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1. Introduction. Hyperbolic conservation laws, and the Euler equations of compressible fluid dynamics in
particular, have been the subject of intensive research for at least the past five decades, and with good reason.
The applications are many - aircraft design, stellar formation, weather prediction to name only a few. There are
some theoretical results [42, 8, 10], and we strongly recommend the pre-print server web site [14] for the many
papers there on theoretical and numerical aspects of hyperbolic conservation laws. Even if the theory were perfect
the applications would not be possible without methods for obtaining approximate solutions. The unfortunate
situation here is that rigorous error estimates for supposed approximate solutions are almost entirely nonexistent,
but see [20] for a modest beginning. So, it is universally recognized that tests of methods on difficult problems are
essential.

Invariably, any published proposal for a new numerical method will include some actual calculations, and these
are clearly too numerous for us to catalogue. The book by Pat Roache [39] contains many early references, and the
many fine texts now available (for example, [25, 23]) also contain references to calculations. Our concern here is to
compare the behavior of some methods to each other on problems that seem to us to be sufficiently difficult and
representative to enable the reader to draw some conclusions about the applicability of these methods. The now
classic work of this nature is the paper by Gary Sod [43]. It showed up the shortcomings of schemes such as Lax-
Wendroff and Lax-Friedrichs, and was very influential in the development of new methods. The one dimensional
Riemann problem used by Sod in his tests is widely known as Sod’s problem. Although it does show the ability of
a method to resolve a rarefaction, a contact, and a shock, these waves in Sod’s problem are not particularly strong.

A more difficult set of one-dimensional problems has been considered by E. Toro [46], and in that book Toro
describes in detail several popular methods and shows their behavior on his tests all of which have easily computed
exact solutions. We have included five of Toro’s test problems, but we have gone beyond those to include some
interesting two-dimensional tests, including one from [46]. In so doing, however, except in few cases we no longer
have exact solutions available, so a definitive objective evaluation of the validity of the solutions obtained is not
possible.

Lagrangian methods, finite element methods, particle methods, kinetic and relaxation methods are not con-
sidered, nor are other systems of equations such as magneto-hydrodynamics.

OUTLINE: A detailed self-contained discussion of the eight schemes we have chosen would be impractical
for this already rather large report, therefore in the next section we present only very briefly the basic ideas and
references. Following that are three groups of tests. The first group consists of seven 1D Riemann problems plus
the Woodward-Collela blast wave problem. The second group contains six 2D Riemann problems. The third
group includes several 2D problems with unstable interfaces, one with an infinite strength shock, one with smooth
solution and two with non-smooth continuous solution. For each group the data are given, and then for each test
in the group the output of some of the eight methods is collected. We also include some comments about the
behavior of the various schemes. In those cases for which we do not have the exact solution, the comments are
highly subjective.

DISCLAIMER: Modifications had to be made to fit the various codes into our data structure. Bugs are always
a possibility in that case, so we cannot guarantee that all schemes are functioning exactly as intended by their
creators.

2. Finite difference schemes. Here we provide a short summary and references for all schemes used in this
comparision project. We have chosen eight methods that we feel are representative of the different basic finite
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difference approaches to solving hyperbolic conservation laws.
Two of the methods described below are dimensionally split, namely, PPM and VH1. While we have chosen

to describe all methods in only the most general terms, it is necesary to expound a bit here on the notion of
dimensional splitting. Some have described this technique as ill-advised and inefficient, but we have found just the
opposite to be the case, as have its defenders. For a system ut + fx + gy = 0 the time step is split into two parts.
In the first, the equation ut + fx = 0 is advanced by a one-dimensional scheme. Then using the updated values as
data the equation ut + gy = 0 is advanced to complete the time step. Either alternation or symmetrization as first
proposed by G. Strang [44] is usually used to preserve the accuracy of the 1D method and reduce grid alignment
effects. On the other hand, the typical two-dimensional scheme would use difference approximations to fx and gy

and simultaneously rather than sequentially update the data.
There are several advantages to dimensional splitting. It is very easy to convert a 1D code to 2D this way. The

stability condition is usually less restrictive and there are possibly fewer flux evaluations necessary so that it can
be more efficient than a 2D calculation. The big disadvantage is that it is not an option for non-rectangular grids.

2.1. A CFLF hybrid scheme - CFLFh. Hybrid schemes and the similar flux-corrected-transport schemes
have a long history and are presented very well in [23]. The idea is to create a numerical flux consisting of an
average of a diffusive flux such as from Lax-Friedrichs (LF) and an oscillatory flux such as Lax-Wendroff (LW).
The weights are chosen so that the scheme is formally second-order accurate but becomes sufficiently dissipative in
shocks. We have used the fluxes from the 2D LW and LF versions used in the composite scheme [29], along with
the Harten weight [15] which can be found in [23].

2.2. Centered scheme with limiter - JT. This scheme by Guang-Shan Jiang and Eitan Tadmor [18]
which is the 2D successor of the Nessyahu-Tadmor 1D NT scheme [33] (see also [2]) is called a nonoscillatory
central scheme. It uses neither dimensional splitting nor eigenvector decomposition nor any overt Riemann solver.
It does use discontinuous limited piecewise linear reconstruction from cell averages to get fluxes at cell edges. The
code is simple enough that it is presented in Appendix 5 of [18] and we were able to use it as is, making only those
modifications necessary to fit it into our data structure.

2.3. Positive scheme - LL. This method devised by Xu-Dong Liu and Peter Lax (LL) [32, 24] is based
on a theorem of Friedrichs stating roughly that if a finite difference method is a two-level method giving the new
value of the solution vector as a linear combination of values at the previous time with coefficients that are positive
symmetric matrices adding to the identity (but depending only on the independent variables), then the scheme
is L2 stable. The theorem doesn’t apply directly to nonlinear systems, nevertheless Lax and Liu created such a
positive scheme for the Euler equations. It does require an eigenvector decomposition and limiting. We use the
code for this scheme published in [32], available also electronicaly.

