PSR J1745-2900

The Galactic Center Pulsar

Geoffrey C. Bower (ASIAA, Hilo)

A strong magnetic field around the supermassive black hole at the centre of the Galaxy

R. P. Eatough, H. Falcke, R. Karuppusamy, K. J. Lee, D. J. Champion, E. F. Keane, G. Desvignes, D. H. F. M. Schnitzeler, L. G. Spitler, M. Kramer, B. Klein, C. Bassa, G. C. Bower, A. Brunthaler, I. Cognard, A. T. Deller, P. B. Demorest, P. C. C. Freire, A. Kraus, A. G. Lyne, A. Noutsos, B. Stappers & N. Wex

PULSE BROADENING MEASUREMENTS FROM THE GALACTIC CENTER PULSAR J1745-2900

L. G. Spitler¹, K. J. Lee¹, R. P. Eatough¹, M. Kramer^{1,2}, R. Karuppusamy¹, C. G. Bassa², I. Cognard³, G. Desvignes¹, A. G. Lyne², B. W. Stappers², G. C. Bower⁴, J. M. Cordes⁵, D. J. Champion¹, and H. Falcke^{1,6,7}

THE ANGULAR BROADENING OF THE GALACTIC CENTER PULSAR SGR J1745-29: A NEW CONSTRAINT ON THE SCATTERING MEDIUM

Geoffrey C. Bower¹, Adam Deller², Paul Demorest³, Andreas Brunthaler⁴, Ralph Eatough⁴, Heino Falcke^{2,4,5}, Michael Kramer⁴, K. J. Lee⁴, and Laura Spitler⁴

The Proper Motion of the Galactic Center Pulsar Relative to Sagittarius A*

Geoffrey C. Bower¹, Adam Deller², Paul Demorest³, Andreas Brunthaler⁴, Heino Falcke^{5,2,4}, Monika Moscibrodzka⁵, Ryan M. O'Leary⁶, Ralph P. Eatough⁴, Michael Kramer^{4,7}, K.J. Lee⁴, Laura Spitler⁴, Gregory Desvignes⁴, Anthony P. Rushton^{8,9}, Sheperd Doeleman^{10,11}, Mark J. Reid¹¹

Using Pulsars to Measure Spacetime Around Sgr A*

Liu et al 2012

Known GC Pulsars

PSR	P (ms)	B (10 ¹² G)	DM (pc cm ⁻³)	τ _{sc} (2 GHz; ms)
1746-28501	1077	38	962	100
1746-2850II	1478	3	1456	145
1745-2910	982		1088	
1746-2856	945	4	1168	
1745-2912	187		1130	144

Johnston et al. 2006 Deneva et al. 2009

Galactic Center Magnetar Discovery

X-ray Localization: ~2" to Sgr A*

X-Ray Burst

Radio Detection

- P = 3.76354676(2) s
- P/Pdot \rightarrow B ~ 10¹⁴ G
- T_{spindown}~ 9000 yrs
- DM = 1778 +/- 3 cm⁻³
 pc
- $RM = -7 \times 10^4 \text{ rad } \text{m}^{-2}$
- Flux ~0.2 1 mJy
- spectrum ~flat
- Only 4 radio magnetars known – chance alignment is 10⁻⁸

Eatough et al. 2013 Shannon and Johnston 2013

normalised flux

Dispersion in the Galactic Center

 $DM = \int n_e \, dl$

Largest Pulsar Rotation Measure Observed

 $RM = -66960 + / -50 rad m^{-2}$

 $RM = \int n_e \overline{B} \bullet dl$

Angular Broadening of the Pulsar

Temporal Scattering

Scattering Inhibits Imaging

Haggard & Bower, Sky & Tel, 2016

A New Distance for the GC Scattering Screen

Reid, Brunthaler, et al

Line of Sight Effects

Size vs. time (binned)

Does a Scattering Screen at Large Distances Make Sense? *Isn't the Galactic Center Special*?

- NGC 6334B & Cyg X-3 have similar scattering sizes and non-local scattering screens
- 50 pc diameter screen associated with HII regions or GMC surfaces can provide the scattering
- Missing extragalactic background sources?
- Apparent peak of OH/IR masers around Sgr A*?
- Patchiness?
 - Scale ~5' from G359.87+0.18

Other GC Pulsar Scattering

Preliminary Dexter et al

Astrometry of SGR J1745-29

The GC Pulsar Likely Originates in the Clockwise Stellar Disk

- V_{proj}=240 +/- 3 km s⁻¹
- R_{proj}=0.097 pc
- P>700 y

Acceleration Limits

- Current 3 sigma limits from astrometry
 - Declination < 0.5
 mas/yr²
 - $RA < 1 mas/yr^2$
 - Pdot provides a comparable constraint
- Acceleration measures

 |z| and would
 demonstrate that the
 PSR is bound to Sgr A*

Parallax Constraint

Astrometric Residuals

Revised PSR Sensitivity

Macquart & Kanekar 2014

Missing Pulsars?

- Anomalous scattering
 - Cordes et al
- Intermittent pulsation
 - Cordes & Shannon 2008
- Dark matter
 - Bramante & Linden 2014

The Young GC Cluster & Its Pulsar Population

WR+OB Stars Paumard et al 2006, Lu et al 2013

- T~2.5 5.8 Myr
- M~10⁴ M_{sun}
- High Multiple Fraction (~1)
- \rightarrow
- Cluster SNe only produce magnetars and BHs
- No ordinary pulsars if no other star formation since T_{pulsar}~10-100 Myr

Westerlund 1 A Young Cluster Analog of the GC Cluster

Muno et al 2006, Clark et al 2014

- T~6 Myr
- M~10⁵ M_{sun}
- Magnetar w/potential binary companion
- No Radio pulsars

High Mass Binaries Form Neutron Stars

Fryer et al 2002, Belczynski & Taam 2006

Does binarity in massive stars preferentially lead to magnetars?

MSPs in the GC

- MSPs and BHs should accumulate in the GC due to dynamical friction
- Nustar diffuse X-ray emission suggests a population of MSPs

What Has the GC Pulsar Taught Us?

- Central parsec B-field
- Scattering screen distance
- Low kick velocity for magnetars
- Origin in the CW disk
- Bound to Sgr A*?
- Not suitable for GR
- The Missing Pulsar Problem
- ...MSPs should be present and suitable for timing and GR tests

