accurate
measure of near-horizon phenomena. Hence, to further test
the reliability of our continued-fraction expansions (19), we
next compare a number of potentially observable quantities
for a spherically symmetric dilaton black hole and for a
black hole in Einstein-aether theory, respectively. More
specifically, we calculate: the impact parameter for the
photon circular orbit, the orbital frequency for the inner-
most stable circular orbit, and the quasinormal ringing of a
massless scalar field. For all of these quantities, the metric
is either expressed analytically [i.e., Eq. (28) for a dilation
black hole] or numerically [i.e., for a black hole in Einstein-
aether theory], or in its parametrized form [i.e., via the
coefficients (30)–(31) for a dilation black hole].

A. Photon circular orbit and the innermost
stable circular orbit

In a spherically symmetric spacetime, a photon circular
orbit is defined as the null geodesic at radial position
r ¼ rph for which the following equations are satisfied,
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of the first coefficients of the expansion can be easily
constrained in terms of PPN-like parameters, an infinite
number remains to be determined from observations near
the event horizon [10]. This approach was recently gen-
eralized by relaxing the area-mass relation for non-Kerr
black holes and introducing two independent modifications
of the metric functions gtt and grr [11]. Unfortunately, as
discussed in [11], this approach can face some difficulties:
(1) The proposed metric is described by an infinite

number of parameters, which are roughly equally
important in the strong-field regime, making it
difficult to isolate the dominant terms.

(2) The parametrization can be specialized to reproduce
a spherically symmetric black hole metric in alter-
native theories only in the case in which the
deviation from the general relativity is small. This
was checked for the black holes in dilatonic
Einstein-Gauss-Bonnet gravity [12], for which the
corresponding parameters were calculated only in
the regime of small coupling.

(3) At first order in the spin, the parametrization cannot
reproduce deviations from the Kerr metric arising in
alternative theories of gravity.As an example, it cannot
reproduce the modifications arising for a slowly
rotating black hole in Chern-Simonsmodified gravity.

In this paper we propose a solution to these issues and
take another step in the direction of deriving a general
parametrization for objects in metric theories of gravity.
More precisely, we propose a parametrization for spheri-
cally symmetric and slowly rotating black hole geometries
which can mimic black holes with a high accuracy and with
a small number of free coefficients. This is achieved by
expressing the deviations from general relativity in terms of
a continued-fraction expansion via a compactified radial
coordinate defined between the event horizon and spatial
infinity. The superior convergence properties of this expan-
sion effectively reduces to a few the number of coefficients
necessary to approximate such spherically symmetric metric
to the precision that can be in principle probed with near-
future observations. While phenomenologically effective,
the approach we suggest has also an obvious drawback.
Because the metric expression we propose is not the
consistent result of any alternative theory of gravity, it does
not have any guarantee of being physically relevant or
nothing more than a mathematical exercise.
The paper is organized as follows. In Sec. II we describe

the proposed parametrization method. Section III is devoted
to the relation between the proposed parameters and the
parameters of the Johannsen-Psaltis spherically symmetric
black hole. In Sec. IVwe obtain values of the parameters that
approximate a dilatonblackhole,while inSec.Vwecompare
the photon circular orbit, the innermost stable circular orbit,
and the quasinormal ringing predicted within our approxi-
mation with the corresponding quantities obtained for the
exact solution of a dilaton black hole. In Sec. VIwe apply our

approach to slowly rotating black holes and, in the con-
clusions, we discuss applications for our framework and its
possible generalization for the axisymmetric case. Finally,
Appendix A is dedicated to a comparison of our para-
metrization framework with the alternative parametrization
of a spherically symmetric black hole proposed in Ref. [11].

II. PARAMETRIZATION OF SPHERICALLY
SYMMETRIC BLACK HOLES

The line element of any spherically symmetric stationary
configuration in a spherical polar coordinate system
ðt; r; θ;ϕÞ can be written as

ds2 ¼ −N2ðrÞdt2 þ B2ðrÞ
N2ðrÞ

dr2 þ r2dΩ2; ð1Þ

where dΩ2 ≡ dθ2 þ sin2θdϕ2, and N and B are functions
of the radial coordinate r only.
For any metric theory of gravity whose line element can

be expressed as (1), we will next require that it could
contain a spherically symmetric black hole.1 By this we
mean that the spacetime could contain a surface where the
expansion of radially outgoing photons is zero, and define
this surface as the event horizon. We mark its radial
position as r ¼ r0 > 0 and this definition implies that

Nðr0Þ ¼ 0: ð2Þ

Furthermore, we will neglect any cosmological effect, so
that the asymptotic properties of the line element (1) will be
those of an asymptotically flat spacetime. Differently from
previous approaches, we find it convenient to compactify the
radial coordinate and introduce the dimensionless variable

x≡ 1 −
r0
r
; ð3Þ

so that x ¼ 0 corresponds to the location of the event
horizon, while x ¼ 1 corresponds to spatial infinity. In
addition, we rewrite the metric function N as

N2 ¼ xAðxÞ; ð4Þ

where

AðxÞ > 0 for 0 ≤ x ≤ 1: ð5Þ

We further express the functions A and B after introducing
three additional terms, ϵ, a0, and b0, so that

AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ~AðxÞð1 − xÞ3;

ð6Þ

1Much of what discussed here for a black hole can be
employed also for the spacetime of a compact star. In this case,
however, suitable boundary conditions for the metric will need to
be imposed at the stellar surface x ¼ 0 [cf., Eq. (2)].
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Multi.messengers:
Stars, Pulsars, EHT
• Uncertainties in 

measurements of the 
black-hole spin and 
quadrupole moment 
using orbits of stars 
and pulsars are nearly 
orthogonal to those 
obtained from 
measuring of the 
black hole 

• Tests validity of GR in 
strongly curved static 
space time. Psaltis, Wex, Kramer (2016)



EHT and LIGO

Baker, Psaltis, Skordis (2015)



Conclusions
• Future of EHT is bright

– Global consortium is forming
– More & bigger telescopes: ALMA, LMT, IRAM NOEMA, SPT, 

GLT, Africa? (… but CARMA is gone☹�)
– More bandwidth: (0.1 GHz) 1 GHz → 16 GHz (32 GHz)
– Better analysis tools (CASA VLBI, imaging, de-blurring, 

variability, polarization)
• Science analysis:

– Library of GRMHD simulations and images from different 
codes & groups

– Independent analysis pipelines to cross-check results
– End-to-end detector/array simulations 
– Multi-wavelength input needed to constrain fitting