2.4. Clawpack wave propagation scheme - CLAW. Clawpack is a sophisticated flux splitting scheme
developed by Randall LeVeque [27], based on earlier advection ideas [26]. The source and documentation are
available to all at [28]. It has many options for the user; dimensionally split or not, choices for limiters, etc. We
have used the nonsplit version with monotonized centered limiter using the Roe Riemann solver with 4 waves
(separate shear and entropy waves).

2.5. Weighted average flux (WAF) scheme - WAFT. WAF is actually a class of schemes that includes
the Roe scheme - a fact communicated to us by James Quirk [37, 35]. The flux at the cell boundary is obtained
as a spatially weighted average over the states of an approximate Riemann solver. A limiter is employed in the
computation of the weights. Different methods are obtained for different solvers and different averaging, [45, 46, 4].
We call the version we have used WAFT, it is a 2D nonsplit code given us by E. Toro which is a part of the Numerica
library [47]. This code uses a WAF scheme with HLLC approximate Riemann solver using the Rankine-Hugoniot
condition for evaluating the middle fluxes as described in chapter 10 of [46].

2.6. Weighted essentially nonoscillatory scheme - WENO. Weighted essentially nonoscillatory schemes
(WENO) [19] are an improvement on the essentially nonoscillatory (ENO) scheme of Harten and Osher [16]. Upwind
biased spatial differencing is used that produces high-order accuracy for smooth flows but becomes low order and
dissipative for shocks. We have used the code given to us by Guan-Shan Jiang. The spatially fifth-order accurate
WENO procedure is applied to an eigenvector decomposition. The time integration is done by a third-order
Runge-Kutta.

2.7. Piecewise parabolic - PPM. The piecewise parabolic method (PPM) [7] is in the class of higher-
order accurate Godunov methods. It uses piecewise parabolic limited reconstruction to obtain states to use in the
Riemann problems defining the fluxes. Dimensional splitting is used. We use the free version of PPM available at
PPMLib library [9] (core routines are available only as SGI binaries).
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2.8. Virginia Hydrodynamics 1 - VH1. Virginia hydrodynamics [5] is a free version of the Lagrangian
remap PPM method [7] including force sources and all standard geometries in 1D, 2D and 3D. The PPM Lagrangian
time step using a Riemann solver is followed by a piecewise parabolic remapping step which remaps quantities from
the moved grid to the original one. Dimensional splitting is used. PPMLib [9] also includes the Lagrangian remap
PPM method.

3. 1D tests.

3.1. Description of 1D problems. For 1D tests we have chosen five 1D (in x) Riemann problems from
[46], tests 1,2,4,5,6 plus three others: Noh is the classical 1D Noh problem [34]; test 3a is a modification of test 3
from [46] keeping a stationary contact; peak is a hard problem with strong narrow peak in density found by Milan
Kuchař́ık [21], and the Woodward-Collela blast wave problem [48]. All the 1D problems except the blast wave
problem are simple Riemann problems with known exact solutions.

The Riemann problems are on the interval x ∈ (0, 1) (except for peak which is computed on x ∈ (0.1, 0.6) )
with initial discontinuity at x0 ∈ (0, 1) solved for time t ∈ (0, T ). The initial conditions are given by constant left
state (ρL, uL, pL) of density, velocity and pressure on the interval x ∈ (0, x0) and right state (ρR, uR, pR) on the
interval x ∈ (x0, 1). Each test is defined by the eight parameters ρL, uL, pL, ρR, uR, pR, x0, T . For all 1D Riemann
problems the data are given in Table 3.1. The Noh problem uses the gas constant γ = 5/3 while all other tests use
γ = 1.4. All Riemann problem tests use natural boundary conditions.

Test ρL uL pL ρR uR pR x0 T
1 1 0.75 1 0.125 0 0.1 0.3 0.2
2 1 -2 0.4 1 2 0.4 0.5 0.15
Noh 1 1 10−6 1 -1 10−6 0.5 1
3a 1 -19.59745 1000 1 -19.59745 0.01 0.8 0.012
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.095 0.4 0.035
5 1.4 0 1 1 0 1 0.5 2
6 1.4 0.1 1 1 0.1 1 0.5 2
peak 0.1261192 8.9047029 782.92899 6.591493 2.2654207 3.1544874 0.5 0.0039

Table 3.1
Definition of 1D Riemann problem tests

The classic Woodward-Collela blast wave problem [48] computes the interaction of waves from two Riemann
problems with reflecting boundary conditions. The problem is treated again on the interval x ∈ (0, 1). Two initial
discontinuities are located at x1 = 0.1 and x2 = 0.9. The initial density is one and the velocity is zero everywhere.
Initial pressures in three different regions (left pl, middle pm and right pr) are (pl, pm, pr) = (1000, 0.01, 100).

For the numerical treatment of most test problem we use 100 grid cells, exceptions being tests 3a and 4 using
200 cells, blast using 400 and 2000 cells and peak using 800 cells.

3.2. Errors of the numerical solution. For 1D Riemann problems we can compute their exact solution and
so we are able to compare the errors of their numerical solution, giving us an objective evaluation of the different
numerical methods. Table 3.2 summarizes L1 relative errors of the numerical solution of these 1D Riemann problems
by different numerical schemes. Errors are in %. For most tests presented errors are errors in density, only for test
2 we present errors in internal energy and for peak in velocity.

Test 1 2 noh 3a 4 5 6 peak
CFLFh 1.5 10.2 1.9 10.3 2.7 0.7 0.8 1.9
JT 1.3 6.4 1.7 8.1 2.3 0.6 0.6 1.1
LL 1.3 31.3 1.5 5.2 2.4 0.5 0.7 0.8
CLAW 0.8 fail 1.3 3.1 1.7 0 0.4 fail
WAFT 0.7 21.9 2.8 2.6 1.4 0 0.3 1.0
WENO 1.3 23.7 2.0 9.2 2.2 0 0.4 2.4
PPM 0.5 6.3 4.6 9.4 1.1 0 0.1 1.3
VH1 0.9 9.6 1.5 3.7 1.3 0 0.3 0.8

Table 3.2
Relative L1 errors in % for 1D Riemann problem tests for all eight schemes, fail means that the scheme has failed to compute

given test.

3.3. 1D results. Here we show results by all eight schemes for all 1D tests. Note that for most problems
we present the results for the density. The exception is the test 2 for which we present internal energy.

ralph
Note
Blast Problem is at T= 0.038
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Test 1: This is Toro’s variant of Sod’s Riemann problem, differing from it in that there is a sonic point in
the rarefaction. All eight methods resolve the shock very well without oscillation, although LL is more dissipative
than the others. PPM is outstanding on the contact, with WAFT not far behind. Many of the schemes tested in
[46] develop the so-called sonic glitch in the rarefaction, but this is not present in any of our eight schemes, but
PPM, CLAW, and JT have a dip at the base of the rarefaction wave. CFLFh, JT and VH1 have variations in flat
areas.
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Fig. 3.1. 1D results (density) for the test 1 problem by all eight schemes.

Test 2: For this Riemann problem the central state is a near vacuum, in which both ρ and p are close to zero,
but the internal energy e = p/ρ(γ − 1) is not. It seems that no general Eulerian scheme can compute the internal
energy very well. To make LL work for this problem we needed to set LL parameters to α = 0.1 and β = 2 on
Xu-Dong Liu’s suggestion [31] which leads to larger viscosity and bad resolution of the heads of rarefaction waves.

1D Noh: The solution of this problem consists of two infinite strength shocks moving out from the center,
leaving a constant density and pressure state behind. JT followed by CFLFh and LL has the smallest dip in density
at the center. PPM has a poorly resolved shock and a significant dip at the center, and is not symmetric about the
center. The WAFT run was with the superbee limiter and is also not symmetric, while a run using minmod limiter
was symmetric however this limiter gives worse results than superbee one for many other tests. WAFT result has
bad oscilations in high density area.

Test 3a: In this variant of Toro’s Test 3 there is a stationary contact generated at x = 0.8. The WAF schemes
and CLAW do best, with CFLFh not really acceptable at this resolution.

Test 4: PPM is very good on this problem with two strong shock waves. CLAW and WAFT have good
resolution but develop oscillations.

Test 5: This shows which methods (CLAW, WAFT, WENO, PPM and VH1) are exact for a stationary
contact.

Test 6: This is a slowly moving contact. PPM is excellent, followed by WAFT, CLAW and WENO5. CFLFh
develops oscillations behind the contact.

Peak: All schemes have difficulty accurately computing the velocity, especially around the rarefaction with
very small change in density. WAFT resolves very nicely the very narrow peak in density between the contact and
the shock.
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Fig. 3.2. 1D results (internal energy) for the test 2 problem by all eight schemes.
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Fig. 3.3. 1D results (density) for the Noh problem by all eight schemes.
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Fig. 3.4. 1D results (density) for the test 3a problem by all eight schemes.
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Fig. 3.5. 1D results (density) for the test 4 problem by all eight schemes.
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Fig. 3.6. 1D results (density) for the test 5 problem by all eight schemes.
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Fig. 3.7. 1D results (density) for the test 6 problem by all eight schemes.
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Fig. 3.8. 1D results (velocity) for the peak problem by all eight schemes.
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Fig. 3.9. 1D results (density) for the peak problem by all eight schemes.
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Blast: For this test we present results computed using 400 cells (with “exact” solution from PPM with 2000
cells) and also using 2000 cells to see convergence. The left contact (the first jump from left around x = 0.59) is
best resolved by PPM and VH1, however VH1 is not so good in resolving the right contact (second jump from
right around x = 0.8). WAFT is very good in resolving the area around the density maximum.
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Fig. 3.10. 1D results (density) for the blast wave problem by all eight schemes.

4. 2D tests.

4.1. Accuracy - Smooth periodic problem. To check the accuracy of the presented schemes we have
computed the numerical solution of an exact smooth solution [19]

ρ(x, y, t) = 1 + 0.2 sin(π(x + y − t(u + v))), u, v, p constants

of the Euler equations for an ideal gas. We have used the particular values u = 1, v = −1/2, p = 1 for velocities
and pressure. The gas constant is again γ = 1.4. Periodic boundary conditions are employed. The problem is run
on the series of refined grids with 25× 25, 50× 50, 100× 100, 200× 200 cells until the final time T = 4 giving the
movement of the wave by one full period. Results for all schemes are summarized in Table 4.1 for relative L1 norm
density errors which are shown in %. The order of accuracy of schemes in this table is computed as the base 2
logarithm of the ratio of two errors from neighboring columns.

From the table we see that the most accurate is 5-th order WENO followed by 3-rd order PPM. Also both
these schemes keep the high accuracy from very rough grids. All other schemes are second order.

4.2. Speed. To compare the schemes regarding their speed we have measured CPU time (on an SGI Origin
with 250 Mhz MIPS R10000 processor - we have PPM available only on SGI machines) for all of them for 2D
Riemann problem Case 4 described in the section 4.3 on the grid of 400×400 cells up to time T = 0.05. The results
are summarized in Table 4.2 showing also the ratio how many times the given scheme is slower than the fastest
scheme from our eight schemes (JT) and number of adaptive time steps used by the different schemes. From the
number of steps one can note that four schemes (JT, LL, WENO and VH1) need about twice as much time steps
as the other four schemes. In fact, the other four schemes use a CFL limit of one, while three ones (JT, LL and
WENO) need CFL number a half and VH1 uses CLF number 0.6. WENO and LL are slow, all others are quite
fast. Remarkable is that JT is the fastest scheme even thought it uses CFL number a half and VH1 with CLF=0.6
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Fig. 3.11. 1D results (density) for the blast wave problem by all eight schemes with 2000 cells.

scheme 25 order 50 order 100 order 200
CFLFh 2.5 2.3 5.1·10−1 2.1 1.2·10−1 2.0 3.1·10−2

JT 1.1 2.3 2.3·10−1 1.9 5.9·10−2 1.9 1.6·10−2

LL 2.0 1.3 8.0·10−1 1.9 2.1·10−1 2.0 5.4·10−2

CLAW 4.1·10−1 2.5 7.3·10−2 2.2 1.6·10−2 2.2 3.7·10−3

WAFT 5.7·10−1 -0.1 6.0·10−1 1.4 2.3·10−1 1.8 6.7·10−2

WENO 3.1·10−2 5.0 9.7·10−4 5.0 3.1·10−5 4.5 1.3·10−6

PPM 2.4·10−2 3.1 2.8·10−3 3.0 3.4·10−4 3.0 4.3·10−5

VH1 4.5·10−1 2.2 9.7·10−2 2.4 1.9·10−2 2.3 3.9·10−3

Table 4.1
Relative L1 density errors in % for 2D smooth periodic problem for all eight schemes on refined grid with orders of accuracy.

is only a little bit slower. For many schemes we had to manipulate the data to fit into our framework which might
slow down some schemes, so this speed comparison data should be understood as very rough.

scheme CPU time[s] ratio time steps
CFLFh 133 1.3 46
JT 103 1.0 92
LL 310 3.0 88
CLAW 118 1.1 49
WAFT 150 1.5 46
WENO 570 5.5 89
PPM 140 1.4 46
VH1 110 1.1 92

Table 4.2
Execution CPU times for 2D Riemann problem Case 4 on the grid of 400× 400 cells up to time T = 0.05; ratio between the CPU

time of given scheme and that one of the fastest scheme (JT); number of time steps used by each scheme.
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4.3. Description of 2D Riemann problems. We have taken six cases from the collection of 2D Riemann
problems proposed by [41] and used by others [24, 22], namely, cases 3,4,6,12,15 and 17 from [24] (which are
configurations 3, 4, B, F, G, K from [41]). These problems are solved on the square (x, y) ∈ (0, 1) × (0, 1).
The square is divided into four quadrants by lines x = 1/2, y = 1/2. The Riemann problems are defined by initial
constant states in each quadrant. These initial states in left/right-upper/lower quadrants for the pressure p, density
ρ, x-component of velocity u and y-component of the velocity v are presented at Table 4.3 together with the time
T at which the results are presented. All these problems use the gas constant γ = 1.4. In the figures presenting
results we use the same set of contours for density as has been used in [41]. All the Riemann problems in [41]
are proposed in such a way that the solutions of all four 1D Riemann problems between quadrants have exactly
one wave (shock, rarefaction or contact-slip). Following [24], let R stand for rarefaction, S for shock, and J for
contact-slip. Starting at the left side and going clockwise, the cases are: Case 3: S, S, S, S, Case 4: S, S, S, S,
Case 6: J, J, J, J , Case 12: J, S, S, J , Case 15: J,R, S, J , Case 17: S, J, R, J .

case left right T
p ρ u v p ρ u v
0.3 0.5323 1.206 0.0 1.5 1.5 0.0 0.0

3 0.029 0.138 1.206 1.206 0.3 0.5323 0.0 1.206 0.3
0.35 0.5065 0.8939 0.0 1.1 1.1 0.0 0.0

4 1.1 1.1 0.8939 0.8939 0.35 0.5065 0.0 0.8939 0.25
1.0 2.0 0.75 0.5 1.0 1.0 0.75 -0.5

6 1.0 1.0 -0.75 0.5 1.0 3.0 -0.75 -0.5 0.3
1.0 1.0 0.7276 0.0 0.4 0.5313 0.0 0.0

12 1.0 0.8 0.0 0.0 1.0 1.0 0.0 0.7276 0.25
0.4 0.5197 -0.6259 -0.3 1.0 1.0 0.1 -0.3

15 0.4 0.8 0.1 -0.3 0.4 0.5313 0.1 0.4276 0.2
1.0 2.0 0.0 -0.3 1.0 1.0 0.0 -0.4

17 0.4 1.0625 0.0 0.2145 0.4 0.5197 0.0 -1.1259 0.3
Table 4.3

Initial states in four left/right-upper/lower quadrants (for each case first row in the table is for two upper quadrants and second
row for two lower ones) for 2D Riemann problems for the pressure p, density ρ, x-component of velocity u and y-component of the
velocity v. T is the final time.

4.4. Results for 2D Riemann problems. As we stated in the introduction, exact solutions are not known
for these two-dimensional Riemann problems. Furthermore, the color maps can hide details such as small oscilla-
tions. But by having pressure as color and density as contours, it is at least possible to see what the schemes think
the structures are. In some cases there are clear errors caused by a poor resolution of the initial 1D problems.

These runs are for grids with 400× 400 cells. Color pressure map is overlayed by density contours and velocity
arrows.

Case 3: One can notice the different resolution (by different schemes) of the four 1D shocks separating the
four regions of constant states. To some extent all schemes agree on the basic structure of the solution in the region
where these four shocks interact.

Note the artefacts remaining for some schemes on two segments of the initial discontinuities between the upper
right quadrant and upper left and lower right quadrants. When we look at these in more detail we find that these
errors are present for all schemes, it is just that for some schemes (CFLFh, CLAW, WAFT, PPM and VH1) they
are large enough so that they are visible in the choosen density contours. Even further, when we try to compute
just the 1D Riemann problem defined between the two upper quadrants (or equivalently between the two right
quadrants), these artefacts (dip in density) are present for all schemes in the 1D results. Four schemes (CFLFh,
WAFT, PPM and VH1) show also such errors at the other two initial inner jump segments between the lower left
quadrant and two of its neighbors on the right and at the top. This is sometimes the price paid for good contact
resolution, there is not enough dissipation to reduce a residual error in density.

Case 4: CFLFh is noisy.The other methods are very similar to each other. Most methods resolve well all
the shocks, both the straight 1D shocks separating two constant states and the two curved shocks bordering the
lens shaped region of higher density and pressure. The solution in this region should be symmetric about the lens
axis (if we woud stay in a coordinate system fixed to this axis, which is moving with constant speed, the problem
would be symmetric about this axis). Some schemes do not keep this symmetry in all details, e.g. CFLFh and JT
have differences along the upper and lower curved shocks.

Case 6: The contact resolving ability of WAFT and PPM shows up very well here. All the schemes have grid
aligned artefacts in the high pressure areas around boundaries which appear also in density, and only for CFLFh
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Fig. 4.1. Results for the 2D Riemann problem case 3 by all eight schemes. Pressure is displayed by color, density by 32
contours (0.16 to 1.71 step 0.05) and velocity by arrows. For all cases the computations were done and are presented on the square
(x, y) ∈ (0, 1)× (0, 1).

also shows up on lower right in the chosen density contour levels. Some of these relicts are standing around original
jump segments while the others result from waves emanated from the initial jumps which are faster than the main
contact waves.

Case 12: The key issue here is the resolution of the stationary contacts bordering the lower left quadrant.
When we compare with the 1D test 5 we see that all schemes which exactly resolve the stationary contact there
(CLAW, WAFT, WENO, PPM and VH1) also resolve exactly the stationary contacts here. The data for this
problem is symmetric about the (0,0) (1,1) diagonal, and the non-symmetric dimensionally split schemes PPM and
VH1 preserve the symmetry quite well as all as do the other non-split methods.

Case 15: Resolution of slowly moving contacts bordering the lower left constant state is important here (note
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CFLFh JT LL

CLAW WAFT WENO

PPM VH1

0.5 1 1.5 2 2.5

Fig. 4.2. Results for the 2D Riemann problem case 4 by all eight schemes. Pressure is displayed by color, density by 29
contours (0.52 to 1.92 step 0.05) and velocity by arrows. For all cases the computations were done and are presented on the square
(x, y) ∈ (0, 1)× (0, 1).

the short curved contact in the middle) and one might compare with 1D test 6. As in case 6 a detailed inspection
reveals errors aligned with the slip and shock lines that show up in the pressure color map. As in case 6 these
artefacts appear also in density, but they are not visible with the chosen density contour levels, and they have the
same origin as in case 6.

Case 17: Here we have an interesting disagreement. LL shows a possibile instability on the lower slip line not
seen by the others. As in case 12 important is the resolution of two standing contacts on the line x = 1/2 and we
can again compare with 1D test 5.
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Fig. 4.3. Results for the 2D Riemann problem case 6 by all eight schemes. Pressure is displayed by color, density by 29
contours (0.25 to 3.05 step 0.1) and velocity by arrows. For all cases the computations were done and are presented on the square
(x, y) ∈ (0, 1)× (0, 1).

4.5. Noh problem. This is a classic test of W. Noh [34] for an ideal gas with γ = 5/3 for which there is
an exact solution. The initial density is 1, the initial pressure is 0 (we set initial pressure to 10−6 in the numerics
as many schemes cannot deal with zero pressure), and the initial velocities are directed toward the origin in the
plane with magnitude 1. The solution is an infinite strength circularly symmetric shock reflecting from the origin.
Behind the shock (i.e. inside the circle) the density is 16, the velocity is 0 and the pressure is 16/3. The shock
speed is 1/3 and ahead of the shock, that is for

√
x2 + y2 > t/3, the density is (1+ t/

√
x2 + y2) while velocity and

pressure remain the same as initially. The computational domain is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. At the boundaries x = 1
and y = 1 we used the exact density as a function of time and radius together with the initial pressure and velocity.
At the other two boundaries x = 0 and y = 0 we used the symmetric (reflecting) BCs. This is a difficult problem.
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Fig. 4.4. Results for the 2D Riemann problem case 12 by all eight schemes. Pressure is displayed by color, density by 30
contours (0.54 to 1.7 step 0.04) and velocity by arrows. For all cases the computations were done and are presented on the square
(x, y) ∈ (0, 1)× (0, 1).

The Lagrangian codes dealing with this problem suffer from a very large error in the density at the center. For an
analysis of this problem see [38].

Here 1 you can see the animation of 400× 400 cells computation by the CFLF4 scheme to time T = 2 with
frame interval ∆T = 0.1.

Results of the Noh problem on the 400 × 400 grid are shown in Fig. 4.7. The schemes (JT, CLAW, WAFT,
WENO) for which no result is shown failed to run. JT ran on a 100×100 grid but not on the 400×400 grid. PPM
required a CFL limit of 0.2 for the 400× 400 grid, but ran with CFL=0.8 for a 100× 100 grid. LL was completely

1 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/Noh/

http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/Noh/
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Fig. 4.5. Results for the 2D Riemann problem case 15 by all eight schemes. Pressure is displayed by color, density by 29
contours (0.43 to 0.99 step 0.02) and velocity by arrows. For all cases the computations were done and are presented on the square
(x, y) ∈ (0, 1)× (0, 1).

wrong - we also did run it on the whole plane in order to be certain that this was not the result of some error
on the symmetry boundary. VH1 is very oscillatory, PPM is good, however, we have to use CFL=0.2. CFLFh is
reasonably good.

4.6. Rayleigh-Taylor instability. Rayleigh-Taylor instability is a physical phenomenon appearing when a
layer of heavier fluid is placed on top of a layer of lighter fluid. For this problem we include a gravitational source
term in the momentum equation. We treat this problem in the region (x, y) ∈ (0, 1/6)×(0, 1) with the gravitational
acceleration g = 0.1 in −y direction. The upper fluid has density 2 and the lower fluid 1. The interface of the
fluids is at y = 1/2 + 0.01 cos(6πx), i.e. a slightly perturbed line y = 1/2. The initial pressure is hydrostatic and
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Fig. 4.6. Results for the 2D Riemann problem case 17 by all eight schemes. Pressure is displayed by color, density by 30
contours (0.53 to 1.98 step 0.05) and velocity by arrows. For all cases the computations were done and are presented on the square
(x, y) ∈ (0, 1)× (0, 1).

the fluids are initially at rest. Around the interface the initial conditions are smoothed out. Boundary conditions
on all four border lines are reflecting.

Here 2 you can see the animation of the 100 × 400 cells computation by the CFLFh hybrid scheme to time
T = 8.5 with frame interval ∆T = 0.5.

These runs are for a grid of 100 × 400 cells on a half of the mushroom which are then mirrored in Fig. 4.8.
Density color map and density contour are shown separately. The solid line in the contour plot, was provided by
J. Grove and V. Mousseau of Los Alamos [13] and is the result of a front tracking code, while the dashed line is

2 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/Rayleigh-Taylor/

http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/Rayleigh-Taylor/
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PPM VH1

4 6 8 10 12 14 16

Fig. 4.7. Results for the Noh problem by the CFLFh, LL, PPM and VH1 schemes. JT, CLAW, WAFT and WENO have failed
for this problem. Density color map is overlayed by 23 density contours ( 2.5 to 4 step 0.25 and 14 to 17 step 0.2) and velocity arrows
on the left. Scatter plot of density versus radius is on the right. The computations were done on the square (x, y) ∈ (0, 1)× (0, 1) with
400× 400 grid to time T = 2.

the density ρ = 1.5 contour. The interface between the light and heavy fluid is unstable. As might be expected,
the less dissipative schemes such as CLAW and WENO show this interface breaking up, while the more dissipative
schemes like CFLFh suppress the instability. Tariq Aslam [3] has reported to us that the interface breaks up very
early with a very high resolution fine grid WENO scheme. The front tracking contour also seems to suppress the
instability.

4.7. Implosion problem. This converging shock problem has been presented in [17]. In [6] several variants
of this problem including also other shapes of interior low density and low pressure region have been treated. The
gas is placed in a square box. Inside a smaller square centered at the center of the box and rotated by π/4 (see
Fig. 4.9) the gas has initialy smaller density and pressure than in the rest of the box. As in [17] we use the box
(x, y) ∈ (−0.3, 0.3) × (−0.3, 0.3) and the smaller square with corners at (±0.15, 0), (0,±0.15). The computation
is done only in the upper right quadrant (x, y) ∈ (0, 0.3) × (0, 0.3) of the box with diamond corners at points
(0.15, 0), (0, 0.15). Initial data inside the diamond are ρi = 0.125, pi = 0.14 and outside are ρo = 1, po = 1. Initial
velocities are zero. The gas constant is γ = 1.4. Reflecting boundary conditions are used on all four boundaries.
The initial data are the Sod problem data [43].

Here 3 you can see the animation of 400× 400 cells computation. by the CLAW scheme to time T = 2.5 with
frame interval ∆T = 0.05. Here 4 you can see the early stage animation of 400× 400 cells computation. by the
WAFT scheme to time T = 0.1 with frame interval ∆T = 0.005.

First we present in Fig. 4.10 results by all eight schemes at early stage at time T = 0.045. There is a clear
consensus among the codes for the very early stages of the evolution. The inital interior diamond boundary is
a contact discontinuity that is nicely resolved by PPM and WAFT but rather badly resolved by CFLFh. The
color pressure map shows that the pressure is continuous normal to the contact, but also that there is a pressure
discontinuity tangential to the contact. The animation 5 is particularly effective in showing the wave structure.

Fig. 4.11 shows results at late stage at time T = 2.5 by CLAW, WENO, WAFT and PPM schemes. In the
later stages there is also a consensus on the gross structure of the waves reflected fromn the boundary. The fate of

3 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/implosion/
4 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/implosion-short/
5 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/implosion-short/

http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/implosion/
http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/implosion-short/
http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/implosion-short/
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Fig. 4.8. Results for the Rayleigh-Taylor problem by all eight schemes. Density color map and front contour. The solid line in
the contour plots is the result of a front tracking code. The computations were done on the rectangle (x, y) ∈ (0, 1/6) × (0, 1) with
100× 400 grid to time T = 8.5.

pρ

pρ
i i

o o

Fig. 4.9. Initial data of the implosion problem.

the initial contact discontinuity is not clear, but there is remarkable agreement between CLAW and WENO that a
jet has formed. We can also see here the lack of symmetry in the split dimension PPM and VH1, which both use
alternating Strang splitting, as well as in the 2D code WAFT using superbee limiter (with minmod limiter WAFT
keeps symmetry).

4.8. Explosion. The explosion problem proposed in [46] is a circularly symmetric 2D problem with initial
circular region of higher density and higher pressure. In particular we set the center of the circle to the origin,
its radius to 0.4 and compute on a quadrant (x, y) ∈ (0, 1.5) × (0, 1.5). Density and pressure are ρi = 1, pi = 1
inside the circle and ρo = 0.125, po = 0.1 outside. The gas is initially at rest and its gas constant is γ = 1.4. This
problem (evolution of unstable contact at later times) is sensitive to perturbations of the interface and as noted



20 R. LISKA AND B. WENDROFF

CFLFh JT LL

CLAW WAFT WENO

PPM VH1

0.2 0.4 0.6 0.8 1

Fig. 4.10. Results for the implosion problem at early stage by all eight schemes. Color pressure map is overlayed by 36 density
contours (0.125 to 1 step 0.025) and velocity arrows. The computations were done on the square (x, y) ∈ (0, 0.3) × (0, 0.3) with
400× 400 grid to time T = 0.045 and is presented on the square (0, 0.22)× (0, 0.22) .

in [46] for the cells which are crossed by the initial interface circle one needs to use area weighted initial density
and pressure. Nevertheless it appears that an instability develops. There is a shock reflecting from the center that
passes through the contact and seems to have no effect.

Here 6 you can see an animation of 400 × 400 cells computation by the WAFT scheme to time T = 3.5
with frame interval ∆T = 0.1. This animation uses area averaged initial data for those cells crossed by the circle.
The frames have pressure colormap with density contours on the left and density colormap with pressure contours
on the right to distinguish unstable circular contact. The color scale is different for each frame so that the same

6 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/explosion/

http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/explosion/
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CFLFh JT LL

CLAW WAFT WENO

PPM VH1

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

Fig. 4.11. Results for the implosion problem at late stage by all eight schemes. Color pressure map is overlayed by 31 density
contours (0.35 to 1.1 step 0.025) and velocity arrows. The computations were done on the square (x, y) ∈ (0, 0.3) × (0, 0.3) with
400× 400 grid to time T = 2.5.

colors on different frames do not correspond to the same value. Here 7 you can see an animation of 400 × 400
cells computation by the WAFT scheme till T = 3.5 with frame interval ∆T = 0.1. This animation does not have
the smoothed initial interface. The frames have pressure colormap with density contours on the left and density
colormap with pressure contours on the right to distinguish the unstable circular contact. The colormaps use for
each frame a different interval of pressure and/or density values, so that the same colors in different frames do not
correspond to the same value.

Fig. 4.12 shows results by all eight schemes. Higher order shcemes WENO and PPM are more sensitive to

7 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/explosion-noweight/

http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/explosion-noweight/
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interface instability than the lower order schemes CLAW and WAFT. The narrowest contact interface is resolved
by WAFT. The interface is rather poorly resolved by CFLFh and LL. There are numerical boundary effects at the
upper right corner that we were not able to eliminate. These runs below are for grids 400 by 400 cells at time
T = 3.2. A color pressure map is overlayed by density contours and velocity arrows.

CFLFh JT LL

CLAW WAFT WENO

PPM VH1

0.06 0.07 0.08 0.09 0.1 0.11 0.12

Fig. 4.12. Results for the explosion problem by all eight schemes. Color pressure map is overlayed by 27 density contours (0.08
to 0.21 step 0.005) and velocity arrows. Computations were done on the square (x, y) ∈ (0, 1.5)× (0, 1.5) with 400× 400 grid till time
T = 3.2.

4.9. Odd-Even decoupling. Here we treat a problem similar to Quirks odd-even decoupling problem from
[36], for recent analysis of this problem see [12]. As most of our schemes work on rectangular grids only we
cannot use Quirks formulation with a perturbed grid. Instead we use the problem setup suggested to us by Mike
Abouziarov [1]: the Woodward-Colella 1D blast wave problem described in the section 3.1 is solved on a rectangle
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(x, y) ∈ (0, 1)× (0, 0125) with initial data independent of y (and zero velocity in y direction) on the 800× 10 grid.
The boundary conditions are reflective in x direction and periodic in y direction and problem is run as in 1D till
time T = 0.038.

schemes max(|uy|)
CFLFh, LL, WENO 0
JT 2·10−20

CLAW 1·10−16

WAFT 5·10−4

PPM 3·10−7

VH1 1·10−1

Table 4.4
Maximum errors in y velocity for odd-even problem.

The numerical solution should remain independent of y however two of our schemes, namely VH1 and WAFT,
develop pathological behaviour starting with small non-zero y velocity which varies in the y direction, amplifies as
an instability and influences also the density. In Table 4.4 we present the maximum deviation of the y velocity
from zero at the final time. The error in the y velocity is zero for CFLFh, LL and WENO. It is very small for JT
and CLAW for which it does not depend on y and does not grow further for longer time. For PPM the y velocity
error at this time is small and does not influence the density, however, this error depends on y and grows with
time, e.g. for double time T = 0.076 it reaches 10−5 and still does not influence the density, but eventualy at later
times it will influence the whole solution. For VH1 and WAFT the error in y velocity is big and influences also the
density as we can see in Fig. 4.13 presenting a critical part of the solution where oscillations appear.

WAFT VH1

Fig. 4.13. Density (up) and y velocity (down) profile for odd-even decoupling problem in critical area (x, y) ∈ (0.65, 0.85) ×
(0, 0125) for WAFT and VH1 schemes.

4.10. Gresho problem. The Gresho problem [11, 40] is a rotating vortex problem independent of time.
Angular velocity depends only on radius and the centrifugal force is balanced by the pressure gradient

uφ(r) =

 5r
2− 5r
0

, p(r) =

 5 + 25
2 r2 0 ≤ r < 0.2

9− 4 ln 0.2 + 25
2 r2 − 20r + 4 ln r, 0.2 ≤ r < 0.4

3 + 4 ln 2 0.4 ≤ r
.

The radial velocity is zero and the density is one everywhere. The Gresho problem has been used in [11, 40] for
incompressible flow, here we apply it to the Euler equations. Pressure has a minimum in the center and can be
shifted by a constant value. Here we use higher pressure p(0) = 5 in the center. The vorticity of the solution is 10
for 0 ≤ r < 0.2, 2/r − 10 for 0.2 ≤ r < 0.4 and zero for 0.4 ≤ r. The dependence of angular velocity, pressure and
vorticity on radius is plotted in Fig. 4.14.

We have solved this problem on a rectangle (x, y) ∈ (0, 1)× (0, 1) with transmissive boundary conditions until
time T = 3 on 20 × 20 and 40 × 40 grids. We use such rough grids to be comparable with [11, 40] using 20 × 20
grid. Table 4.5 summarizes the relative L1 errors of vorticity and density and the relative error of total kinetic
energy. Errors are in %. Fig. 4.15 shows results in one quadrant computed by all schemes on the 40 × 40 grid.
From errors in Table 4.5 CFLFh looks best on the 20× 20 grid, however, its results are not improved on the finer
40× 40 grid, it oscillates on this grid as seen in Fig. 4.15. PPM and VH1 are very good and converge, JT and LL
are the worst for this problem.
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Fig. 4.14. Exact solution of the Gresho problem: dependence of angular velocity (a), pressure (b) and vorticity (c) on radius;
initial vorticity on 40× 40 grid (d).

20× 20 grid 40× 40 grid
L1 L1 relative L1 L1 relative

scheme vorticity density TKE vorticity density TKE
error error error error error error

CFLFh 22 0.22 0.2 20 0.16 0.4
JT 89 0.56 55.2 45 0.22 18.3
LL 71 2.27 65.6 44 0.23 26.1
CLAW 50 0.33 29.9 28 0.10 6.1
WAFT 47 0.24 7.7 26 0.07 5.7
WENO 38 0.35 30.9 27 0.06 3.7
PPM 25 0.20 9.1 13 0.04 0.8
VH1 26 0.15 9.6 15 0.04 1.2

Table 4.5
Relative L1 errors of vorticity and density in % and relative error in % of total kinetic energy (TKE) for Gresho problem by all

eight schemes on 20× 20 and 40× 40 grids.

The moving Gresho problem is the same problem as the Gresho problem, but with the vortex convected by
velocity one in the x direction, so the initial conditions are the same with the x velocity component increased by
one. We have solved this problem on a rectangle (x, y) ∈ (0, 4)× (0, 1) with transmissive boundary conditions until
time T = 3 on 80 × 20 and 160 × 40 grids. Table 4.6 summarizes the relative L1 errors of vorticity and density
and the relative error of total kinetic energy. Errors are in %. Fig. 4.16 shows resulting vortex computed by all
schemes on the 160 × 40 grid. Concerning the vorticity error in Table 4.6, for the 80 × 20 grid WENO is best,
however, there is a large error in total kinetic energy that does not improve much with the finer 160 × 40 grid.
Regarding the vorticity error for the 160 × 40 grid PPM and CLAW are the best, however looking at Fig. 4.16
one can note a rather large deviation from symmetry as is also the case for most other schemes. Only JT keeps
symmetry remarkably well.

20× 20 grid 40× 40 grid
L1 L1 relative L1 L1 relative

scheme vorticity density TKE vorticity density TKE
error error error error error error

CFLFh 145 1.12 12.8 83 0.72 0.1
JT 100 0.81 42.8 52 0.22 22.1
LL 88 0.65 71.6 60 0.49 30.9
CLAW 65 0.72 39.9 37 0.29 8.3
WAFT 65 0.87 1.3 62 0.77 12.6
WENO 48 0.37 31.6 40 0.43 4.0
PPM 93 1.10 4.9 36 0.42 1.0
VH1 65 0.80 11.7 55 0.66 1.2

Table 4.6
Relative L1 errors of vorticity and density in % and relative error in % of total kinetic energy (TKE) for moving Gresho problem

by all eight schemes on 80× 20 and 160× 40 grids.
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CFLFh JT LL CLAW

WAFT WENO PPM VH1

−5 0 5 10

Fig. 4.15. Results for the Gresho problem by all eight schemes on 40 × 40 grid at time T = 3. Vorticity is displayed by color
and density by 11 contours (0.99 to 1.01 step 0.002). For initial exact vorticity see Fig. 4.14.

CFLFh JT LL CLAW

WAFT WENO PPM VH1

−5 0 5 10

Fig. 4.16. Results for the moving Gresho problem by all eight schemes on 160 × 40 grid at time T = 3 in the square (x, y) ∈
(3, 4) × (0, 1) containing the vortex. Vorticity is displayer by color and density by 11 contours (0.97 to 1.03 step 0.006). For initial
exact vorticity see Fig. 4.14.

5. Final remarks. We have taken a collection of schemes which are representative of most of the basic
approaches to approximating the Euler equations by finite difference methods - including the use of central dif-
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ferencing, eigenvector decomposition, dimensional splitting, Runge-Kutta time stepping, limiting, hybridization,
and Riemann solvers. We have applied these to a suite of problems in one and two dimensions. It is clear that
some methods appear to work better than others on a specific problem, but no one scheme has shown itself to be
superior on all of them, which should come as no surprise. Some schemes are much faster than others, but not too
much should be read into this since in many cases we had to manipulate the data to fit into our framework.

We present this to the computational fluid dynamics community with the hope that it will contribute to the
still vigorous research being done there. This paper presents selected results of the comparison. Results for all
problems by all schemes are available on the web [30] including several animations of 2D test problems.
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Appendix A. Appendix.

A.1. Available animations. Following animations of 2D problems described in this document are available:
• Noh 8

• Rayleigh-Taylor instability 9

• Implosion 10

• Implosion early stage 11

• Explosion with area weighted initial condiitons 12

• Explosion without area weighted initial condiitons 13

A.2. Exact 1D results. All 1D tests with the exception of the blast wave problem are simple Riemann
problems for which we can compute the exact solution. In the following figures we present the exact solution of
all these Riemann problems using the exact Riemann solver from [46]. For the blast wave problem we do not have
the exact solution.

8 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/Noh/
9 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/Rayleigh-Taylor/

10 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/implosion/
11 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/implosion-short/
12 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/explosion/
13 http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/explosion-noweight/
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http://www-troja.fjfi.cvut.cz/~{}liska/CompareEuler/compare8
http://www.math.ucsb.edu/~{}xliu/publication/paper/positive1.pdf
http://www.galcit.caltech.edu/~{}jjq/doc/amr_sol/thesis
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Fig. A.1. Exact 1D results (density, velocity, pressure and internal energy) for the test 1 problem.
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Fig. A.2. Exact 1D results (density, velocity, pressure and internal energy) for the test 2 problem.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4
Density

ρ

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
Velocity

u

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Pressure

p

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Internal Energy

e

Fig. A.3. Exact 1D results (density, velocity, pressure and internal energy) for the Noh problem.
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Fig. A.4. Exact 1D results (density, velocity, pressure and internal energy) for the test 3a problem.

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35
Density

ρ

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20
Velocity

u

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000
Pressure

p

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
Internal Energy

e

Fig. A.5. Exact 1D results (density, velocity, pressure and internal energy) for the test 4 problem.
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Fig. A.6. Exact 1D results (density, velocity, pressure and internal energy) for the test 5 problem.
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Fig. A.7. Exact 1D results (density, velocity, pressure and internal energy) for the test 6 problem.
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Fig. A.8. Exact 1D results (density, velocity, pressure and internal energy) for the peak problem.


